210 articles – 1947 Notices  [english version]
HAL : in2p3-00702813, version 1

Fiche détaillée  Récupérer au format
Journal of Mathematical Physics 53 (2012) 042103
Noninteger flux - why it does not work
A.V. Smilga1
(2012)

We consider the Dirac operator on a 2-sphere without one point in the case of non-integer magnetic flux. We show that the spectral problem for the Hamiltonian (the square of Dirac operator) can always be well defined, if including in the Hilbert space only nonsingular on 2-sphere wave functions. However, this Hilbert space is not invariant under the action of the Dirac operator; the action of the latter on some nonsingular states produces singular functions. This breaks explicitly the supersymmetry of the spectrum. In the integer flux case, the supersymmetry can be restored if extending the Hilbert space to include locally regular sections of the corresponding fiber bundle. For non-integer fluxes, such an extention is not possible.
1 :  SUBATECH - Laboratoire SUBATECH Nantes
Physique/Physique des Hautes Energies - Théorie

Physique/Physique mathématique

Mathématiques/Physique mathématique
Lien vers le texte intégral : 
http://fr.arXiv.org/abs/1104.3986