version française rss feed
HAL : in2p3-00605695, version 1

Fiche détaillée  Récupérer au format
Journal of Physical Mathematics 3 (2011) P111101
Further developments for the auxiliary field method
C. Semay, F. Buisseret, B. Silvestre-Brac1

The auxiliary field method is a technique to obtain approximate closed formulae for the solutions of both nonrelativistic and semirelativistic eigenequations in quantum mechanics. For a many-body Hamiltonian describing identical particles, it is shown that the approximate eigenvalues can be written as the sum of the kinetic operator evaluated at a mean momentum $p_0$ and of the potential energy computed at a mean distance $r_0$. The quantities $p_0$ and $r_0$ are linked by a simple relation depending on the quantum numbers of the state considered and are determined by an equation which is linked to the generalized virial theorem. The (anti)variational character of the method is discussed, as well as its connection with the perturbation theory. For a nonrelativistic kinematics, general results are obtained for the structure of critical coupling constants for potentials with a finite number of bound states.
1 :  LPSC - Laboratoire de Physique Subatomique et de Cosmologie
Physique/Physique Quantique
Lien vers le texte intégral :