s'authentifier
version française rss feed
HAL : in2p3-00274203, version 1

Fiche concise  Récupérer au format
(A)dS exchanges and partially-massless higher spins
Francia D., Mourad J., Sagnotti A.
Nuclear Physics B (2008) - http://hal.in2p3.fr/in2p3-00274203
Physique/Physique des Hautes Energies - Théorie
(A)dS exchanges and partially-massless higher spins
D. Francia, J. Mourad1, A. Sagnotti
1 :  APC - UMR 7164 - AstroParticule et Cosmologie
http://www.apc.univ-paris7.fr/
CNRS : UMR7164 – IN2P3 – Observatoire de Paris – Université Paris VII - Paris Diderot – CEA : DSM/IRFU
APC - UMR 7164, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, case postale 7020, F-75205 Paris Cedex 13
France
APC - THEORIE
We determine the current exchange amplitudes for free totally symmetric tensor fields $\vf_{\mu_1 ... \mu_s}$ of mass $M$ in a $d$-dimensional $dS$ space, extending the results previously obtained for $s=2$ by other authors. Our construction is based on an unconstrained formulation where both the higher-spin gauge fields and the corresponding gauge parameters $\Lambda_{\mu_1 >... \mu_{s-1}}$ are not subject to Fronsdal's trace constraints, but compensator fields $\alpha_{\mu_1 ... \mu_{s-3}}$ are introduced for $s > 2$. The free massive $dS$ equations can be fully determined by a radial dimensional reduction from a $(d+1)$-dimensional Minkowski space time, and lead for all spins to relatively handy closed-form expressions for the exchange amplitudes, where the external currents are conserved, both in $d$ and in $(d+1)$ dimensions, but are otherwise arbitrary. As for $s=2$, these amplitudes are rational functions of $(ML)^2$, where $L$ is the $dS$ radius. In general they are related to the hypergeometric functions $_3F_2(a,b,c;d,e;z)$, and their poles identify a subset of the "partially-massless" discrete states, selected by the condition that the gauge transformations of the corresponding fields contain some non-derivative terms. Corresponding results for $AdS$ spaces can be obtained from these by a formal analytic continuation, while the massless limit is smooth, with no van Dam-Veltman-Zakharov discontinuity.

Articles dans des revues avec comité de lecture
2008
Nuclear Physics B (Nucl. Phys. B)
Publisher Elsevier
ISSN 0550-3213 (eISSN : 0550-3213)

39 pages, LATEX
Lien vers le texte intégral : 
http://fr.arXiv.org/abs/0803.3832