62 articles – 638 references  [version française]
HAL: hal-00491003, version 1

Detailed view  Export this paper
Physical Review A 82, 05 (2010) 053604
Transfer of Bose-Einstein condensates through discrete breathers in an optical lattice.
Holger Hennig, Jerome Dorignac1, David K. Campbell

We study the effect of discrete breathers (DBs) on the transfer of a Bose-Einstein condensate (BEC) in an optical lattice using the discrete nonlinear Schrödinger equation. In previous theoretical (primarily numerical) investigations of the dynamics of BECs in leaking optical lattices, collisions between a DB and a lattice excitation, e.g., a moving breather (MB) or phonon, were studied. These collisions led to the transmission of a fraction of the incident (atomic) norm of the MB through the DB, while the DB can be shifted in the direction of the incident lattice excitation. Here we develop an analytic understanding of this phenomenon, based on the study of a highly localized system--namely, a nonlinear trimer--which predicts that there exists a total energy threshold of the trimer, above which the lattice excitation can trigger the destabilization of the DB and that this is the mechanism leading to the movement of the DB. Furthermore, we give an analytic estimate of upper bound to the norm that is transmitted through the DB. We then show numerically that a qualitatively similar threshold exists in extended lattices. Our analysis explains the results of the earlier numerical studies and may help to clarify functional operations with BECs in optical lattices such as blocking and filtering coherent (atomic) beams.
1:  LPTA - Laboratoire de Physique Théorique et Astroparticules
Physics/Condensed Matter/Quantum Gases

Nonlinear Sciences/Pattern Formation and Solitons
Fulltext link: