version française rss feed
HAL : in2p3-00270878, version 1

Fiche concise  Récupérer au format
Time structure and multi-messenger signatures of ultra-high energy cosmic ray sources
Sigl G.
New Journal of Physics 11 (2009) 5014 - http://hal.in2p3.fr/in2p3-00270878
Physique/Astrophysique/Cosmologie et astrophysique extra-galactique
Planète et Univers/Astrophysique/Cosmologie et astrophysique extra-galactique
Time structure and multi-messenger signatures of ultra-high energy cosmic ray sources
G. Sigl1, 2
1 :  APC - UMR 7164 - AstroParticule et Cosmologie
CNRS : UMR7164 – IN2P3 – Observatoire de Paris – Université Paris VII - Paris Diderot – CEA : DSM/IRFU
APC - UMR 7164, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, case postale 7020, F-75205 Paris Cedex 13
2 :  Institut für theoretische Physik
Universität Hamburg
Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg
The latest results on the sky distribution of ultra-high energy cosmic ray sources have consequences for their nature and time structure, if either deflection is moderate or if their density is comparable to or larger than the average density of active galaxies. If the sources accelerate predominantly nuclei of atomic number A and charge Z and emit continuously, their luminosity in cosmic rays above sime6×1019 eV can be no more than a fraction of sime5×10-4 Z-2 of their total power output. Such sources could produce a diffuse neutrino flux that gives rise to several events per year in neutrino telescopes of km3 size. Continuously emitting sources should be easily visible in photons below ~100 GeV, but TeV γ-rays may be absorbed within the source. For episodic sources that accelerate cosmic rays in areas moving with a Lorentz factor Γ, the bursts or flares have to last at least sime0.1 Γ-4 A-4 yr. A considerable fraction of the flare luminosity could then go into highest energy cosmic rays, in which case the rate of flares per source has to be less than sime5×10- 3 Γ4 A4 Z2 yr-1. Episodic sources should typically have detectable variability both at FERMI/GLAST and TeV energies, but neutrino fluxes may be hard to detect. Finally, in contrast to γ-rays, power and density requirements make it unlikely that the ultra-high energy cosmic rays leave the source environment strongly beamed.

Articles dans des revues avec comité de lecture
New Journal of Physics (New. J. Phys.)
Publisher Institute of Physics: Open Access Journals
ISSN 1367-2630 

6 pages, no figures
Lien vers le texte intégral :