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Abstract

We analyse e+e� ! �� events using 100 pb�1 of data collected by the L3 experi-
ment during the 1991-1995 LEP runs at the Z pole. From the energy of the photons
and their isolation from the tau decay products, we determine the anomalous mag-
netic and electric dipole moments of the tau to be, respectively:

a� = 0:004� 0:027� 0:023;

d� = (0:0� 1:5� 1:3)� 10�16e�cm:
This is a direct measurement of these � form factors at q2 = 0.
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Introduction

In the Standard Model (SM), the electromagnetic interactions of each of the three charged
leptons are identical. There is, however, no experimentally veri�ed explanation for why there

are three generations of leptons nor for why they have such di�ering masses. New insight might
be forthcoming if the leptons were observed to have substructure, which could manifest itself
in deviations from the SM values for the anomalous magnetic or electric dipole moments. The
anomalous moments for the electron and muon have been measured with very high precision [1]
compared to those of tau for which there are only upper limits [2{4].

In general a photon may couple to a tau through its electric charge, magnetic dipole moment,

or electric dipole moment. This coupling may be parametrised using a matrix element in which
the usual � is replaced by a more general Lorentz-invariant form,

�� = F1(q
2)� + F2(q

2)
i

2m`

���q� � F3(q
2)���5q� : (1)

The q2-dependent form-factors1) , Fi(q
2), have familiar interpretations for q2 = 0: F1(0) � Q�

is the electric charge; F2(0) � a� is the anomalous magnetic moment (a� � (g� � 2)=2); and
F3(0) � d�=Q� , where d� is the electric dipole moment. In the SM a� is non-zero due to loop
diagrams and is predicted to be aSM

�
= 0:001 177 3(3) [5,6]. A non-zero value of d� is forbidden

by both P invariance and T invariance. Assuming CPT invariance, observation of a non-zero
value of d� would imply CP violation.

The process e+e� !  ! �+�� has been used to constrain F2 and F3 at q2 up to
(37 GeV)2 [2], and an indirect limit has been inferred from the width �(Z ! �+��) [3].
The e+e� ! �+�� cross section has also been used to bound F2 and F3 [4]. Only this last
method corresponds to a direct measurement at q2 = 0.

In this article, we analyse data collected by the L3 detector [7] at LEP during the period
1991{1995. These data correspond to an integrated luminosity of 100 pb�1 with centre-of-mass
energies no more than 400MeV from the Z pole.

Anomalous electromagnetic moments would enhance the production of high energy isolated
photons in e+e� ! �+�� events, compared to the SM initial and �nal state radiation pro-
cesses [8{10]. We therefore select such events and determine the anomalous moments from �ts
to the distributions of the photon energy and isolation angle, allowing for the SM backgrounds.

Selection of e+e� ! �+��() events

We �rst select e+e� ! �+��() events and then identify isolated photon candidates. In or-
der to study the various selection criteria and the backgrounds, we use Monte Carlo sam-
ples of hadronic events from the JETSET Monte Carlo program [11], two-photon events from
DIAG36 [12], Bhabha events from BHAGENE [13], and ��() and ��() events from KO-
RALZ [14]. All Monte Carlo events are passed through the GEANT-based L3 detector simula-
tion program [15], and reconstructed using the same algorithms as for the data.

The selection is con�ned to the barrel region of the bismuth germanate (BGO) electromag-
netic calorimeter, by requiring the event thrust axis be within j cos �j < 0:74 where � is the polar
angle with respect to the incoming e� beam. Hadronic events are rejected by requiring low
multiplicities of charged particle tracks and calorimetric energy clusters. Two-photon events

1)Strictly speaking, the Fi are functions of three variables, Fi(q
2
;m

2
1;m

2
2), where m1 and m2 are the � masses

on either side of the �� vertex. In this analysis, q2 = 0, m2
1 = m

2
� , and m

2
2, which corresponds to the o�-shell

� , is not �xed.
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are rejected by requiring that the event contains a total measured energy of more than 0:2
p
s

and at least two jets with energies of more than 0:02
p
s, where a jet may in some cases consist

of a single particle. Cosmic ray muons are rejected by requiring that scintillator hits are in-time
with the beam crossing and that charged particle tracks point to the interaction region.

The total energy in the BGO is required to be less than 70GeV. This cut e�ciently removes

both non-radiative and radiative Bhabha events, even if showers in the BGO deposit some of
their energy in the hadron calorimeter (HCAL). Events in which one electron or photon does
not deposit any energy in the BGO, for example because it passes through the material between
the crystals, are mostly rejected by requiring that there is no reconstructed electron in the event
with an energy exceeding 40GeV. A reconstructed electron consists of a track pointing to an
energy cluster in the BGO, whose lateral shape is consistent with the characteristically narrow

pro�le of an electromagnetic shower. After these cuts, most of the remaining e+e� background
consists of events in which a particle passes down the beam pipe or through the gap between
the BGO barrel and endcap modules. To reject this background we require that the missing
energy vector of the event, computed using only BGO energy clusters, points into the BGO
barrel region.

To remove the e+e� ! �+��() background, all events with two reconstructed muons are

rejected. Events with a single muon are rejected if the muon has a momentum of more than
35GeV(25GeV) for muons with hits in three(two) of the three layers of the muon chambers.

After applying these selection criteria, we determine the e+e� ! �+��() cross-section atp
s � mZ to be ��� = (1:472 � 0:006 � 0:020) nb, where the �rst error is statistical and the

second is systematic. The systematic error includes the e�ects of variations in the selection
criteria, the statistics of the Monte Carlo and cosmic ray event samples, and the uncertainties
on the subdetector e�ciencies, the tau branching fractions, the integrated luminosity, and the
trigger e�ciency. This is in agreement with the SM prediction of ZFITTER [16] of 1:479 nb,
as well as the dedicated L3 lineshape measurement [17], indicating the absence of signi�cant
systematic e�ects in the selection of taus.

Selection of photons in e+e� ! �+��() events

After application of the cuts described above, we next select events with photon candidates
in the BGO barrel. A photon candidate comprises an energy cluster in the BGO with a nar-

row lateral pro�le and no track within 160mrad. The background consists of genuine photons
from �0's produced in tau decays, fake photons from mis-identi�ed � decay products, photon
radiation from tau decay products, and a small contribution from Bhabha and dimuon events.
Compared to the contribution due to anomalous dipole moments, background photon candi-
dates typically have lower energies, are less isolated from the decay products of the closer tau,
and are back-to-back with the decay products of the farther tau. Therefore, we require photon
candidates to satisfy E > 3GeV and (0:3 <   < � � 0:3) rad, where E is the energy of the
photon candidate and   is the angle between it and the closest calorimetric cluster with energy
greater than 1GeV or 10GeV for BGO or HCAL clusters respectively. The minimum energy
requirements on the closest cluster are chosen to be signi�cantly higher than the expectations
for a minimum-ionising muon in order to reduce the residual e+e� ! �+��() background. As
discussed below, we have no model for multiple hard radiation including the e�ects of anoma-

lous dipole moments. Therefore we reject events with more than one photon candidate passing
all these selection criteria. Such events constitute about 3% of the sample.
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Photon selection e�ciency

The simulation and reconstruction of photons in the BGO allows for time-dependent ine�cien-
cies and noise, the characteristics of which are determined on a crystal-by-crystal basis from

both online and o�ine monitoring of the BGO performance. Ultimately, the photon reconstruc-
tion e�ciency is veri�ed using a sample of e+e� ! �+�� events. Since the muon chamber
e�ciency is determined using predominantly non-radiative dimuon events, the �� sample is
sensitive to the photon reconstruction e�ciency with little systematic uncertainty from the
muon reconstruction e�ciency. To select this sample, we �rst reject non-leptonic events as for
the ��() selection and then require that the event contains at least one muon with a momentum

of more than 35GeV. Photons are then selected using the same cuts as for the �� selection,
with the exception of cuts on the isolation from the closest calorimetric cluster, which are inap-
propriate for the �� environment. To reduce the �� background we make a similar but less
stringent requirement on the hemisphere opposite the photon of  � < (��0:15) rad, where  �

is the angle between the photon and the closest muon. Muons leave only a minimum-ionising
energy deposit in the BGO of typically 0.25GeV. Therefore, to retain statistics, no minimum

requirement is imposed on  � . The resulting sample is dominated by genuine �� events
(99.0%) with only a small contribution from �� events (1.0%).

Figure 1 shows the distributions of photon energy E and the isolation angle  � of the
photon to the closest muon in the selected �� event sample. The data are in good agreement
with the Monte Carlo prediction. The ratio of the number of photons in data to the number
in the Monte Carlo is 0:993 � 0:013 � 0:003, where the �rst error is statistical. The second
error is systematic and reects variations in the photon selection criteria. The shapes of the
energy and isolation distributions also agree well, with a chisquare per degree of freedom, based
only on the statistical error, of 50:2=44 for the former and 37:6=30 for the latter. This study
demonstrates that there are no signi�cant systematic e�ects in the photon reconstruction.

Modelling of backgrounds

The excellent agreement between data and Monte Carlo for the energy and angular distributions
of photons in the �� event sample veri�es that KORALZ accurately models the radiative
dimuon background.

The BHAGENE modelling of photon radiation is checked by selecting radiative Bhabha
events. Photons are reconstructed with the same cuts as for the e+e� ! �+�� sample. The
shapes of the energy and angular distributions of photons in data and Monte Carlo are found
to be in good agreement. A small discrepancy in the total number of radiative Bhabha events

predicted by BHAGENE is corrected by weighting such events in the MC so as to agree with
the data.

The small background from Bhabhas in the �� sample contains events in which an electron
passes through the material between the BGO crystals. The simulation of these e�ects is
checked by selecting a sample of events from data with a single well-reconstructed electron of
approximately 45GeV. The magnitude and depth of the BGO and HCAL energy deposits on
the opposite side of the event are then compared for data and Monte Carlo, allowing for the
small background of non-Bhabha events. It is found that the Monte Carlo simulation of the
detector slightly underestimates the number of events with shower leakage or an electron that
passes between crystals. Therefore, the Bhabha background events in the �nal �� sample are
reweighted as a function of the HCAL energy, if any, of each reconstructed energy cluster.

After applying the �� selection criteria and the Bhabha weights described above, 1559
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events remain in the data, which is consistent with the SM expectation of 1590 events. The dom-
inant contribution to the �� sample is from initial and �nal state radiation in e+e� ! �+��

events, with small contributions from Bhabha events (2.3%), di-muon events (2.1%), misiden-
ti�ed tau decay products (1.0%). Contributions from other background sources are negligible.

Determination of a� and d�

To model the e�ects of anomalous dipole moments, we use the TTG event generator pro-
gram [9, 10] which calculates the matrix element, M(a� ; d�), for the process e+e� ! �+��

allowing for O(�) SM initial state radiation, �nal state radiation with both SM and anoma-

lous contributions, both photon and Z exchange, and all interference terms. The TTG cal-
culation of M(0; 0) is checked by comparison with the O(�) predictions of KORALZ. The
shapes of the photon energy and angular distributions are in excellent agreement and the
overall normalisation agrees to 0:1%. To check the calculation of anomalous e�ects we com-
pare �M2 = jM(a� ; d� )j2 � jM(0; 0)j2 from TTG to an approximate analytical calculation of
�M2 [8] using the same approximations in TTG as used in the analytical calculation. The

anomalous contribution to the cross section agrees to better than 1% [9] and the shapes of the
photon energy spectra are in good agreement for a wide range of a� and d� values.

To allow for detector and reconstruction e�ects we begin with the fully simulated KORALZ
e+e� ! �+�� event sample which includes initial and �nal state bremsstrahlung corrections
to O(�2) including exclusive exponentiation. TTG is then used to determine a weight for each
KORALZ event which depends on the generated four-vectors of the taus and the photon and
on the values of a� and d� under consideration. Since TTG is an O(�) calculation, there is no
unambiguous way to compute a weight for events with more than one photon. We therefore
count the number of generator photons with an energy of more than 2.5GeV and a polar angle
� satisfying j cos � j < 0:8, where these requirements are looser than those on the corresponding
reconstructed quantities in order to allow for the e�ects of the detector resolution. Then, if the
event contains no such photons the weight is set to unity. If the event contains exactly one such
photon then the weight is given by the ratio jM(a� ; d�)j2=jM(0; 0)j2 where M is the matrix
element from TTG. If the event contains more than one photon the weight is set to unity. The
e�ects of this approximation for multiple photon events is treated as a systematic error.

In general, anomalous values of a� and d� tend to increase the cross section for the process

e+e� ! �+��, especially for photons with high energy which are well isolated from the decay
products of the taus. Therefore we use both the total rate and the energy and angular distri-
butions to determine the anomalous moments. The SM Monte Carlo samples are normalised
to the measured luminosity. There are a number of kinematic quantities which have varying
degrees of sensitivity to a� and d� , such as the energy and polar angles of the photon and the
reconstructed tau decay products, the angle of the photon to one of the taus, or the angle
between the two taus. The reconstructed photon energy E and the isolation angle   are
found to have higher sensitivity and a lower degree of correlation than other pairs of variables.

To determine a� and d� , binned maximum likelihood �ts are made to the two-dimensional
distribution of E vs.   , assuming that the number of data events follows a Poisson distribu-
tion. When �tting for a� we conservatively set d� to the SM value, and vice versa. To check the
�t method we replace the data with Monte Carlo samples simulating various di�erent values of

a� and d� . The likelihoods for these samples are consistent with the input values of a� and d� .
In the case of a� , interference between SM and anomalous amplitudes leads to an asymmetric

likelihood, while for d� the absence of interference atO(�) leads to a symmetric likelihood. Since
the cross section depends quadratically on the anomalous moments, the likelihood may have
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two local maxima. We therefore quote the midpoint of the con�dence interval as the central
value of the measurement; for the case of no signi�cant deviation from SM expectations, this
central value is close to the maximum of the likelihood.

Figure 2 shows the distributions of E and   for the data and the SM Monte Carlo expec-
tation. No excess is apparent at high values as would be expected for signi�cant deviations of

a� and d� from their SM values. The results of the �ts to the data, considering only statistical
errors, are a� = 0:004�0:027, d� = (0:0�1:5)�10�16e � cm, where the errors refer to the 68:3%
C.L. These results are not independent, although the absence of interference terms for d� does
provide some distinguishing power between the e�ects of a� and those of d� [9].

Systematic Errors

The systematic errors include contributions from a number of sources as described below in
order of decreasing importance. The quoted errors correspond to the a� measurement; errors
for d� are similar.

� Event selection cuts

To estimate the systematic error associated with the choice of selection cuts, all cuts associated
with background rejection and photon selection are moved above and below their nominal
values, and the resulting distributions are �tted. Wide variations in the cuts associated with
Bhabha and dimuon background rejection have little e�ect, while variation of photon selection
cuts, in particular those associated with the photon shower pro�le and the BGO energy of the
cluster nearest the photon, produce the largest e�ects on the �t result. These sources contribute
0:013 to the �t error.

� Normalisation of the ��() sample

We take the combined statistical and systematic error of 1.4% on ��� to be the uncertainty
on the normalisation of the �� event sample, due to the ��() selection procedure. This
contributes 0:011 to the error.

� Photon reconstruction

We take the uncertainty on the photon reconstruction e�ciency to be 1.3% as determined
from the study of the e+e� ! �+�� event sample. This is conservative since some e�ects are
covered by the variation of the selection cuts, and contributes 0:010 to the error.

� Backgrounds

To determine the uncertainty in the �t from the Monte Carlo statistics of the Bhabha and

dimuon background samples, these backgrounds are reduced by their statistical error, this being
the conservative direction. This contributes 0:009 to the error. The �t results are insensitive to
variations of the Bhabha background within the statistical errors of the e+e� ! e+e�() and
e+e� ! e+e� samples used to verify the reweighting corrections for the BHAGENE radiative
cross-section and the amount of leakage of electrons into the HCAL. Wide variations in values
of the cut variables designed to remove backgrounds other than Bhabhas have a negligible e�ect
on the results.

� Binning

The selected sample has been �tted using a variety of binning schemes, all of which include at
least 2 bins in E and 2 bins in   . The RMS of the errors for this sample is used to assign the
systematic error due to binning, which amounts to 0:008.
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� Photon energy scale and resolution

The BGO energy scale and resolution is determined using in-situ calibration systems and

by comparison of the BGO energies of electrons in e+e� ! e+e�(), e+e� ! �+��(), and
e+e�e+e� events to the momentum of the corresponding charged track. The invariant mass
spectra of pairs of photons from �0 decays and pairs of electrons from J decays provide addi-
tional constraints. The photon energy scale uncertainty is estimated to be less than 0.5% for
E � 3GeV and less than 0.05% for E � mZ=2. The BGO energy resolution is estimated to

be (1:7� 0:3%) at E � 10GeV from the width of the J invariant mass distribution and to be
(1:4� 0:1)% for E � mZ=2. The e�ects of these uncertainties on a� and d� are determined by
varying them, as a function of energy, within their errors, resulting in a contribution to the �t
error of 0:008.

� Modelling of the process e+e� ! �+��

The inclusion of the �� normalisation error as a systematic error in the photon reconstruction

e�ciency allows for possible systematic uncertainties in the KORALZ description of SM photon
radiation. The TTG calculation of M(0; 0) agrees with the O(�) predictions of KORALZ to
within 0:1%. The TTG calculation of jM(a� ; d� )j2 agrees, for the same approximations, with
the analytical calculation [8] to better than 1% [9]. Variation of the TTG predictions within
these uncertainties causes a negligible change in the �t results.

� Multiple photon radiation

As previously discussed, the weighting procedure used to simulate the e�ects of anomalous
moments a�ects only the weights of events with a single hard photon. To estimate the e�ects
of neglecting multiple photon radiation, KORALZ is used to generate a sample of e+e� !
�+��(n) events. Then all photons, except for the one with the highest momentum transverse
to the closer tau, are incorporated into the four-vectors of the other particles in such a way that
all particles remain on mass shell [10]. Weights for various a� and d� are then computed by
TTG using the modi�ed four-vectors of the taus and the photon. Taking these weights in lieu
of those computed using the previously described method, in which only events with a single
hard photon are considered, has a negligible e�ect on the result of the �t.

Results

The systematic errors described above are combined, assuming the di�erent sources are uncor-
related, to yield

a� = 0:004� 0:027� 0:023 (2)

d� = (0:0� 1:5� 1:3)� 10�16e � cm (3)

where the �rst error is statistical and the second error is systematic. We also determine limits,
including both the statistical and the systematic errors, of �0:052 < a� < 0:058 and (�3:1 <
d� < 3:1) � 10�16e � cm at the 95% con�dence level. These results are consistent with SM

expectations and improve on the previous upper limits [4].
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Figure 1: The number N of photon candidates in the e+e� ! �+�� sample as a function of
(a) photon energy E and (b) the angle  � of the photon to the closest muon. The points

with error bars denote the data and the histograms denote the Monte Carlo predictions.
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Figure 2: The number N of photon candidates in the e+e� ! �+�� sample as a function of
(a) photon energy E and (b) the isolation angle   de�ned in the text. The points with error

bars denote the data and the solid histograms denote the Monte Carlo predictions, assuming
the SM values of a� and d� . For illustration, the dashed histograms show how the distributions
would appear for a� = 0:1. Both the increase in the total cross section and the relatively greater
importance of photons with large E and   are evident.
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