version française rss feed
HAL : hal-00425121, version 1

Fiche détaillée  Récupérer au format
Journal of proteomics (2009) epub ahead of print
Identification of replication-competent HSV-1 Cgal(+) strain targets in a mouse model of human hepatocarcinoma xenograft.
Enrique Santamaría, María I Mora1, Elvira Carro-Roldán, Manuela Molina2, 3, Joaquín Fernández-Irigoyen, Peggy Marconi, Roberto Manservigi, Anna Greco3, Alberto L Epstein3, Jesús Prieto, Rubén Hernández-Alcoceba, Fernando J Corrales4

Recent studies based on animal models have shown the advantages and potential of oncolytic viral therapy using HSV-1 -based replication-competent vectors in the treatment of liver tumors, but little is known about the cellular targets that are modulated during viral infection. In the present work, we have studied the effects of intratumoral injections of HSV-1 Cgal(+) strain in a murine model of human hepatoma xenografts. Viral replication was assessed for more than 1month, leading to a significant reduction of tumor growth rate mediated, in part, by a cyclin B dependent cell proliferation arrest. Early events resulting in this effect were analyzed using a proteomic approach. Protein extracts from xenografted human hepatomas treated with saline or HSV-1 Cgal(+) strain during 24h were compared by 2-D DIGE and differential spots were identified by nanoLC-ESI-MS/MS. Alterations on glutathione S transferase 1 Omega, and ERp29 suggest novel HSV-1 Cgal(+) targets in solid liver tumors. Additionally, ERp29 showed a complex differential isoform pattern upon HSV-1 Cgal(+) infection, suggesting regulatory mechanisms based on post-translational modification events.
1 :  SUBATECH - Laboratoire SUBATECH Nantes
2 :  Dirección General y Dirección de Tecnología, Consorcio Minero Benito Juárez
3 :  CGMC - Centre de génétique moléculaire et cellulaire
4 :  División de Hepatología y Terapia Génica
Sciences du Vivant/Biochimie, Biologie Moléculaire/Biologie moléculaire