Automatic Segmentation of the Cerebral Ventricle in Neonates Using Deep Learning with 3D Reconstructed Freehand Ultrasound Imaging - Physics, Radiobiology, Medical Imaging, and Simulation (PRIMES) Access content directly
Conference Papers Year : 2018

Automatic Segmentation of the Cerebral Ventricle in Neonates Using Deep Learning with 3D Reconstructed Freehand Ultrasound Imaging

Matthieu Martin
Michaël Sdika
Xiaoyu Wang
  • Function : Author
Philippe Quétin
  • Function : Author
  • PersonId : 1202711
Philippe Delachartre
Fichier principal
Vignette du fichier
Martin-18 IEEE IUS Automatic segmentation of the cerebral ventricle.pdf (1.04 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02043054 , version 1 (10-01-2024)

Identifiers

Cite

Matthieu Martin, Bruno Sciolla, Michaël Sdika, Xiaoyu Wang, Philippe Quétin, et al.. Automatic Segmentation of the Cerebral Ventricle in Neonates Using Deep Learning with 3D Reconstructed Freehand Ultrasound Imaging. 2018 IEEE International Ultrasonics Symposium (IUS), Oct 2018, Kobe, Japan. pp.1-4, ⟨10.1109/ULTSYM.2018.8580214⟩. ⟨hal-02043054⟩
87 View
8 Download

Altmetric

Share

Gmail Facebook X LinkedIn More