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Resolution power of optical transition radiation: Theoretical considerations

The spatial resolution power of Optical Transition Radiation (OTR), applied to beam pro®le measurements at high Lorentz factor c, is studied taking into account diraction and self-diraction eects. Microscopic and macroscopic points of view about the dierent geometrical natures of the forward and backward OTR sources are presented. Properties of the impact parameter pro®le I(b) of the OTR emitted by one electron are described. Curves for the modulation transfer function and for the OTR pro®le of a laminar beam are given. Two methods of improving the resolution are investigated : (a) putting a mask to eliminate small-angle photons, (b) using a polarizer.

Introduction

The spatial resolution power of Optical Transition Radiation (OTR) for measuring electron beam pro®les is still under discussion [1±7]. Invoking self-diraction related to the narrow angular peak of OTR (h $ 1=c), a resolution limit $ ck has been conjectured [START_REF] Mc Donald | Proc. of Joint US±CERN School in Observation, Diagnosis and Correction on Particle Beams[END_REF] (k is the optical wavelength, c ) 1 the Lorentz factor). Even replacing ck by cÂ, where  k=2p is the reduced wavelength, such a limit would be disastrous at high energy. However this prediction has been questioned by Rule and Fiorito [START_REF] Rule | Proc. of 1993 Particle Accelerator Conference[END_REF]. These authors calculated the spatial OTR pro®les, including diffraction, in the scalar wave theory and showed that the resolution limit is not very dierent from the intrinsic one of the optical system, Db $ k=h 1 , where h 1 is the optical aperture. Then the resolution would be acceptable at any energy. Jenkins [START_REF] Jenkins | Single Pass Collider Memo[END_REF] and Lebedev [4] studied the same problem in the vector theory, thus taking into account the radial polarization of transition radiation. We quote Lebedev's result for the full width at half-maximum (FWHM) Db FWHM 9 1:44k=h 1 for h 1 ) c À1 : 1

This value is about 2 times larger than in the scalar theory, but independent of gamma and only 3 times the usual value for a point source (0:51 k=h 1 ), supporting the opinion that the resolution is essentially governed by the optical system. However, Jenkins and Lebedev also pointed out the existence of a halo of diameter $ ck which, according to Lebedev, ``carries much larger energy than the central spot'' and ``makes a measurement of the beam halo dicult''. From the experimental side, beam RMS widths smaller than c by factors 2 [START_REF] Artru | Proc. Fifth European Particle Accelerator Conf[END_REF], 3 [START_REF] Giove | Proc. of DIPAC 97[END_REF] or 5 [START_REF] Denard | Proc. of 1997 Particle Accelerator Conference[END_REF] have been measured with OTR.

In the following, we will try to clarify the question of the resolution power using physical arguments and not too complicated mathematics. We will also indicate what factors can in¯uence or improve the resolution: formation zone eects, diaphragm, masks, polarizers and apodization.

Angular and spatial distribution of OTR

The distribution of transition radiation photon with momentum k and polarization ê is given [8± 10] by dN ê 16p 3 À1 x dx dXja êj 2 ; 2 with

a c AE ieŷ Á v 1 x À v Á k À f c 1 x À v Á k H r c 1 x À v Á k HH ; 3a a k AE ieŷ Â v Á À k x À v Á k f k kH x À v Á k H " r k kHH x À v Á k HH # : 3b 
The overall + or ) signs correspond to forward or backward geometry. The three terms in the square brakets correspond to ``direct'', ``refracted'' and ``re¯ected'' waves. Considering a gedanken wave of momentum )k coming from the detector, Àk H and Àk HH are the momenta after refraction and re¯ection, respectively. Eqs. (3a) and (3b) correspond to the polarizations vectors êc ŷ and êk ŷ Â k, where ŷ is the unit vector normal to the (k; k H ; k HH ) plane. f k ; r k ; f c and r c are the Fresnel coecients for the gedanken wave (there are two conventions for the sign of r k . We use the one in which r k r c at normal incidence). Vectors with a ``hat'' are unitary, for instance k k=jkj. In our units, h c 1 ; e 2 =4p a 1=137.

In the case of forward OTR, the direct term dominates and yields [START_REF] Borovkov | [END_REF] 

Ix; h x dN dx dX 9 a p 2 h c À2 h 2 2 c ) 1; h ( 1; 4 
h being the angle between k and v. This is the spectrum emitted by a suddenly accelerated electron. The same formula applies to backward OTR [START_REF] Wartski | [END_REF] on a perfectly re¯ecting metal (r k r c À1).

In this case the re¯ected term dominates and h is the angle between k and the specular direction vspec of v. Eq. ( 4) is now the spectrum emitted by a suddenly stopped ``image positron''. The radiation ®eld (in the far-®eld region) can be decomposed in plane waves

Et; r Z d 3 k 2p 3 Ẽke ikÁrÀijkjt : 5 with Ẽk 9 ie k T q 2 0 k 2 T ; 6 
and q 0 k L c À1 9 xc À1 . This ®eld resembles the relativistic Coulomb ®eld of the electron involved in the method of quasi-real photons [START_REF] Berestetskii | Quantum Electrodynamics[END_REF]. The latter is given by Eq. [START_REF] Giove | Proc. of DIPAC 97[END_REF] and

Et; r Z d 3 k 2p 3 Ẽke ikÁrÀikÁvt 7
and has frequencies x k Á v (virtual photons), while the OTR radiation ®eld has frequencies x jkj (real photons).

Let us ®rst consider backward OTR. From the microscopic point of view, it is generated coherently by the collective motion of the metallic electrons in response to the transient Coulomb ®eld of the incident particle. It is therefore a transversally extended source. Its impact parameter pro®le is obtained by squaring the Fourier transform of Êk with respect to k T at ®xed

k L 9 x Ix; b x dN dx d 2 b 9 p À1 jEx; bj 2 4a Z d 2 k T 2p 2 e ik T Áb k T q 2 0 k 2 T Hq 1 À jk T j 2 ; 8 
H being the step function and q 1 xh 1 the limit imposed by the entrance diaphragm. This pro®le takes into account self-diraction as well as the diraction by the optical apparatus; it is the one which is observed in the image plane for a mag-ni®cation equal to unity. For q 1 =q 0 ch 1 ) 1, we have:

Ib 9 a p 2 q 0 K 1 q 0 b À b À1 J 0 q 1 b 2 ; 9 
where J 0 and K 1 are Bessel functions of ®rst and second kind. This formula generalizes Eq. ( 22) of we have phenomenologically

Ib $ a p 2 b 2 Hb À b 1 Hb 0 À b: 11 
These cutos prevent logarithmic divergences of the radiated energy. Due to the rotational invariance of Eq. ( 8) and the vector nature of the ®eld, Ex; b vanishes at b 0. It makes the FWHM larger than in the scalar theory. The shape of Ib in the peak region is shown in Fig. 1.

From the macroscopic point of view, backward OTR can be considered as the metallic re¯ection of the quasi-real photons, which become real after re¯ection. In fact, Eqs. ( 6), ( 8) and ( 9) hold for the decomposition of the relativistic Coulomb ®eld into quasi-real photons [12±14], but with q 1 I and discarding the J 0 term of Eq. ( 9). The remaining term q 0 K 1 q 0 b is singular at b 0. This singularity is related to the arbitrary large trans-verse momenta of the virtual photons, whereas the real ones are bounded by x.

The above microscopic and macroscopic points of view are not easily transposable to forward OTR. I(b) de®ned by Eq. ( 8) does not represent the spatial energy ¯ux in the vicinity of the surface. In fact, the formation zone, roughly de®ned by bKb 0 ; lKÂc 2 12 is rather depleted of electromagnetic ¯ux, due to the absorption or screening of the quasi-real photons inside the material. Besides, forward OTR does not need a re¯ecting or sharp planar boundary. Thus forward OTR should rather be considered as emitted by a longitudinally extended source (the outgoing electron current). Nevertheless, if one collects the light in the ``far-®eld'' region, where Eqs. ( 5)±( 7) are valid, one obtains in the image plane of the radiator the same pro®le I(b) as for backward OTR, i.e. Eqs. ( 8) and (9).

Formation zone eects

In the case of backward OTR, Eqs. ( 4), ( 6), ( 8) and ( 9) are obtained only if the electron motion is 8) and ( 9) with cm e 6:4 GeV, k 500 nm; h 1 0:04 rad q 0 1:0 mm À1 , q 1 0:5 lm À1 . The vertical scale is in lm À2 . in vacuum, rectilinear and uniform over a distance large compared to the formation length,

l f h $ 2Â c À2 h 2 :
13

At high energy, l f c À1 Âc 2 is very large and can even exceed the laboratory size. If the beam is bent or if it traverses an opaque material within this distance before the foil, the peak at h c À1 is absent and replaced by a wider structure. Accordingly, the measured intensity pro®le can be narrower than b 0 . One can treat this eect by considering the radiation coming from the upstream apparatus: synchrotron radiation for a bending magnet or forward OTR for an opaque material. Whatever it is, this radiation is re¯ected by the foil and interfere with the OTR radiation from the foil itself. This eect is at the basis of the Wartski interferometer [START_REF] Wartski | [END_REF]. Another point of view, more phenomenological, is that the upstream apparatus removes the quasi-real photon cloud and it takes a length $ l f h to re-create the quasi-real photons of angle h. The same kind of phenomenon should occur when the upstream beam passes at distance smaller than b 0 to a piece of matter, producing diraction radiation and scraping out part of the quasi-real photon cloud. Similar considerations can be made in the case of forward OTR. To avoid formation zone eects, one must in particular put the collecting mirror at distance larger than l f h. Otherwise, transition or diraction radiation will be produced on the collecting mirror and interfere with forward OTR.

Contrary to forward OTR, backward OTR, can be collected very close to the foil if the latter is inclined with respect to the beam. If the foil is perpendicular to the beam, as in Fig. 1 of Ref. [START_REF] Jenkins | Single Pass Collider Memo[END_REF], the collecting mirror may encroach on the formation zone.

Radiation formulas (2)±( 6) work in the far-®eld region. In both forward and backward OTR, the ``near-®eld region'' is given by

l near w 1 x À v Á k  1 À v cos w ; 14 
w being the angle between the detector direction and the electron velocity. For the backward case, w $ 1 and l near ( l f . For the forward case, w h; therefore l near l f and the near-®eld region coincides with the formation zone. So far-®eld conditions do not seem to bring new constraints compared to formation zone conditions.

The spatial resolution of ordinary OTR

Let us now study the spatial resolution in the idealized case with no formation zone eect. Focusing the optical system on the foil, the observed pro®le is the pro®le of the electron beam convoluted with I(b). As we have seen, there are two very dierent characteristic scales, b 0 and b 1 and it is not easy to say a priori which one is relevant.

If one only wants to measure the FWHM of the beam, then the resolution limit is given by the FWHM of I(b), of the order of 10b 1 (see Eq. ( 1) and Fig. 1). One may however ask for more detailed informations such as ± the degree of uniformity of the beam density, ± the sharpness of the beam contour and the importance of the halo. The visibility of beam nonuniformities depends on the modulation transfer function,

MTFq Ĩq= Ĩ0; 15 with Ĩq R d 2 b e Àiq Á b Ib p À1 R D d 2 k T 2p 2 Ẽk L ; k T Á ẼÃ k L ; k T À q; 16
where the integration is restricted to the domain D de®ned by jk T j 6 q 1 , jk T À qj 6 q 1 and Ẽk L ; k T is given by Eq. ( 6). We have

Ĩ0 x dN dx 9 a p 2 lnch 1 À 1: 17 
The MTF function is shown in Fig. 2. It vanishes for q P 2q 1 and can be approximated by MTFq 9

1 for q 6 e 0:5 q 0 ; lnq 1 =q= lnq 1 =e 0:5 q 0 for e 0:5 q 0 6 q 6 q 1 ; 0 for q P q 1 :

8 > < > : 18 
The MTF gives the contrast of the images of beam granularities of size dr $ q À1 , but assuming a beam q e being the beam transverse density. Using approximations ( 11) and (18), one obtains the contrast:

dL hLi $ lnminfdr; b 0 g=b 1 lnminfR; b 0 g=b 1 $ MTFdr À1 MTFR À1 : 21 
Note that this equation also applies to the case R > b 0 as well.

In conclusion the visibility of the substructure depends not only on dr but also on R and the contrast sensitivity of the camera (including background noise, threshold and saturation ef-fects). For instance, a camera sensitive to a contrast ratio hLi dL : hLi À dL 5 : 3 can measure substructures of size dr $ b 3=4 1

 minfR; b 0 g 1=4 , a camera sensitive to a contrast ratio of 11:9 can measure substructures of size dr $ b 0:9 1  minfR; b 0 g 0:1 , etc. These estimates indicate only the order of magnitude of dr. Precise values for speci®c experimental conditions should be better obtained by numerical simulations.

Eect of a central mask

Looking at Eq. ( 11), one can crudely simulate the OTR spot by a superposition of concentric halos of equal ¯ux but radiuses increasing in geometric progression, e.g.,

Ib $ a p 2 X N n0 b À2 n Hb n À b; 22 with b n $ b 1 e n=2 and N $ lnb 2 0 =b 2 1 .
Each halo carries the ¯ux x dN =dx a=p. According to the uncertainty principle, the halo of size b n is made by photons emitted at angle h $ Â=b n . It is possible to suppress the largest halos, thus improving the spatial resolution, by putting a mask inside the optical system which absorbs the photons up to some angle h m . 1 It mimics an increase of q 0 , i.e., a decrease of c and b 0 . The total ¯ux is reduced only by the ratio lnh 1 =h m = lnch 1 . The ``masked'' OTR pro®le is obtained by inserting a second step function Hjk T j À q m in Eq. ( 8). For c À1 ( h m ( h 1 , it is given by:

Ib 9 a p 2 b 2 J 0 q m b À J 0 q 1 b j j 2 $ a p 2 b 2 Hb À b 1 Hb m À b; 23 with q m xh m 1=b m ; b m Â=h m : 24 
Fig. 3 compares the ``masked'' b 2 Ib to the unmasked one for h m 2:0c À1 h 1 1=2 .

1 This method has already been proposed in Refs. [START_REF] Jenkins | Single Pass Collider Memo[END_REF][START_REF] Artru | Proc. Fifth European Particle Accelerator Conf[END_REF][START_REF] Borovkov | [END_REF][START_REF] Castellano | [END_REF]. 15) and ( 16); (2) appromation of Eq. ( 18); (3) apodized form, from Eq. ( 28). The parameters are the same as in Fig. 1.

The mask should in principle be put in the image focal plane (see Fig. 4(a)), but probably it might also be put on the collecting lens if the radius of the mask is much larger than both b 0 and the beam radius. A mirror can be placed in front of the mask, de¯ecting the small-angle photons for beam divergence studies. One may also separate the small-angle and large-angle photons using a mirror with a hole, as in Fig. 4(b) (see also Ref. [START_REF] Jenkins | Single Pass Collider Memo[END_REF]). In Ref. [START_REF] Denard | Proc. of 1997 Particle Accelerator Conference[END_REF], the small-angle photons were avoided by the collecting mirror placed on one side of beam axis.

Eect of a polarizer

OTR has a ``natural'' polarization parallel to k T in momentum space and b in impact parameter space. When one selects, e.g., the y-component with a polarizer, then I(x, y) is multiplied by y 2 =x 2 y 2 . The width of the OTR spot is therefore reduced in the x direction. Fig. 5 shows the one-dimensional pro®les

J x x Z dy Ib x 2 b 2 ; J y x Z dy Ib y 2 b 2 25
and J x J x x J y x for the x-, the y-and the natural polarizations, respectively. One can infer that two orthogonally polarized OTR images give a signi®cantly better resolution in x and y than one image without polarizer. Fig. 6 shows the one-dimensional OTR pro®les in x of a beam whose density is uniform in the window [À50 lm; 50 lm]. They are obtained by convoluting the window function with (a) J(x) for ordinary OTR (b) J(x) with a mask, (c) ``unmasked'' J y (x), (d) ``masked'' J y (x). All these pro®les have FWHM widths close or equal to the electron beam one: 105.4, 100, 102.7 and 100 lm respectively for a, b, c and d. Thus ordinary OTR is good enough for measuring the FWHM, in spite of the fact that c is 10 times larger. However the ``unmasked'' pro®les (a and c) have important tails which could mimic a beam halo. These tails are strongly reduced for masked OTR. One also sees that the sharpness of the edges receives cumulative improvements from the mask and the polarizer. De®ning dr radius at 1=4 maximum Àradius at 3=4 maximum; 26 we obtain dr 9 19, 11, 14 and 6.5 lm for cases (a), (b), (c), and (d), respectively.

Apodization

The sharp cutos in h made by the diaphragm and the mask result in oscillations and a not very fast decrease of I(b) ($ b À3 for b ) b m ). Also the integrals for hjbji and hb 2 i diverge. These oscillations are suppressed and I(b) decreases faster (apodization) if one replaces the sharp-edged mask and diaphragm by a window of smoothly varying transparency. Accordingly the step functions in Eq. ( 8) are replaced by a smooth pupil function, for instance 

f a k T expÀk 2 T =2q H2 1 À expÀk 2 T =2q H2 m 27
with cutos q H m 1=b H m and q H 1 1=b H 1 . The resulting apodized pro®le is

I a b a p 2 b 2 expÀb 2 =2b H2 m À expÀb 2 =2b H2 1 2 :
28 One may also use Eq. (28) as a practical approximation to the nonapodized formula, Eq. ( 9) or Eq. 

Conclusions

The above analysis have shown that, in spite of their dierent geometrical natures, backward and forward OTR not only have the same angular distribution but also give the same impact parameter pro®le in the image plane of the radiator surface. Backward OTR is best described as re-¯ection of the quasi-real photon cloud, forward OTR is essentially emitted by the electron emerging from the radiator. In both cases the spatial pro®le ressembles that of the quasi-real photon cloud except for a hole at small and diraction fringes at large b. Its main features are (i) a minimal distance b 1 $ Â=h 1 imposed by diraction on the optics, (ii) a maximal distance b 0 c given by self-diraction, (iii) between these two distances, a bulk b À2 behavior.

Pure single-surface OTR requires severe conditions at high gamma. As far as the electron trajectory is concerned, it must satisfy a similar formation length condition in the forward and backward cases. If not, the spatial resolution may be improved but one has to consider the interference with one or several other radiators. Concerning the photon collecting system, for forward OTR it must be at distance larger than l f h to avoid both formation zone and near-®eld eects. There is practically no such condition for backward OTR, except if the foil is perpendicular to the beam.

The non-Gaussian shape of the OTR pro®le makes the resolution power strongly dependent on the type of measurement. For measuring the FWHM width of a beam, self-diraction caused by the angular peak is not a limitation and ordinary OTR is sucient. The observation of substructures depends strongly on the contrast sensitivity of the detector and on the beam width itself. For that purpose, and for the detection of a beam halo, great improvements are possible using either a mask removing the small-angle photons, or a polarizer, or both. Apodization of the mask and diaphragm may bring some additional improvement.

Note added in proof

After completion of this work, we have received a paper by Castellano and Verzilov [START_REF] Castellano | [END_REF], treating the same questions, with somewhat dierent formalism, and reaching basically the same conclusions. Fig. 5. One-dimensional OTR pro®le (Eq. ( 25)) for the natural polarization (curve 1), the x-polarization (curve 2) and the ypolarization (curve 3). The parameters are the same as in Fig. 1. The vertical scale is in lm À1 . 

  Lebedev's paper to all values of b. The genuine OTR pro®le, with only self-diraction, could be obtained from Eq. (8) by replacing the H-function with some smooth cut-o at q 1 $ x. From now on we write I(b) instead of Ix; b. Introducing the two characteristic distances b 0 1=q 0 cÂ; b 1 1=q 1 Â=h 1 ; 10

Fig. 1 .

 1 Fig. 1. Ordinary OTR pro®le according to Eqs. (8) and (9) with cm e 6:4 GeV, k 500 nm; h 1 0:04 rad q 0 1:0 mm À1 , q 1 0:5 lm À1 . The vertical scale is in lm À2 .

  radius R ) b 0 . Let us instead consider the case RKb 0 , more realistic at high c. The illumination of the beam image is on the average hLi $ hq e i

Fig. 2 .

 2 Fig. 2. MTF function for ordinary OTR: (1) Exact form, Eqs. (15) and (16); (2) appromation of Eq. (18); (3) apodized form, from Eq. (28). The parameters are the same as in Fig.1.

Fig. 3 .

 3 Fig. 3. Eect of a mask on the OTR pro®le. The curves show b 2 I(b), with b in logarithmic scale: (1) without mask; (2) with a mask at h m 3:6 mrad [q m 2:0 q 0 q 1 1=2 ]; (3) with apodized mask and diaphragm (see Section 7). Other parameters are the same as in Fig. 1. b 0 , b 1 and b m are indicated by arrows.

  (23), for experiments which are not too sensitive to the oscillations and the b À3 tail. To keep the photon ¯ux unchanged, the primed cutos must be b H 1 9 0:75 b 1 ; b H m 9 0:91b 0 without mask; 1:5 b m with mask: 29 Apodized curves for masked b 2 I(b) are compared to nonapodized ones in Fig. 3. The corresponding MTF function is also drawn in Fig. 2.

Fig. 4 .

 4 Fig. 4. Schemes of OTR optics removing the small-angle photons for improving the spatial resolution: (a) backward OTR with a mask m in the focal plane f; (b) forward OTR with a hole in the collecting mirror C. Others symbols are: R radiator; L focusing lens; D photon detector; I OTR pro®le for one electron. In scheme (a) a mirror can be put in front of the mask to use the small-angle photons for studying the beam divergence (detector d). Scheme (b) can also be used for backward OTR, just reversing the direction of the electron beam (as in Fig. 1 of Ref. [3]).

Fig. 6 .

 6 Fig. 6. Convolution of the one-dimensional OTR pro®le (Eq. (25)) with a window-shaped beam pro®le 100 lm wide: (a) ordinary OTR; (b) OTR with a mask; (c) y-polarized OTR; (d) ypolarized OTR with a mask. The parameters are the same as in Fig. 3. Edge sizes dr (see Section 6) are respectively 19, 11, 14 and 6.5 lm.