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Abstract

Trilinear gauge boson couplings are measured using data taken by
DELPHI at 161 GeV and 172 GeV. Values for WWV couplings (V = Z; 
) are
determined from a study of the reactions e+e�! W+W� and e+e�!We�,
using di�erential distributions from the WW �nal state in which one W decays
hadronically and the other leptonically, and total cross-section data from other
channels. Limits are also derived on neutral ZV 
 couplings from an analysis
of the reaction e+e�! 
 + invisible particles.
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1 Introduction

One of the most important consequences of the SU(2)�U(1) symmetry of the Standard
Model is the existence of non-Abelian self-couplings of the gauge bosons 
, W and Z0.
Using data taken in the DELPHI detector at LEP in 1996 at centre-of-mass energies of 161
and 172 GeV, events from the reactions e+e�! W+W� and e+e�!We� have been used
to study WWV couplings, where V � Z; 
. The reaction e+e�! 
 + invisible particles
has been used to study couplings at the ZV 
 vertex.

The WWV coupling arises in WW production through the diagrams involving s-
channel exchange of Z0 or 
. In singleW production, the dominant amplitude involving a
trilinear gauge coupling (TGC) is that arising from radiation of a virtual photon from the
incident electron or positron. The Standard Model predicts a charge coupling, described
by a parameter gV1 in an e�ective WWV Lagrangian LWWV , and a dipole coupling
�V , with gV1 = �V = 1 [1]. In a general Lorentz-invariant description of the WWV
interaction, other couplings, both CP -conserving and CP -violating, are possible, but
their contributions are predicted to be zero in the Standard Model.

In searching for the presence of new physics, contributions from gauge-invariant oper-
ators of lowest dimension (� 6) have been considered, taking only those which have not
been excluded by previous measurements. This leads to possible contributions �W�, �B�

and �W from CP -conserving operators and ~�BW and ~�W from CP -violating operators.
The CP -conserving parameters are related to the charge and dipole couplings de�ned

above and to the quadrupole couplings �V in LWWV by: �gZ1 =
�W�

c2
w

, ��
 = �W�+�B�,

��Z = �W��
s2w
c2w
�B� and �
 = �Z = �W , where sw and cw are the sine and cosine of the

electroweak mixing angle and �gZ1 , ��
 and ��Z represent deviations from Standard
Model values [1]. Similarly, the CP -violating parameters are related to the relevant terms

in LWWV by: ~�
 = ~�BW , ~�Z = s2w
c2
w

~�BW and ~�
 = ~�Z = ~�W [2].

The process e+e�! 
 + invisible particles is described within the Standard Model
by the radiative production of neutrino-antineutrino pairs, e+e� ! ���
. A W fusion
diagram, containing a WW
 coupling, also contributes to ���
 production, but its ampli-
tude is very small at LEP2 energies, and its relative contribution is negligible [3]. Possible
new physics contributions to single photon production could come from new families of
neutrinos, from the radiative production of any other neutral weakly interacting particle,
or from the s-channel exchange of 
 or Z leading to Z
 production via a triple vector bo-
son coupling. In this paper the latter possibility is examined. The ZV 
 vertex has been
described by Baur and Berger [4] in terms of a vertex function involving four indepen-
dent terms hV1::4; in the Standard Model all of these are zero at tree level. The parameters
are normally described by a form factor representation, hVi (s) = hVi0=(1 + s=�2)n, with
an energy � representing the scale at which a novel interaction would become manifest,
and with a su�ciently large power n to ensure unitarity conservation at high energy.
Conventionally, n = 3 is used for hV1;3 and n = 4 for hV2;4. The terms in h1 and h2 are
CP -violating, and those in h3 and h4 CP -conserving. However, the minimum dimen-
sionality of gauge-invariant operators contributing to LZV 
 is 8 [5], so the observation of
deviations from Standard Model predictions is a priori less likely in this channel than in
those involving WWV couplings.

Results on WWV couplings have previously been reported in �pp experiments [6{
8], and in �rst reports of results at LEP2 [9,10]. Limits on ZV 
 couplings have been
determined in �pp experiments [6,8,11,12] and from LEP data taken at the Z0 [13] and at
130-136 GeV [14].
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The next section of this paper describes the selection of events from the data and the
simulation of the various channels involved in the analysis. Results on the trilinear gauge
coupling parameters describing the WWV and ZV 
 vertices are reported in sections 3
and 4, respectively, and a summary is given in section 5.

2 Event selection and simulation

In 1996, DELPHI recorded integrated luminosities of 10.0 pb�1 and 9.98 pb�1 at
centre-of-mass energies of 161 and 172 GeV, respectively. Details of these data samples,
including de�nition of the criteria imposed for track selection and lepton identi�cation,
and a description of the luminosity measurements, have been given in [9,15]. A detailed
description of the DELPHI detector may be found in [16], which includes descriptions
of the main components of the detector used in this study, namely, the trigger system,
the luminosity monitor, the tracking system in the barrel and forward regions, the muon
detectors and the electromagnetic calorimeters.

2.1 Selection of events for the study of WWV couplings

In the determination of WWV couplings, events were selected from topologies popu-
lated by the production and decay of aWW pair, and from those containing the products
of single W production.

Pair production of W s populates three �nal state topologies, depending on the de-
cay mode of each W : the topology in which one W decays leptonically and the other
hadronically (jj`�), in which two hadronic jets and an isolated lepton are reconstructed,
the fully hadronic topology (jjjj), requiring the presence of four hadronic jets, and the
topology containing only two identi�ed leptons coming from the interaction point (`�`�).

Single W production in the reaction e+e�!We� contributes signi�cantly in the kine-
matic region where a �nal state electron or positron is emitted at small angle to the
beam and is thus likely to remain lost in the beam pipe. Depending on the decay mode
of theW , this process populates two �nal state topologies, that with two jets and missing
energy (jjX) and that containing only a single lepton coming from the interaction point,
but no other track in the detector (`X).

While these �nal states are topologically distinct, they are all represented by the
generic e+e� interaction producing four �nal state fermions, e+e�!f1 �f2f3 �f4. In partic-
ular, the topologies jj`� and jjX contain events in two di�erent kinematic regions of
the same four-fermion �nal state, q1 �q2`�. The four-fermion generators EXCALIBUR [17]
and GRC4F [18], which take account of background diagrams and interference e�ects
coherently, were used to produce simulated events. These generators were interfaced to
the JETSET hadronization model [19], tuned to Z0 data [20], and to the full DELPHI
simulation program [16]. Samples of events were generated with both Standard Model
and non-Standard Model values of TGC parameters, and were used both to determine
the e�ciency of the selection criteria in the topologies studied, and to check the accuracy
of the analysis procedures in deriving the value of TGC parameters used in the generation
of events. In addition, in the analysis of the jj`� �nal state, the ERATO generator [21]
was used in conjunction with a fast simulation of the DELPHI detector (which included
realistic e�ciencies and smearing of generated quantities). Cross-checks were made to
ensure that the fast and full simulations agreed in the distributions of the kinematic vari-
ables used in the analysis. The study of the backgrounds due to q�q(
) and ZZ production
was made using fully simulated events generated with the PYTHIA program [22].
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Each topology was selected as described below.
jj`�:
Events in the jj`� topology are characterized by two hadronic jets, one isolated electron
or muon (coming either from W decay or from the cascade decay W!�:::!`:::) or a low
multiplicity jet with only one charged particle, due to � decay, and missing momentum
resulting from the neutrino. The major background comes from q�q(
) production and
from four-fermion �nal states containing two quarks and two leptons of the same 
avour.
The criteria used to select such events from the 161 and 172 GeV data samples have
been de�ned in [9] and [15] for the two energies respectively. At 161 GeV, 12 events were
selected with an e�ciency, averaged over the three leptonic channels, of (60:9 � 3:0)%
and an estimated background of 1:9�0:2 events; at 172 GeV, 40 events were selected (17
jj��, 14 jje� and 9 jj��), the average e�ciency was (67:2 � 1:5)% and a background
contamination of 3:6 � 0:4 events was estimated. A 6-constraint kinematic �t was then
applied to the 172 GeV data, imposing 4-momentum conservation, requiring both W
masses to be equal to 80.35 GeV/c2 and requiring the �2 probability of the �t to exceed
0.001. This resulted in a sample of 34 events (15 jj��, 12 jje� and 7 jj��) with average
e�ciency of (62:6�1:5)% and an estimated background contamination of 1:9�0:3 events.

jjjj:
The criteria used to de�ne the sample of events in the jjjj topology at 161 GeV have
been given in [9]. In this procedure, events were forced to a four-jet con�guration. A
variable D was de�ned as D = Emin

Emax

�min=(Emax � Emin), where Emin and Emax are the
energies of the jets with minimum and maximumenergy and �min is the minimum interjet
angle. The dominant background, which arises from the q�q
 �nal state, was suppressed
by imposing the condition D > 0:013 GeV�1. At 172 GeV, the requirement on D was
replaced by a condition on the three eigenvalues, P1::3, of the momentum tensor which,
when normalized such that their sum is unity, each have an expectation value of 1=3: the
product 27 � P1P2P3 was required to exceed 0.025. In addition, at least one of the three
5-constraint kinematic �ts which could be made to the event, imposing equality of two
di-jet masses, was required to have �2 < 50. The selected jjjj samples consisted of 15
events at 161 GeV and 52 events at 172 GeV, with estimated background contamination
of 5:5�0:6 and 15:2�1:0 events, respectively. The e�ciencies for reconstructing events in
the kinematically accepted region were found to be (69� 3)% at 161 GeV and (71� 2)%
at 172 GeV.

`�`�:
Events in the `�`� topology were selected from events with multiplicity less than 5 and
which satis�ed a 2-jet description, thus allowing decays into � leptons as well as into �
and e to be included. Requirements on the minimumpolar angle of the jets relative to the
beam axis and on the direction of the missing momentumhelped to suppress the dominant
backgrounds, which are from e+e�!Z(
), Bhabha scattering and two-photon collisions.
The criteria used at 161 and 172 GeV are described in [9] and [23], respectively. They
resulted in the selection of 2 events at 161 GeV and 7 events at 172 GeV, with estimated
e�ciencies of (48 � 3)% and (55 � 1)% and background contamination of 0:6 � 0:4 and
1:9� 0:5 events at the two energies, respectively.

jjX:

The selection of events in the single W channel jjX was devised so as to accept events
which could be interpreted in terms of two jets and missing momentum, but to reject
events from the q�q(
) �nal state, in which the missing momentum is expected to lie near
the beam direction. This reaction constitutes the principal background in the selection of
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jjX events, but with a cross-section which is falling with increasing centre-of-mass energy.
Events were reconstructed with the LUCLUS algorithm [19] with djoin = 5:5 GeV/c and
those with 2 or 3 jets were forced into a 2-jet con�guration. Cuts were then applied on
the energy of each jet (Ej > 20 GeV at 161 GeV, Ej > 10 GeV at 172 GeV), on the jet
polar angles relative to the beam axis (25� < �jet < 155� at 161 GeV, 15� < �jet < 165� at
172 GeV), on the di-jet invariant mass (mjj > 45 GeV/c2 at 161 GeV, mjj > 50 GeV/c2

at 172 GeV), on the angle between the direction of the missing momentum and the
beam direction (j cos �missj < 0:9), and on the acollinearity angle of the jets and on their
acoplanarity with respect to the beam direction (�acol < 165�, �acop > 11� at 161 GeV,
�acol < 168:5�, �acop > 11:5� at 172 GeV). Events were rejected if there was an energy
deposition cluster of greater than 15 GeV in the electromagnetic calorimeter, isolated
from the nearest charged particle by more than 20�. Application of these procedures led
to the selection of 6 events at 161 GeV and 8 events at 172 GeV. E�ciencies of (83�3)%
and (88�4)% were estimated in the selected kinematic region, leading to expected signal
rates of 1.4 and 3.0 events for Standard Model values of the couplings and backgrounds
of 5:5� 0:6 and 6:2 � 0:7 events at the two energies, respectively.

`X:

In the selection of events in the `X topology, candidate events were required to have
only one charged particle track, clearly identi�ed as a muon or electron (tau events were
not used). The normal track selections were tightened in order to reject cosmic ray
background: the track was required to pass within 1 cm of the interaction point in the
xy plane (perpendicular to the beam) and within 4 cm in z. Lepton candidates were also
required to have momentum p < 75 GeV/c, with transverse component pt > 20 GeV/c.
E�ciencies of (94 � 2)% and (81 � 3)% in the selected kinematic region were estimated
at both 161 and 172 GeV for muon and electron events, respectively, and the background
was estimated to be negligible. One muon event was selected at each of the two energies
while, for Standard Model values of the couplings, 0.7 and 0.8 events were expected at
each energy, respectively.

2.2 Selection of events for the study of ZV 
 couplings

The study of ZV 
 couplings in the reaction e+e� ! ���
 involved a search for events
containing only a single photon of high energy, emitted at large angle � to the beam
direction. Such events were selected by requiring the presence of a \good quality shower"
(de�ned in [16]) of energy E
 > 25 GeV in the angular region 45� < � < 135�, covered
by the barrel electromagnetic calorimeter. Events with a signal in the forward electro-
magnetic calorimeter were rejected, and a second shower in the barrel calorimeter was
accepted only if it was within 20� of the �rst one. Events were also rejected if any charged
particles were detected in the time projection chamber, the main tracking device of DEL-
PHI, or in the forward tracking chambers. The presence of charged particles not pointing
to the nominal beam crossing point also caused events to be rejected; this suppressed
background from beam gas interactions and cosmic ray events. In order to reject the
background from radiative Bhabha and Compton events, no energy deposit was allowed
in the luminosity monitor, situated in the very forward direction. A further rejection of
cosmic ray events was achieved by imposing a constraint on the photon direction: the line
of 
ight and the shower direction measured in the calorimeter were required to coincide
within 15�. Application of these criteria produced samples of 8 events at 161 GeV and 7
events at 172 GeV.
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In order to estimate the cross-section for the single photon production process, the
trigger and identi�cation e�ciencies must be known. The former was measured using
radiative events (�+��
 and e+e�
) and Compton events. The identi�cation e�ciency
was estimated using samples of 2500 fully simulated events at each energy, produced
with the generator NUNUGPV [24]. The overall e�ciency was shown to be dependent
on the photon energy in the angular region under consideration, ranging from 58% at
E
 = 25 GeV to � 71% for E
 > 50 GeV. Possible sources of background to the single
photon production process include the QED processes e+e� ! 
e+e� and e+e� ! 

,


 collisions, cosmic ray and Compton events, and beam gas interactions. All of these
were found to give negligible contributions.

3 Results on WWV couplings

From the results of previous studies [1], it is expected that the data in the jj`�
topology at 172 GeV will provide the greatest precision in the determination of WWV
couplings. These data were analyzed by studying the joint distribution of two variables
which retain all the available information of the 7-dimensional phase space describing the
four-particle �nal state. These \Optimal Variables" [25] are derived from the formalism of
optimal observables [26] which has been applied to TGC determination in [1,27]. Results
using this method are compared below with those using distributions of well-measured
variables, namely the production angle of the W� with respect to the electron beam, �W ,
and the polar angle of the lepton in the laboratory frame, �l. In addition, information
obtained from the total numbers of events observed in the jjjj and `�`� channels, and
data from the single W topologies jjX and `X , were used to obtain overall results from
the 172 GeV data. Results from the same topologies at 161 GeV, using information from
the distributions of �W and �l in the jj`� �nal state, were combined with those at 172
GeV to give �nal values for the couplings.

The analysis using the method of Optimal Variables exploits the fact that the di�er-
ential cross-section, d�=d~V , where ~V represents the phase space variables, is quadratic in

TGC parameters: d�(~V ; ~�)=d~V = c0(~V ) +
P

i �ic
i
1(
~V ) +

P
ij �i�jc

ij
2 (~V ), where the sums

are over the set ~� � �1:::�N of parameters under consideration. In the case of the deter-
mination of single parameters � considered in this paper, the right-hand side of the above
expression is a simple quadratic expansion in �: d�(~V ; �)=d~V = c0(~V )+�c1(~V )+�2c2(~V ).

In [25] it is shown that the distribution in the 2-variable space of c1(~V )=c0(~V ) and

c2(~V )=c0(~V ) retains the whole information carried by the full distribution d�=d~V and
hence allows the determination of � with maximum precision, equivalent to that of a
maximum likelihood �t over all the phase space variables. Furthermore, it is argued
and con�rmed by tests on simulated events that little loss of precision occurs if the phase
space variables ~
 available after reconstruction of events from experimental data are used
in place of the true variables ~V .

The sample of 34 jj`� events at 172 GeV was analyzed by performing a binned ex-
tended maximum likelihood �t to the two-dimensional distribution of c1(~
)=c0(~
) and

c2(~
)=c0(~
) for each of the parameters �W�::: de�ned in section 1, keeping the others �xed
to their Standard Model values of zero. The expected numbers of events were computed
for several values of the couplings using the ERATO four-fermion generator and a full
simulation of the DELPHI detector. A reweighting technique was then used to estimate
the expected cross-section in each bin as a continuous function of each parameter �t-
ted. Results on the CP -conserving TGC parameters �W�, �W and �B� are shown in the
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�rst column of table 1. Figures 1a) and b) show the distributions of c1(~
)=c0(~
) and

c2(~
)=c0(~
), respectively, together with the expected distributions for the �tted value of
one TGC parameter, �W�. The validity of the technique was veri�ed by applying it to a
large number of samples of fully simulated events corresponding to the same integrated
luminosity as the data, generated both with Standard Model and non-Standard Model
values of the couplings. The mean values of the precisions in the TGC parameters ob-
tained from these samples were found to be compatible with those from the data, and
the pull distributions had means and variances compatible with 0 and 1, respectively.

TGC Topologies used

parameter jj`� jj`� jj`� + jjjj jj`� + jjjj

(Optimal Variables) (cos �W , cos �`) +`�`� +`�`� + jjX + `X

�W� 0:38+0:32
�0:32 0:61+0:42

�0:49 0:35+0:28
�0:39 0:30+0:28

�0:30

�W 0:28+0:57
�0:57 0:91+0:59

�0:74 0:26+0:50
�0:53 0:24+0:45

�0:53

�B� 1:45+1:12
�1:47 1:74+1:20

�2:67 1:27+0:99
�1:39 0:24+0:85

�0:93

Table 1: Results obtained from �ts to CP -conserving WWV coupling parameters at
172 GeV using various analysis procedures and data from various �nal state topologies.
Values shown in the third and fourth columns have been obtained by combining the jj`�
results in the �rst column with data from additional topologies. In each �t, the values of
the other TGC parameters were kept at their Standard Model values.

These results may be compared with those obtained from an analysis of the joint dis-
tribution in (cos �W ; cos �`). These quantities can be directly estimated without serious
bias from the sum of the two measured hadronic jet vectors and the direction of the
observed lepton. Using the sample of jj`� events obtained before application of a kine-
matic �t, the binned distribution in the (cos �W ; cos �`) plane was �tted to that predicted
using ERATO and a fast simulation of the detector response; the results are shown in the
second column of table 1. They are in agreement with those from the Optimal Variables
analysis, though, as expected, with lower precision. The distributions of these variables
are shown in �gures 1c) and d) together with the expected distributions for the �tted
value of �W�. Further analyses of the distributions in these variables using di�erent
four-fermion generators [18,28] have given results in agreement with those shown in the
table.

The third and fourth columns of table 1 show the increase in precision obtained in the
CP -conserving TGC parameters at 172 GeV by addition to the results obtained from the
Optimal Variables analysis of the jj`� channel, �rst, of data from the jjjj and `�`� �nal
states, then from the single W topologies jjX and `X . For the jjjj and `�`� topologies,
the observed total numbers of events were compared with those expected as a function of
each TGC parameter. In the analysis of the jjX �nal state, the di�erential distribution
in jcos �W j, estimated from the sum of the two reconstructed jet momenta, was also used.
The GRC4F generator was used for the calculation of the expected number of events,
and fully simulated samples of events generated with EXCALIBUR at values of -2.0, 0.0
and +2.0 for each parameter were used to estimate the detector response. In general, a
modest increase in precision is seen as results from each new data set are added.

Because the contributions to the amplitude forWW production from diagrams with s-
channel 
 and Z exchange contain a factor proportional to theW velocity, the sensitivity
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of the data to TGC parameters at 161 GeV is considerably smaller than at 172 GeV.
Nonetheless, di�erential data (cos �W , cos �`) from jj`� events, the total numbers of
events observed in the jjjj and `�`� �nal states, the distribution of jcos �W j from jjX
events and the number of events in the `X �nal state at 161 GeV have been used to
supplement the results obtained from the higher energy data. Results obtained for both
CP -conserving and CP -violating couplings are shown for each of these energies in the
�rst two columns of table 2, together with their statistical errors.

TGC parameter 161 GeV 172 GeV 161 + 172 GeV

�W� �0:27+0:74
�0:70 0:30+0:28

�0:30 0:22+0:25
�0:28 � 0:06

�W �0:90+1:40
�0:98 0:24+0:45

�0:53 0:11+0:48
�0:49 � 0:09

�B� 0:18+0:98
�2:70 0:24+0:85

�0:93 0:22+0:66
�0:83 � 0:24

~�BW 0:72+0:77
�2:20 0:02+0:80

�0:77 0:11+0:71
�0:88 � 0:09

~�W �0:54+1:31
�0:40 0:19+0:28

�0:38 0:19+0:28
�0:41 � 0:11

Table 2: Results obtained from �ts to WWV coupling parameters. The �rst two columns
show the values obtained from the 161 GeV and 172 GeV data with their statistical errors.
The third column shows the combined results; the �rst error is statistical, the second is
systematic (see table 3 below for details). In each �t, the values of the other TGC
parameters were kept at their Standard Model values.

Various systematic e�ects were considered and the estimated errors incurred in the
�tted TGC parameters are given in detail for the 172 GeV data and summarized for the
161 GeV data in table 3. The table contains contributions arising from a conservatively
estimated precision of �100 MeV/c2 in the value of the W mass [29], from the uncer-
tainty in the LEP beam energy [30] and experimental luminosity, from the theoretical
uncertainty in the cross-section evaluation (taken to be �2% [1]), from the errors in the
estimated signal and background cross-sections due to limited simulated statistics and,
in the jj`� �nal state, from the granularity of the binning used in the �ts and from
uncertainties in the detector response which could a�ect the di�erential distributions,
as described in [15]. The systematic error due to the use of a di�erent hadronization
algorithm in jet reconstruction was also computed and found to be small compared to
those quoted in the table. The combined e�ect of all contributions to the systematic
uncertainty at 161 GeV is also shown.

The third column of table 2 shows the �nal results for the TGC parameters, obtained
by combining the results at 161 and 172 GeV, together with their statistical and system-
atic errors. The systematic errors were obtained by adding in quadrature the �rst four
contributions in table 3, considered as common to all topologies and to both energies, and
combining the result with the non-common contributions, which were each weighted with
the statistical precision of the topology concerned. The log likelihood distributions from
which the results are derived are shown in �gure 2. The parameter values determined are
all consistent with zero, and hence with the expectations of the Standard Model.
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�W� �W �B� ~�BW ~�W

Common systematics:

W mass 0.02 0.03 0.08 0.02 0.04

Ecm 0.02 0.02 0.04 0.02 0.02

Cross-section 0.03 0.04 0.16 0.03 0.06

Luminosity 0.01 0.01 0.05 0.01 0.02

Topology jj`�, 172 GeV:

Binning granularity 0.02 0.03 0.04 0.03 0.03

Signal estimation 0.02 0.03 0.12 0.02 0.04

Background estimation 0.01 0.02 0.06 0.01 0.02

Topologies jjjj + `�`�, 172 GeV:

Signal estimation 0.04 0.05 0.06 0.04 0.04

Background estimation 0.03 0.03 0.04 0.03 0.03

Topologies jjX + `X , 172 GeV:

Signal estimation 0.03 0.10 0.04 0.00 0.01

Background estimation 0.09 0.21 0.13 0.00 0.02

Combined systematics, 172 GeV:

0.03 0.07 0.12 0.05 0.05

Combined systematics, 161 GeV:

0.07 0.10 0.15 0.15 0.30

Table 3: Estimated systematic uncertainties in the determination of WWV coupling
parameters. Details of the common and topology-dependent contributions are shown for
172 GeV data; the total of all non-common contributions is summarized for 161 and
172 GeV data. The entries for the jj`� topology at 172 GeV refer to the analysis based
on Optimal Variables, described in the text.

4 Results on ZV 
 couplings

The sample of 15 events selected from the combined data at 161 and 172 GeV yields
a cross-section

�(e+e�! 
 + invisible particles) = 1:47� 0:38(stat.)� 0:30(syst.) pb

in the region of phase space with E
 > 25 GeV and 45� < �
 < 135�, corrected for
the experimental e�ciencies within these selections. The systematic uncertainty comes
mainly from the calibration of the calorimeter energy scale and from the errors on the
detection and trigger e�ciencies.

The cross-section given above corresponds to a 95% C.L. limit

�(e+e�! 
 + invisible particles) < 2:5 pb
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in the same region of phase space, including the e�ect of systematic uncertainties. This
limit is shown in �gure 3 together with the predicted cross-section as a function of the
ZV 
 coupling parameters h
30 and hZ30 de�ned in section 1. Limits at 95% C.L. of

jh
30j < 0:8 and jhZ30j < 1:3

are derived at a scale � = 1 TeV and with n = 3 in the form factor representation of hV3 .
The limit obtained for jh
30j represents a considerable improvement over those reported
previously from LEP data [13,14], and may be compared with the current limit set by the
D0 experiment: jh
30j < 0:37 for � = 750 GeV [12]. The limit obtained for jhZ30j exceeds
the unitarity limit, jhZ30j = 0:99, for the values of � and n used in the form factor, and for
current values of

p
s, the data show little sensitivity to the other CP -conserving vertex

factors, hV4 . If the analysis is applied to measure the CP -violating parameters h
10 and
hZ10, the same limits are obtained as for hV30.

5 Conclusions

Trilinear gauge couplings have been measured in DELPHI using data corresponding to
integrated luminosities of 10.0 pb�1 at 161 GeV and 9.98 pb�1 at 172 GeV. Values of the
CP -conserving WWV couplings �W�, �W and �B� and of the CP -violating couplings
~�BW and ~�W have been derived using data from topologies populated both by WW
production, e+e�! W+W�, and by single W production, e+e�!We�. The results are
summarized in table 2. Limits on the ZV 
 couplings h
;Z3 have also been determined
using data from single photon production, with results given in section 4. No evidence
for deviations from Standard Model predictions is observed in the present data. Further
running at LEP2 should yield an improvement of up to an order of magnitude in the
precision of the results obtained.
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Figure 1: Distributions of pairs of variables used in the �tting of WWV coupling
parameters in the jj`� �nal state at 172 GeV; a) and b) the Optimal Variables

c1(~
)=c0(~
) and c2(~
)=c0(~
) for �W�; c) and d) cos �W and cos �`. The points repre-
sent the data, and the histograms the expectation for the values of �W� shown in table 1
with background contributions shaded.
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Figure 2: Distributions of log likelihood as a function of WWV coupling parameters; a)
�W�, b) �W , c) �B�, d) ~�BW , e) ~�W . The dotted curves show the functions obtained
using data at 161 GeV, the dashed curves are from data at 172 GeV, and the full curves
show the results from the two energies combined. In each case, the curves include the
e�ects of statistical and systematic errors.
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Figure 3: Variation of the predicted cross-section for large angle single photon production
in DELPHI at 161 and 172 GeV with the ZV 
 couplings h
30 and hZ30, for energy scale
� = 1 TeV and n = 3 in the form factor representation of hV3 . The square points on the
curves show the unitarity limits for the two couplings corresponding to these values of �
and n.


