version française rss feed
HAL : in2p3-00115760, version 1

Fiche détaillée  Récupérer au format
International Journal of Quantum Chemistry 43 (1998) 625-645
Classical Trajectories for two Ring-Shaped Potentials
M. Kibler1, G.-H. Lamot1, P. Winternitz

This paper deals with the classical trajectories for two super-integrable systems: a system known in quantum chemistry as the Hartmann system and a system of potential use in quantum chemistry and nuclear physics. Both systems correspond to ring-shaped potentials. They admit two maximally super-integrable systems as limiting cases, viz, the isotropic harmonic oscillator system and the Coulomb-Kepler system in three dimensions. The planarity of the trajectories is studied in a systematic way. In general, the trajectories are quasi-periodic rather than periodic. A constraint condition allows to pass from quasi-periodic motions to periodic ones. When written in a quantum mechanical context, this constraint condition leads to new accidental degeneracies for the two systems studied.
1 :  IPNL - Institut de Physique Nucléaire de Lyon

Physique/Physique/Physique Classique

Physique/Physique Quantique
Lien vers le texte intégral :