s'authentifier
version française rss feed
HAL : tel-00716927, version 1

Fiche concise  Récupérer au format
Conception et Implémentation d'un Stimulateur Multi-Canal pour les Dispositifs Microfluidiques
Gomez quinones J.
Thèses. Université de Grenoble Inst.Tecno.y de Est.Sup.de Monterrey (10/10/2011), Olivier Rossetto;Sergio o. Martinez (Dir.)
[oai:tel.archives-ouvertes.fr:tel-00716927] - http://tel.archives-ouvertes.fr/tel-00716927
Conception et Implémentation d'un Stimulateur Multi-Canal pour les Dispositifs Microfluidiques
Jose Gomez quinones1
1 :  LPSC - Laboratoire de Physique Subatomique et de Cosmologie
http://lpsc.in2p3.fr
CNRS : UMR5821 – IN2P3 – Université Joseph Fourier - Grenoble I – Institut Polytechnique de Grenoble - Grenoble Institute of Technology
53 avenue des Martyrs - 38026 Grenoble Cedex
France
Laboratoire de Physique Subatomique et Cosmologie
Design and Implementation of an Application Specific Multi-Channel Stimulator for Electrokinetically-Driven Microfluidic Devices
Thèses
10/10/2011
This dissertation presents the design and implementation of a 16-channel sinusoidal generator to stimulate microfluidic devices that use electrokinetic forces to manipulate particles. The generator has both, independent frequency and independent amplitude control for each channel. The stimulation system is based upon a CMOS application specific (ASIC) device developed using 0.35¦Ìm technology. Several generator techniques were compared based on frequency range, total harmonic distortion (THD), and on-chip area. The best alternative for the microfluidic applications is based in a triangle-to-sine converter and presents a frequency range of 8kHz to 21MHz, an output voltage range of 0V to 3.1VPP, and a maximum THD of 5.11%. The fabricated device, has a foot- print of 1560¦Ìm¡Á2030¦Ìm. The amplitude of the outputs is extended using an interface card, achieving voltages of 0V to 15VPP. The generator functionality was tested by performing an experimental set-up with particle trapping. The set-up consisted of a micromachined channel with embedded electrodes configured as two electrical ports located at different positions along the channel. By choosing specific amplitude and frequency values from the generator, different particles suspended in a fluid were simultaneously trapped at different ports. The multichannel stimulator presented here can be used in many microfluidic experiments and devices where particle trapping, separation and characterization is desired.
This dissertation presents the design and implementation of a 16-channel sinusoidal generator to stimulate microfluidic devices that use electrokinetic forces to manipulate particles. The generator has both, independent frequency and independent amplitude control for each channel. The stimulation system is based upon a CMOS application specific (ASIC) device developed using 0.35¦Ìm technology. Several generator techniques were compared based on frequency range, total harmonic distortion (THD), and on-chip area. The best alternative for the microfluidic applications is based in a triangle-to-sine converter and presents a frequency range of 8kHz to 21MHz, an output voltage range of 0V to 3.1VPP, and a maximum THD of 5.11%. The fabricated device, has a foot- print of 1560¦Ìm¡Á2030¦Ìm. The amplitude of the outputs is extended using an interface card, achieving voltages of 0V to 15VPP. The generator functionality was tested by performing an experimental set-up with particle trapping. The set-up consisted of a micromachined channel with embedded electrodes configured as two electrical ports located at different positions along the channel. By choosing specific amplitude and frequency values from the generator, different particles suspended in a fluid were simultaneously trapped at different ports. The multichannel stimulator presented here can be used in many microfluidic experiments and devices where particle trapping, separation and characterization is desired.
Sciences de l'ingénieur/Autre

Université de Grenoble
Inst.Tecno.y de Est.Sup.de Monterrey
ELECTRONIQUE, ELECTROTECHNIQUE, AUTOMATIQUE ET TRAITEMENT DU SIGNAL (220)
2011GRENT104
Français

Olivier Rossetto;Sergio o. Martinez
Skandar Basrour(président);Olivier Rossetto;Sergio o. Martinez;Graciano Dieck-assad;Blanca h. Lapizco-encinas;Jacques Commaille;Francois-xavier Merrien;Bruno Allard(rapporteur);Jesus Santana-solano(rapporteur);Christian Degache(rapporteur)

Oscillateurs – OTA – Basse tension – Basse consommation – Microfluidique – Electrokinetique
Oscillators;OTA;Low voltage;Low power;Microfluidics;Electrokinetics
10/10/2011
Université de Grenoble
Inst.Tecno.y de Est.Sup.de Monterrey
ELECTRONIQUE, ELECTROTECHNIQUE, AUTOMATIQUE ET TRAITEMENT DU SIGNAL (220)
2011GRENT104
Olivier Rossetto;Sergio o. Martinez
Skandar Basrour(président);Olivier Rossetto;Sergio o. Martinez;Graciano Dieck-assad;Blanca h. Lapizco-encinas;Jacques Commaille;Francois-xavier Merrien;Bruno Allard(rapporteur);Jesus Santana-solano(rapporteur);Christian Degache(rapporteur)
Liste des fichiers attachés à ce document : 
PDF
GOMEZ_QUINONES_Jose_2011_archivage.pdf(8.9 MB)