1028 articles – 4774 Notices  [english version]
HAL : in2p3-00023972, version 1

Fiche détaillée  Récupérer au format
9th International Conference on Squeezed States and Uncertainty Relations, Besançon : France (2005)
Representation theory and Wigner-Racah algebra of the SU(2) group in a noncanonical basis
M. R. Kibler1

The Lie algebra su(2) of the classical group SU(2) is built from two commuting quon algebras for which the deformation parameter is a common root of unity. This construction leads to (i) a not very well-known polar decomposition of the ladder generators of the SU(2) group, in terms of a unitary operator and a Hermitean operator, and (ii) a nonstandard quantization scheme, alternative to the usual quantization scheme correponding to the diagonalization of the Casimir of su(2) and of the z-generator. The representation theory of the SU(2) group can be developed in this nonstandard scheme. The key ideas for developing the Wigner-Racah algebra of the SU(2) group in the nonstandard scheme are given. In particular, some properties of the coupling and recoupling coefficients as well as the Wigner-Eckart theorem in the nonstandard scheme are examined in great detail.
1 :  IPNL - Institut de Physique Nucléaire de Lyon
Physique/Physique Quantique

Physique/Physique mathématique

Mathématiques/Physique mathématique
Liste des fichiers attachés à ce document : 
paldusdemo.latex.ps(172.7 KB)
paldusdemo.latex.pdf(160.4 KB)