761 articles – 7601 Notices  [english version]
HAL : emse-00509266, version 1

Fiche détaillée  Récupérer au format
Inorganic Chemistry 46, 24 (2007) 10372-10382
Solid-State Synthesis of Monazite-type Compounds Containing Tetravalent Elements
Damien Bregiroux1, 2, Olivier Terra3, Fabienne Audubert1, Nicolas Dacheux3, Virginie Serin4, Renaud Podor5, Didier Bernache-Assollant6, 7, 8, 9
CEA ; Université de Limoges ; Université Paris-Sud-11, Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES) ; Université Henri Poincaré Nancy I Collaboration(s)
(2007)

On the basis of optimized grinding/heating cycles developed for several phosphate-based ceramics, the preparation of brabantite and then monazite/brabantite solid solutions loaded with tetravalent thorium, uranium, and cerium (as a plutonium surrogate) was examined versus the heating temperature. The chemical reactions and transformations occurring when heating the initial mixtures of AnO2/CeO2, CaHPO4·2H2O (or CaO), and NH4H2PO4 were identified through X-ray diffraction (XRD) and thermogravimetric/differential thermal analysis experiments. The incorporation of thorium, which presents only one stabilized oxidation state, occurs at 1100 °C. At this temperature, all the thorium−brabantite samples appear to be pure and single phase as suggested by XRD, electron probe microanalyses, and μ-Raman spectroscopy. By the same method, tetravalent uranium can be also stabilized in uranium−brabantite, i.e., Ca0.5U0.5PO4, after heating at 1200 °C. Both brabantites, Ca0.5Th0.5PO4 and Ca0.5U0.5PO4, begin to decompose when increasing the temperature to 1400 and 1300 °C, respectively, leading to a mixture of CaO and AnO2 by the volatilization of P4O10. In contrast to the cases of thorium and uranium, cerium(IV) is not stabilized during the heating treatment at high temperature. Indeed, the formation of Ca0.5Ce0.5PO4 appears impossible, due to the partial reduction of cerium(IV) into cerium(III) above 840 °C. Consequently, the systems always appear polyphase, with compositions of CeIII1-2xCeIVxCaxPO4 and Ca2P2O7. The same conclusion can be also given when discussing the incorporation of cerium(IV) into La1-2xCeIIIx-yCeIVyCay(PO4)1-x+y. This incomplete incorporation of cerium(IV) confirms the results obtained when trying to stabilize tetravalent plutonium in Ca0.5PuIV0.5PO4 samples.
1 :  CEA/DEN/ DEC/SPUA/LTEC
2 :  SPCTS - Science des Procédés Céramiques et de Traitements de Surface
3 :  IPNO - Institut de Physique Nucléaire d'Orsay
4 :  CEMES - Centre d'élaboration de matériaux et d'études structurales
5 :  LCSM - Laboratoire de chimie du solide minéral
6 :  CIS-ENSMSE - Centre Ingénierie et Santé
7 :  DBM-ENSMSE - Département Biomatériaux et Mécanique
8 :  LPMG-EMSE - Laboratoire des Procédés en Milieux Granulaires
9 :  IFRESIS-ENSMSE - Institut Fédératif de Recherche en Sciences et Ingénierie de la Santé
Sciences de l'ingénieur/Génie des procédés
rare-earth phosphate – valence uranium orthophosphate – energy-loss spectroscopy – x-ray-diffraction – part i – actinide phosphates – bearing britholites – raman-spectra – ce – ceramics
Liste des fichiers attachés à ce document : 
PDF
DBA-IC-46-24-original.pdf(1.2 MB)