version française rss feed
HAL : hal-00430445, version 1

Fiche concise  Récupérer au format
Arbitrary distribution and nonlinear modal interaction in coupled nanomechanical resonators
Dorignac J., Gaidarzhy A., Mohanty P.
Journal of Applied Physics 105, 10 (2009) 103520-103520-7 - http://hal.archives-ouvertes.fr/hal-00430445
Physique/Physique mathématique
Physique/Matière Condensée/Systèmes mésoscopiques et effet Hall quantique
Mathématiques/Physique mathématique
Arbitrary distribution and nonlinear modal interaction in coupled nanomechanical resonators
Jerome Dorignac ()1, A. Gaidarzhy, P. Mohanty
1 :  LPTA - Laboratoire de Physique Théorique et Astroparticules
CNRS : UMR5207 – IN2P3 – Université Montpellier II - Sciences et techniques
Bât 13- 1er Et. - CC 070 Place Eugène Bataillon 34095 MONTPELLIER CEDEX 5
We propose a general one-dimensional {\em continuous} formulation to analyzethe vibrational modes of antenna-like nanomechanical resonators consisting oftwo symmetric arrays of cantilevers affixed to a central nano-beam. Thecantilever arrays can have arbitrary density and length profile along the beam.We obtain the secular equation that allows for the determination of theirfrequency spectrum and illustrate the results on the particular examples ofstructures with constant or alternating cantilever length profiles. We showthat our analytical results capture the vibration spectrum of such resonatorsand elucidate key relationships that could prove advantageous for experimentaldevice performance. Furthermore, using a perturbative approach to treat thenonlinear and dissipative dynamics of driven structures, we analyze theanharmonic coupling between two specific widely spaced modes of thecoupled-element device, with direct application to experiments.

Journal of Applied Physics (J. Appl. Phys.)
Publisher American Institute of Physics (AIP)
ISSN 0021-8979 
Articles dans des revues avec comité de lecture

cantilevers – micromechanical resonators – perturbation theory – vibrational modes
PACS : 03.65.Ta, 62.25.-g, 62.30.+d, 62.40.+i

Lien vers le texte intégral :