version française rss feed
HAL : in2p3-00023855, version 1

Fiche détaillée  Récupérer au format
Journal of Mathematical Physics 47 (2006) 032102
The quantum fidelity for the time-dependent singular quantum oscillator
M. Combescure1

In this paper we perform an exact study of ``Quantum Fidelity'' (also called Loschmidt Echo) for the time-periodic quantum Harmonic Oscillator of Hamiltonian : $$ \hat H_{g}(t):=\frac{P^2}{2 }+ f(t)\frac{Q^2}{2}+\frac{g^2}{Q^2} $$ when compared with the quantum evolution induced by $\hat H_{0}(t)$ ($g=0$), in the case where $f$ is a $T$-periodic function and $g$ a real constant. The reference (initial) state is taken to be an arbitrary ``generalized coherent state'' in the sense of Perelomov. We show that, starting with a quadratic decrease in time in the neighborhood of $t=0$, this quantum fidelity may recur to its initial value 1 at an infinite sequence of times {$t_{k}$}. We discuss the result when the classical motion induced by Hamiltonian $\hat H_{0}(t)$ is assumed to be stable versus unstable. A beautiful relationship between the quantum and the classical fidelity is also demonstrated.
1 :  IPNL - Institut de Physique Nucléaire de Lyon
Physique/Physique mathématique

Physique/Physique Quantique
Liste des fichiers attachés à ce document : 
singular2.ps(256.6 KB)
singular2.pdf(170.6 KB)