version française rss feed
HAL : inria-00287826, version 1

Voir la fiche concise  BibTeX,EndNote,...
Grid Differentiated Services: a Reinforcement Learning Approach
Germain Renaud C., Perez J., Kégl B., Loomis C.
8th IEEE International Symposium on Cluster Computing and the Grid, Lyon : France (2008) - http://hal.inria.fr/inria-00287826
Informatique/Intelligence artificielle
Grid Differentiated Services: a Reinforcement Learning Approach
Cécile Germain Renaud1, Julien Perez ()1, Balázs Kégl ()1, 2, 3, C. Loomis2
1 :  LRI - Laboratoire de Recherche en Informatique
CNRS : UMR8623 – Université Paris Sud
LRI - Bâtiments 650-660 Université Paris-Sud 91405 Orsay Cedex
2 :  LAL - Laboratoire de l'Accélérateur Linéaire
CNRS : UMR8607 – IN2P3 – Université Paris XI - Paris Sud
Centre Scientifique d'Orsay B.P. 34 91898 ORSAY Cedex
3 :  INRIA Saclay - Ile de France - TAO
INRIA – CNRS : UMR8623 – Université Paris XI - Paris Sud
DIGITEO Bat. Claude Shannon - Université de Paris-Sud, Bâtiment 660, 91190 Gif-sur-Yvette
Large scale production grids are a major case for autonomic computing. Following the classical definition of Kephart, an autonomic computing system should optimize its own behavior in accordance with high level guidance from humans. This central tenet of this paper is that the combination of utility functions and reinforcement learning (RL) can provide a general and efficient method for dynamically allocating grid resources in order to optimize the satisfaction of both endusers and participating institutions. The flexibility of an RLbased system allows to model the state of the grid, the jobs to be scheduled, and the high-level objectives of the various actors on the grid. RL-based scheduling can seamlessly adapt its decisions to changes in the distributions of inter-arrival time, QoS requirements, and resource availability. Moreover, it requires minimal prior knowledge about the target environment, including user requests and infrastructure. Our experimental results, both on a synthetic workload and a real trace, show that RL is not only a realistic alternative to empirical scheduler design, but is able to outperform them.

Communications avec actes
8th IEEE International Symposium on Cluster Computing and the Grid

Liste des fichiers attachés à ce document :
RLccg08.pdf(368.4 KB)