759 articles – 7540 references  [version française]
HAL: in2p3-00713743, version 1

Detailed view  Export this paper
Physical Review D 85 (2012) 114006
Quark orbital angular momentum from Wigner distributions and light-cone wave functions
C. Lorcé1, 2, B. Pasquini, X. Xiong, F. Yuan

We investigate the quark orbital angular momentum of the nucleon in the absence of gauge-field degrees of freedom, by using the concept of the Wigner distribution and the light-cone wave functions of the Fock-state expansion of the nucleon. The quark orbital angular momentum is obtained from the phase-space average of the orbital angular momentum operator weighted with the Wigner distribution of unpolarized quarks in a longitudinally polarized nucleon. We also derive the light-cone wave-function representation of the orbital angular momentum. In particular, we perform an expansion in the nucleon Fock-state space and decompose the orbital angular momentum into the N-parton state contributions. Explicit expressions are presented in terms of the light-cone wave functions of the three-quark Fock state. Numerical results for the up and down quark orbital angular momenta of the proton are shown in the light-cone constituent quark model and the light-cone chiral quark-soliton model.
1:  IPNO - Institut de Physique Nucléaire d'Orsay
2:  LPT - Laboratoire de Physique Théorique d'Orsay [Orsay]
Physics/Nuclear Theory