version française rss feed
HAL : in2p3-00182564, version 1

Fiche détaillée  Récupérer au format
Journal of Mathematical Physics 48/11 (2007) 113512
6J Symbols Duality Relations
K. Noui1, P. Roche1, L. Freidel2

It is known that the Fourier transformation of the square of (6j) symbols has a simple expression in the case of su(2) and U_q(su(2)) when q is a root of unit. The aim of the present work is to unravel the algebraic structure behind these identities. We show that the double crossproduct construction H_1\bowtie H_2 of two Hopf algebras and the bicrossproduct construction H_2^{*}\lrbicross H_1 are the Hopf algebras structures behind these identities by analysing different examples. We study the case where D= H_1\bowtie H_2 is equal to the group algebra of ISU(2), SL(2,C) and where D is a quantum double of a finite group, of SU(2) and of U_q(su(2)) when q is real.
1 :  LPTA - Laboratoire de Physique Théorique et Astroparticules
2 :  Phys-ENS - Laboratoire de Physique de l'ENS Lyon
Physique/Physique des Hautes Energies - Théorie
Fourier transforms – quantum theory – SU(2) theory
Lien vers le texte intégral :