s'authentifier
version française rss feed
HAL : in2p3-00184037, version 1

Fiche détaillée  Récupérer au format
Journal of Mathematical Physics 50 (2009) 032104
Block circulant matrices with circulant blocks, weil sums and mutually unbiased bases, II. The prime power case
M. Combescure1
(2009)

In our previous paper \cite{co1} we have shown that the theory of circulant matrices allows to recover the result that there exists $p+1$ Mutually Unbiased Bases in dimension $p$, $p$ being an arbitrary prime number. Two orthonormal bases $\mathcal B,\ \mathcal B'$ of $\mathbb C^d$ are said mutually unbiased if $\forall b\in \mathcal B, \ \forall b' \in \mathcal B'$ one has that $$\vert b\cdot b'\vert = \frac{1}{\sqrt d}$$ ($b\cdot b'$ hermitian scalar product in $\mathbb C^d$). In this paper we show that the theory of block-circulant matrices with circulant blocks allows to show very simply the known result that if $d=p^n$ ($p$ a prime number, $n$ any integer) there exists $d+1$ mutually Unbiased Bases in $\mathbb C^d$. Our result relies heavily on an idea of Klimov, Munoz, Romero \cite{klimuro}. As a subproduct we recover properties of quadratic Weil sums for $p\ge 3$, which generalizes the fact that in the prime case the quadratic Gauss sums properties follow from our results.
1 :  IPNL - Institut de Physique Nucléaire de Lyon
Mathématiques/Physique mathématique

Physique/Physique mathématique

Physique/Physique Quantique
Liste des fichiers attachés à ce document : 
PS
powerofprime.ps(130.7 KB)
PDF
powerofprime.pdf(177.8 KB)