
HAL Id: in2p3-00000214
https://hal.in2p3.fr/in2p3-00000214

Submitted on 25 Feb 1999

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interpolating between Soft and Hard Dynamics in Deep
Inelastic Scattering .

P. Desgrolard, L. Jenkovszky, F. Paccanoni

To cite this version:
P. Desgrolard, L. Jenkovszky, F. Paccanoni. Interpolating between Soft and Hard Dynamics in
Deep Inelastic Scattering .. European Physical Journal C: Particles and Fields, 1999, 7, pp.263-270.
�10.1007/s100520050405�. �in2p3-00000214�

https://hal.in2p3.fr/in2p3-00000214
https://hal.archives-ouvertes.fr


February 1998 LYCEN 9808

INTERPOLATING BETWEEN SOFT AND HARD DYNAMICS
IN DEEP INELASTIC SCATTERING

P. Desgrolard (1), L. Jenkovszky ( 2), F. Paccanoni ( 3 )
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Abstract

An explicit model for the proton structure function is suggested, interpolating between low-
Q2 vector meson dominance and Regge behavior, on the one hand, and the high-Q2 solution of
the Gribov-Lipatov-Altarelli-Parisi evolution equation, on the other hand. The model is fitted
to the experimental data in a wide range of the kinematical variables with emphasis on the
low-x HERA data. The boundaries, transition region and interface between various regimes
are quantified.
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1 INTRODUCTION

In deep inelastic scattering the dynamics of low - and high virtualities, Q2 is usually treated
in a disconnected way, by using different methods. The structure function (SF) F2(x,Q

2)
at small Q2 (and small x, where x is the fraction of the momentum carried by a parton) is
known to be Regge-behaved and satisfying vector meson dominance (VMD) with the limit
F2(x,Q

2) −→
Q2→0

0, imposed by gauge invariance. At large Q2, on the other hand, F2(x,Q
2)

obeys the solutions of the Gribov-Lipatov-Altarelli-Parisi (GLAP) evolution equation [1].
One important problem remains open: where do these two regimes meet and how do they

interpolate? In the present paper we seek answers to these questions.
For definiteness, we deal with the proton SF to be denoted F2. Our emphasis is on the

small x region, dominated by gluodynamics. The valence quark contribution will be added at
large-x in a phenomenological way to make the fits complete.

The forthcoming presentation has also an important aspect relevant to quantum chromo-
dynamics (QCD), namely in clarifying the range of applicability and the interface between the
GLAP and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [2] evolutions. While the GLAP equa-
tion describes the evolution of the SF in Q2 starting from a given x− dependence, the BFKL
evolution means variation of the SF in x for fixed Q2, both implying large enough Q2 for the
perturbative expansion to be valid. QCD leaves flexible the relevant limits and boundaries.
Moreover, the onset of their asymptotic solutions depends on details of the calculations. In this
paper we try to make some of these limits explicit and quantitative.

HERA is an ideal tool to verify the above theories. The relevant data extend over a wide
range of Q2 - a fruitful test field for the GLAP evolution, on one hand, and to low enough x,
where the SF is dominated by a Pomeron contribution, expected to be described by the BFKL
evolution (see below).

For the parametrization F2 ≈ xλ, the ”effective power” λ rises on average from about 0.15
around Q2 ≈ 1 GeV2 to 0.4 at Q2 ≈ 1000 GeV2 [3]. This exponent cannot be identified with the
intercept - 1 of a simple Pomeron pole since by factorization it cannot depend on the virtuality
of the external particle. A Q2− dependent intercept, compatible with the data, may arise from
unitarization. However such a model [4] leaves much flexibility since neither the input (Born)
value of the intercept is known for sure, nor a reliable unitarization procedure exists (for a
recent attempt see however [5]). Moreover, claims exist that the HERA data are compatible
with a softer, namely logarithmic behavior in x (obeying the Froissart bound) with a factorized
Q2 dependence [6, 7].

On the other hand the Q2, or GLAP, evolution in the ”leading-log” approximation, has the
following asymptotic solution for the singlet SF, valid for low x and high Q2 [1, 8]

F2 ≈
√
γ1`n(1/x) `n`nQ2 , (1.1)

with γ1 = 16Nc
(11−2f/3)

. For 4 flavours (f = 4) and three colours (Nc = 3), one gets γ1 = 5.76.
The asymptotic solution of the BFKL evolution equation is the so-called ”Lipatov Pomeron”

[2]. The numerical value of its intercept was calculated [2] to be between 1.3 and 1.5. This
large value gave rise to speculations that the ”Lipatov Pomeron” has been seen at HERA,
where the large - Q2 data seemed to be compatible with a steep rise ≈ x−0.4 (for an alternative
interpretation of the relation between the ”Lipatov Pomeron” and the ”HERA effect” see for
example [9]). However, according to the results of a recent calculation [10], the sub-asymptotic
corrections to the Pomeron pole in perturbative QCD are larger than expected and they con-
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tribute distructively to the intercept, thus lowering its value and making it compatible with
the intercept of the soft Pomeron 4.

The technical difficulties of the purely perturbative calculations are aggravated by the unpre-
dictable non-perturbative contributions, both in the BFKL and GLAP evolutions, thus reducing
the precision of the theoretical calculations and their predictive power. All these difficulties are
redoubled by the unknown unitarity corrections to be included in the final result.

Attempts to extrapolate the Pomeron-dominated ”soft” SF by applying GLAP evolution
towards higher Q2 are known in the literature (see e.g. [4, 11]). They differ in some details,
namely in the choice of the model for the Pomeron, its range, i.e. the value of Q2 from which
the evolution starts, and in the details of the evaluation (explicit in [11] or numerical in [4a])
of this evolution. We are not aware of any results of an ”inverse extrapolation”.

The situation has been recently summarized [3] in a figure (see also Sec. 6) showing the x -
and Q2 - dependence of the derivative dF2/d`nQ

2. The philosophy behind this figure is that the
turning point (located at Q2 ∼ 2 GeV2 ) divides ”soft” and ”hard” dynamics. As shown in [3],
one of the most successful approaches to the GLAP evolution, that by Ref. [12], fails to follow
the soft dynamics. A phenomenological model (called ”ALLM”) for the structure function and
cross-section, applicable in a wide range of their kinematical variables is well known in the
literature [13]. Recently [14] it was updated to fit the data and shown to exhibit both - the
rising and falling - parts of the derivative versus x (or Q2). We will comment more the behavior
of this derivative in Sec. 6.

Below we pursue a pragmatic approach to the problem. We seek for an interpolation formula
between the known asymptotic solutions imposed as boundary conditions. Clearly, such an
interpolation is not unique, but it seems to be among the simplest. Moreover, it fits the data
remarkably well, thus indicating that the interpolation is not far from reality.

2 KINEMATICS

We use the standard kinematic variables to describe deep inelastic scattering:

e(k) + p(P ) → e(k′) + X , (2.1)

where k, k′, P are the four-momenta of the incident electron, scattered electron and incident
proton. Q2 is the negative squared four-momentum transfer carried by the virtual exchanged
boson (photon)

Q2 = −q2 = −(k − k′)2 , (2.2)

x is the Björken variable

x =
Q2

2P.q
, (2.3)

y (the inelasticity parameter) describes the energy transfer to the final hadronic state

y =
q.P

k.P
, (2.4)

W is the center of mass energy of the γ∗p system

W 2 = Q2 1− x

x
+m2

p , (2.5)

4One of us (F.P.) thanks B.I. Ermolaev for a discussion of this issue.

2



with mp, being the proton mass. Note that only two of these variables are independent and

that, at high energies for a virtual photon with x� 1, one has W 2 ∼ Q2

x
.

3 STRUCTURE FUNCTION FOR SMALL x AND ALL Q2

Following the strategy outlined in the Introduction, we suggest the following ansatz for
the small-x singlet part (labelled by the upper index S, 0) of the proton structure function,
interpolating between the soft (VMD, Pomeron) and hard (GLAP evolution) regimes:

F
(S,0)
2 (x,Q2) = A

(
Q2

Q2 + a

)1+∆̃(Q2)

e∆(x,Q2), (3.1)

with the ”effective power”

∆̃(Q2) = ε+ γ1`n

(
1 + γ2`n

[
1 +

Q2

Q2
0

])
, (3.2)

and

∆(x,Q2) =
(
∆̃(Q2)`n

x0

x

)f(Q2)

, (3.3)

where

f(Q2) =
1

2

(
1 + e−Q

2/Q2
1

)
. (3.4)

At small and moderate values of Q2 (to be specified from the fits, see below), the exponent
∆̃(Q2) (3.2) may be interpreted as a Q2-dependent ”effective Pomeron intercept”.

The function f(Q2) has been introduced in order to provide for the transition from the
Regge behavior, where f(Q2) = 1, to the asymptotic solution of the GLAP evolution equation,
where f(Q2) = 1/2.

By construction, the model has the following asymptotic limits:

a) Large Q2, fixed x:

F
(S,0)
2 (x,Q2 →∞)→ A exp

√
γ1`n`n

Q2

Q2
0

`n
x0
x

, (3.5)

which is the asymptotic solution of the GLAP evolution equation (see Sec. 1).

b) Low Q2, fixed x:

F
(S,0)
2 (x,Q2 → 0)→ A e∆(x,Q2→0)

(
Q2

a

)1+∆̃(Q2→0)

(3.6)

with

∆̃(Q2 → 0)→ ε+ γ1γ2

(
Q2

Q2
0

)
→ ε, (3.7)

f(Q2 → 0)→ 1, (3.8)

whence

F
(S,0)
2 (x,Q2 → 0)→ A

(
x0

x

)ε (Q2

a

)1+ε

∝ (Q2)1+ε → 0 , (3.9)

as required by gauge invariance.
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c) Low x, fixed Q2:

F
(S,0)
2 (x→ 0, Q2) = A

(
Q2

Q2 + a

)1+∆̃(Q2)

e∆(x→0,Q2). (3.10)

If
f(Q2) ∼ 1 , (3.11)

i.e. when Q2 � Q2
1, we get the standard (Pomeron-dominated) Regge behavior (with a Q2

dependence in the effective Pomeron intercept)

F
(S,0)
2 (x→ 0, Q2)→ A

(
Q2

Q2 + a

)1+∆̃(Q2) (
x0

x

)∆̃(Q2)

∝ x−∆̃(Q2). (3.12)

Within this approximation, the total cross-section for (γ, p) scattering as a function of the
center of mass energy W is

σtot,(0)γ,p (W ) = 4π2α

F (S,0)
2 (x,Q2)

Q2


Q2→0

= 4π2α A a−1−ε xε0 W
2ε. (3.13)

4 EXTENSION TO LARGE x

In this section we complete our model by including the large-x domain, extending to x = 1,
and for all kinematically allowed Q2. Since we are essentially concerned with the small-x
dynamics (transition between the GLAP and BFKL evolution), the present extension serves
merely to have as good fits as possible with a minimal number of extra parameters. To this
end we rely on the existing successful phenomenological models, in particular on that of [4a]
(CKMT).

Following CKMT, we multiply the singlet part of the above structure function F
(S,0)
2 (defined

in (3.1-3.4)) by a standard large-x factor to get

F
(S)
2 (x,Q2) = F

(S,0)
2 (x,Q2) (1− x)n(Q2), (4.1)

with

n(Q2) =
3

2

(
1 +

Q2

Q2 + c

)
, (4.2)

where c = 3.5489 GeV2 [4a].
Next we add the nonsinglet (NS) part of the structure function, also borrowed from CKMT

F
(NS)
2 (x,Q2) = B (1− x)n(Q2) x1−αr

(
Q2

Q2 + b

)αr
. (4.3)

The free parameters that appear with this addendum are c, B, b and αr. The final and complete
expression for the proton structure function thus becomes

F2(x,Q
2) = F

(S)
2 (x,Q2) + F

(NS)
2 (x,Q2) . (4.4)

The total cross-section for (γ, p) scattering is

σtot(γ,p)(W ) = 4π2α
(
A a−1−ε xε0 W

2ε +B b−αr W 2(αr−1)
)
. (4.5)
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5 FITTING TO THE DATA

In fitting to the data, the complete experimental ”H1” data set (which encloses 237 points:
193 from [15] and 44 from [16]) for the proton structure function F2(x,Q

2) was used as well as,
76 data points [17] on the (γ, p) total cross-section σtot(γ,p)(W ).

We note that among a total of 12 parameters, 8 are free, the resting 4 being fixed in the
following way:

1. ε = 0.08 is a ”canonical” value [18], leaving little room for variations (although, in
principle, it can be also subject to the fitting procedure);

2. when left free in the fitting procedure, x0 takes a value slightly beyond 1. Thus, we can
safely fix x0 = 1 without practically affecting the resulting fits;

3. as already mentioned, we have set c = 3.5489 GeV2 relying on CKMT. This parameter
is responsible for the large-x and small-Q2 region, outside the domain of our present interest;

4. as argued above, we may estimate from QCD the parameter γ1 = 16Nc(11− 2f/3) with
four flavours (f = 4) and three colors (Nc = 3), it equals 5.76. It corresponds to the asymptotic
regime (when Q2 →∞, or f(Q2)→ 1/2)), far away from the region of the fits, where f = 1 is
more appropriate, hence the value γ1 =

√
5.76 = 2.4 is more appropriate in the domain under

consideration. Remarkably, this value comes also independently from the fits if γ1 is let free.
To compare with, the CKMT model [4a] depends on 8 adjustable parameters in the ”soft”

region, to be completed by QCD evolution at higher values of Q2, and with a higher twist term
added. On the other hand, the proton structure function and (γ∗, p) cross section in the ALLM
model [13,14] are given explicitly in the whole range of the kinematical variables, and the fits
to the data are good with a total of 23 adjustable parameters.

When limiting the fitted data to the structure function only [15,16] with x < 0.1 (all Q2),
the singlet contribution alone, as approximated in Sec. 3, gives a very good fit (χ2

d.o.f ∼ 0.59),
shown in Figs. 1a, 2a. We mention that this result is obtained with an economical set of 8
parameters (5 free), listed in Table 1.

The complete model of Sec. 4 gives very good fits in the whole ranges in x, Q2 and W
covered by measurements. To be specific, we find χ2

d.o.f ∼ 0.69. We show the contributions to
the χ2 of the 3 data sets we used in Table 2, the numerical values for the 12 parameters (8 free)
are presented in Table 3.

The results of our fits for the structure function versus Q2 for fixed x are shown in Fig. 1 b
and for fixed Q2 as a function of x are in Figs. 2b, 3. The total cross section for real photons
on protons as function of W is displayed in Fig. 4.

6 INTERFACE BETWEEN SOFT AND HARD DYNAMICS AND TRANSI-
TION FROM BFKL TO GLAP EVOLUTION

6.1 ∂F2

∂(`nQ2)
as a function of x and Q2.

The derivative of the SF with respect to `nQ2 (slope for brevity) measures the amount of
the scaling violation and eventually shows the transition from soft to hard dynamics. This
derivative depends on two variables (x and Q2). It was recently calculated from the HERA
data [3]; in Figs. 5, 6a we have quoted the corresponding results. In those calculations the
variables x and Q2 are strongly correlated, it is implied that, for a limited acceptance (as it is
the case in the HERA experiments) and for a fixed energy, one always has a limited band in
Q2 at any given x, with average Q2 becoming smaller for smaller x. From a theoretical point of
view, however, x and Q2 are quite independent and one is not restricted to follow a particular
path on the surface representing the slope. Therefore we plot in Fig. 5 the slope calculated
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from our model (4.4) with the parameters fitted to the data, in one more dimension than usual,
i.e. as a function of the two independent variables - x and Q2. The two slopes on the hill of
∂F2

∂(`nQ2)
in Fig. 5 correspond to soft and hard dynamics. The division line is only symbolic since

there is a wide interface region where both dynamics mix, each tending to dominate on the
lower side of its own slope. Remarkably, the division line - or line of maxima of this surface -
turns out to be almost Q2-independent (∼ 40 GeV2 ). The difference with the maximum at 2
GeV2 exhibited in [3] is due to the special experimental set of (x,Q2) chosen in [3], discussed
above and shown in Fig. 5.

Notice that the slope becomes negative in a region between Q2 ∼ 200 and ∼ 4000 GeV2 , at
small x ; this region tends to narrow when x increases beyond x = 0.0005 and finally disappears
when x exceeds 0.05.

The same results are exposed on families of 2-dimensional figures as well (Figs. 6a, 6b)
showing the x - (and Q2 -) dependence of the slope when the other variable takes fixed values.
Fig. 6a shows that our predictions are quite in agreement with the data from [3]; also shown
is the failure of the approach of the GLAP evolution equation [12] to follow the low x (Q2)
dynamics as reported in [3]. Fig. 6b shows the variation with x of the region with negative
slope. Notice that the rising part to large extent is a threshold effect due to the increasing
phase space (see [19]).

6.2 ∂`nF2

∂(`n(1/x))
as a function of Q2 for some x values.

The derivative of the logarithm of the SF with respect to `n1/x, when measured in the Regge
region, can be related (for low x) to the Pomeron intercept. In Fig. 7 the Q2-dependence of
this derivative is shown for some low x - values, together with the ”effective power” ∆̃ (3.2).
On the same figure, the behavior of the function f(Q2) (3.4) is also shown. In our model,
Regge behavior is equivalent to the condition that f(Q2) is close to unity. This lower limit,
marked on Fig. 7 (tentatively approximated within a 2 % accuracy for the function f(Q2)), is
located near 40 GeV2 . Until this landmark, the effective power ∆̃ indeed remains very close to
∂`nF2

∂(`n(1/x))
, beyond Regge behavior is not valid (since f 6= 1) and ∆̃ cannot be considered as the

effective slope any more. On the other hand, ∂`nF2

∂(`n(1/x))
turns down as Q2 increases, approaching

its ”initial value” of ≈ 0.1 at largest Q2 and coming closer to the unitarity bound. Notably, at
large Q2 the derivative gets smaller as x decreases, contrary to the general belief that dynamics
becomes harder for smaller x, but in accord with an observation made in [20]. Care should be
however taken in interpreting the ”hardness” of the effective power outside the Regge region.

According to our model, the change from the BFKL (Pomeron) to the GLAP evolution
occurs when f(Q2) changes from 1 to 1/2. This variation happens in a band in Q2, namely
between ∼ 40 GeV2 and ∼ 4000 GeV2 .

Let us remind once more that our interpolating formula (3.1) between Regge behavior and
GLAP evolution was suggested for small x( x ≤ 0.1). The larger x part was introduced for
completeness and better fits only, without any care of its correspondence to the GLAP evolution
equation. It does not affect however the kinematical domain of the present and future HERA
measurements and Pomeron dominance (BFKL evolution) we are interested in.

7 CONCLUSIONS

Once the ”boundary conditions” (at low and high Q2) are satisfied, the interpolation may
be considered as an approximate solution valid for all Q2. Clearly, our interpolation is not
unique. For example, the choice of f(Q2), satisfying the boundary conditions f(0) = 1 and
f(∞) = 1/2, may be different from ours. However, there is little freedom in the choice of the
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asymptotic forms, different from those we have used, namely (3.5) and (3.12). The utilization
of a soft Pomeron input different from (3.12) is credible. For example, a dipole Pomeron was
shown [7, 11] to have the required formal properties and to fit the data at small and moderate
Q2. Moreover, the dipole Pomeron does not violate the Froissart bound, so it does not need
to be unitarized. Attempts [6, 7] to fit the high-Q2 HERA data without a power in x, i.e.
with logarithmic functions, attributing the whole Q2 dependence to the (factorized) ”residue
function”, are disputable. What is even more important from the point of view of the present
interpolation, a power in x must be introduced anyway to match the high Q2 GLAP evolution
solution (3.5). This discussion brings us back to the interesting but complicated problem of
unitarity.

As it is well known, the power increase of the total cross sections, or of the SF towards
small x cannot continue indefinitely. It will be slowed down by unitarity, or shadowing correc-
tions, whose calculation or even recipe - especially for high virtualities Q2 - is a delicate and
complicated problem, beyond the scope of the present paper. Here we only mention, that once
the model fits the data, it cannot be far from the ”unitarized” one in the fitted range, since the
data ”obey” unitarity.

To conclude:
1. Strong interaction dynamics is continuous, hence the relevant solutions should be de-

scribed by continuous solutions as well;
2. The formal solutions of the GLAP equations, even in their most advanced forms, ulti-

mately contain some freedom (e.g. ”higher twists”, or non-perturbative corrections) or approx-
imations;

3. However so elaborated or ”precise” the existing solutions are, unitarity corrections will
modify their form anyway;

The above remarks justify the use for practical purposes of an explicit solution that satisfies
the formal theoretical requirements and yet fits the data. Its simplicity and flexibility make
possible its further improvement and its use as a laboratory in studying complicated and yet
little understood transition phenomena.
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Tables captions

Table 1.
Parameters used in our ”first approximation fit” (x < 0.1).

Table 2.
χ2 - contributions of each set of data used in our fit with the parameters listed in Table 3.

Table 3.
Parameters used in our fit in the whole kinematical range (see the text).
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Figures captions

Fig. 1 a Proton structure function F2(x,Q
2) as a function of Q2 at various values of fixed

x. For a better display, the structure function values have been scaled at each x by the factor
shown in brackets on the same line as the x values. The shown H1 - data are from [15,16], the
error bars represent the statistical and systematic errors added in quadrature, the curves are
the results of our first parametrization fitted on x < 0.1 data (”low-x, Pomeron dominated”
approximation, the parameters being listed in Table 1).

Fig. 1 b Proton structure function F2(x,Q
2) as a function of Q2 at various values of fixed

x as in Fig. 1 a but the curves being the results of our second parametrization fitted to all H1
data [15,16] of the proton structure function and to the total cross-sections of the (γ, p) process
[17] (the parameters are listed in Table 3).

Fig. 2 a Proton structure function F2(x,Q
2) as a function of x at various values of fixed

Q2. Results of our first approximation, see also Fig. 1 a.

Fig. 2 b Proton structure function F2(x,Q
2) as a function of x at various values of fixed

Q2. Results of our second parametrization, see also Fig. 1 b.

Fig. 3 Proton structure function F2(x,Q
2) as a function of x at various low Q2 values. See

also Fig. 1 b.

Fig. 4 Total cross-section of the reaction (γ, p) σtot(γ,p) as a function of W , center of mass
energy. (see also Fig. 1 b).

Fig. 5 Two-dimensional projection of the three dimensional ”slope” of the proton structure

function. The surface represents ∂F2(x,Q2)
∂(lnQ2)

as a function of x andQ2 as following from the present

parametrization with its line of maximum (open squares). The crosses are the points calculated
from the HERA data in [3], located on an experimental (x,Q2) path.

Fig. 6a Derivative of the proton structure function ∂F2(x,Q2)
∂(lnQ2)

as a function of x, for some

Q2 values as indicated. The round dots are the HERA data, the open squares the results from
[12] taken from [3] and the hollow triangles are the results of the present parametrization.

Fig. 6b Same derivative as in Fig. 6a ∂F2(x,Q2)
∂(lnQ2)

as a function of Q2, for some x values as
indicated. The solid curves are the results of the present parametrization.

Fig. 7 Derivative of the logarithm of the proton structure function ∂`nF2(x,Q2)
∂(`n(1/x))

versus Q2 for

some x values as indicated. Also plotted on the same (left) scale is the effective exponent ∆̃
(3.2), representing the Pomeron intercept −1. only when f(Q2) ≈ 1. The function f(Q2) (3.4)
is also shown as a dashed line (right scale); the transition between the Regge behavior (f = 1.)
and the GLAP evolution (f = 0.5) occurs within an estimated band located between vertical
landmarks (see the text).
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A 0.1612

a (GeV)2 0.2133
γ2 0.02086

Q2
0 (GeV)2 0.2502

Q2
1 (GeV)2 676.9

x0 1.0 (fixed)
ε 0.08 (fixed [18])
γ1 2.4 (fixed QCD)

Table 1.
Parameters used in our ”first approximation fit” (x < 0.1).

Data set N. of points χ2

σtot(γ,p) (W > 3 GeV 2) [17] 73 73

F2, H1 [15] 193 116
F2, H1 (low x) [16] 44 20

Table 2.

χ2 - contributions of each set of data used in our fit with the parameters listed in Table 3.

A 0.1623

a (GeV)2 0.2919
γ2 0.01936

Q2
0 (GeV)2 0.1887

Q2
1 (GeV)2 916.1

B 0.3079

b (GeV)2 0.06716
αr 0.5135
x0 1.0 (fixed)
ε 0.08 (fixed [18])
γ1 2.4(fixed QCD)

c (GeV)2 3.549 (fixed [4a])

Table 3.
Parameters used in our fit in the whole kinematical range (see the text).
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Fig. 2a

14



Fig. 2b
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Fig. 3
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Fig. 4
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Fig. 6a

19



Fig. 6b
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