s'authentifier
version française rss feed
HAL : in2p3-00000709, version 1

Fiche détaillée  Récupérer au format
Journal of Physics A: Mathematical and General 25 (1992) 2683-2691
Normal ordering for deformed boson operators and operator-valued deformed stirling numbers
J. Katriel, M. Kibler1
(1992)

The normal ordering formulae for powers of the boson number operator $\hat{n}$ are extended to deformed bosons. It is found that for the `M-type' deformed bosons, which satisfy $a a^{\dagger} - q a^{\dagger} a = 1$, the extension involves a set of deformed Stirling numbers which replace the Stirling numbers occurring in the conventional case. On the other hand, the deformed Stirling numbers which have to be introduced in the case of the `P-type' deformed bosons, which satisfy $a a^{\dagger} - q a^{\dagger} a = q^{-\hat{n}}$, are found to depend on the operator $\hat{n}$. This distinction between the two types of deformed bosons is in harmony with earlier observations made in the context of a study of the extended Campbell-Baker-Hausdorff formula.
1 :  IPNL - Institut de Physique Nucléaire de Lyon
Physique/Physique mathématique
Lien vers le texte intégral : 
http://fr.arXiv.org/abs/math-ph/0001001