s'authentifier
version française rss feed
HAL : in2p3-00589646, version 1

Fiche concise  Récupérer au format
Formulas for Mutually Unbiased Bases in Systems of Qudits
Kibler M. R.
Dans New Trends in Quantum Information, A. Sakaji, I. Licata, J. Singh, and S. Felloni (Ed.) (2010) 191-210 - http://hal.in2p3.fr/in2p3-00589646
Physique/Physique Quantique
Physique/Physique mathématique
Mathématiques/Physique mathématique
Formulas for Mutually Unbiased Bases in Systems of Qudits
Maurice Robert Kibler ()1
1 :  IPNL - Institut de Physique Nucléaire de Lyon
http://www.ipnl.in2p3.fr/
CNRS : UMR5822 – IN2P3 – Université Claude Bernard - Lyon I
France
We report on a method for deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1+p mutually unbiased bases in C^p. The derivation is based on a single formula easily codable on a classical computer. Repeated application of the formula can be used for generating formulas in the case where C^p is replaced by C^d with d = p^e (e > or = 2) a power of a prime integer.

Chapitres d'ouvrages scientifiques
2010
New Trends in Quantum Information
A. Sakaji, I. Licata, J. Singh, and S. Felloni
191-210
Aracne editrice

03.65.Fd, 03.65.Ta, 03.67.-a, 02.20.Qs
ISBN 978-88-548-3411-8
qubits – qudits – qupits – mutually unbiased bases – quantum information – Lie algebras sl(d – C) and su(d)