62 articles – 637 Notices  [english version]
HAL : hal-00178191, version 1

Fiche détaillée  Récupérer au format
Communications in Mathematical Physics 207, 3 (1999) 499-555
Harmonic Analysis on the quantum Lorentz group
E. Buffenoir1, 2, Ph. Roche1, 2

This work begins with a review of complexification and realification of Hopf algebras. We emphasize the notion of multiplier Hopf algebras for the description of different classes of functions (compact supported, bounded, unbounded) on complex quantum groups and the construction of the associated left and right Haar measure. Using a continuation of $6j$ symbols of $SU_q (2)$ with complex spins, we give a new description of the unitary representations of $SL_q (2,\CC)_{\RR}$ and find explicit expressions for the characters of $SL_q (2,\CC)_{\RR}$. The major theorem of this article is the Plancherel theorem for the Quantum Lorentz Group.
1 :  LPTA - Laboratoire de Physique Théorique et Astroparticules
2 :  PMT - Laboratoire de Physique Mathématique et Théorique
Mathématiques/Algèbres quantiques

Physique/Relativité Générale et Cosmologie Quantique

Physique/Physique des Hautes Energies - Théorie
Lien vers le texte intégral :