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Abstract

We report on a new measurement of theKL–KS mass difference�m using the CPLEAR full data
sample of neutral-kaon decays toe��. The result is�m = (0:5295� 0:0020stat � 0:0003syst) �
1010 �h=s. It includes earlier data reported in Ref. [1]. A measurement of the�S = �Q violating
parameterRe(x) is also obtained.

(Submitted to Physics Letters B)

1) University of Athens, Greece
2) University of Basle, Switzerland
3) Boston University, USA
4) CERN, Geneva, Switzerland
5) LIP and University of Coimbra, Portugal
6) Delft University of Technology, Netherlands
7) University of Fribourg, Switzerland
8) University of Ioannina, Greece
9) University of Liverpool, UK
10) J. Stefan Inst. and Phys. Dep., University of Ljubljana, Slovenia
11) CPPM, IN2P3-CNRS et Universit´e d’Aix-Marseille II, France
12) CSNSM, IN2P3-CNRS, Orsay, France
13) Paul Scherrer Institut (PSI), Switzerland
14) CEA, DSM/DAPNIA, CE-Saclay, France
15) Royal Institute of Technology, Stockholm, Sweden
16) University of Thessaloniki, Greece
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1 Introduction
We present the final measurement of the mass difference�m = m(KL)�m(KS) in the CPLEAR

experiment, using neutral kaons of initially defined strangeness decaying toe��. With respect to the
previous measurement [1] we have improved the statistics by about a factor of two and reduced the
systematic errors by60% (mainly owing to a better background rejection).

From the CPLEAR sample of neutral kaons decaying toe�� we extract four decay ratesR as a
function of the decay eigentime� of the kaon, depending on the strangeness of the neutral kaon (K0 or
K0) at the production time and on the charge of the decay lepton (e+or e�):

R+(�) � R(K0
t=0 ! e+���t=� ) ; R�(�) � R(K0

t=0 ! e��+�t=� ) ;

R�(�) � R(K0
t=0 ! e��+�t=� ) ; R+(�) � R(K0

t=0 ! e+���t=� ) : (1)

The mass difference�m is obtained from the asymmetry

A�m(�) =
[R+(�) +R�(�)]� [R+(�) +R�(�)]

[R+(�) +R�(�)] + [R+(�) +R�(�)]

=
2 cos(�m�)e�

�L+�S
2

�

(1 + 2Re(x))e��S� + (1� 2Re(x))e��L�
, (2)

where a possible violation of the�S = �Q rule is taken into account by the parameterRe(x) [2], and
where�S and�L denote the decay widths ofKS andKL respectively. This formalism is only valid if
there is no CPT violation in the�S = ��Q transitions. This determination of�m does not depend on
the phase of the CP-violation parameter�+�.

2 The detector
The CPLEAR experiment used initially pureK0 andK0 states produced in thepp annihilation

channelsK+��K0 andK��+K0, each with a branching ratio of0:2%. The initial strangeness of the
neutral kaon was tagged by the charge of the accompanying charged kaon. Antiprotons provided by the
Low Energy Antiproton Ring (LEAR) at CERN annihilated at rest in a 16 bar hydrogen gas target (a
sphere of 7 cm radius) with a rate of� 106 s�1. In the CPLEAR detector [3], the tracking was per-
formed with two layers of proportional chambers, six layers of drift chambers and two layers of streamer
tubes. The charged particle identification (K�, ��, e�) was achieved with a sandwich of scintillator–
Cherenkov–scintillator counters (S1–CE–S2). The whole apparatus, including a lead/gas sampling elec-
tromagnetic calorimeter, was located inside a solenoidal magnet (B = 0.44 T). The online event selection
was performed by hardwired processors, which provided a complete topological and kinematic event
reconstruction.

For the second-half of the data-taking the apparatus was upgraded, by introducing a new propor-
tional chamber around a smaller, cylindrical target (1.1 cm radius, 27 bar hydrogen pressure) in order
to get, at the first trigger level, a fast counting of charged tracks arising from annihilation. This upgrade
allowed some of the trigger conditions to be relaxed by accepting only neutral kaons decaying after the
chamber, thus removing annihilation pionic background.

3 Analysis method
A detailed description of the event selection can be found in [1]. The main tools used to select

the events are kinematic constrained fits and particle identification techniques based on measurements
of energy loss in scintillator counters, number of photons in Cherenkov counters, and time of flight [4].
The total sample contains1:2� 106 semileptonic decays in the decay time interval between 1 and 20�S.
Before entering the data in the asymmetry (2), experimental acceptances (normalization) and background
need to be considered.

Most of the experimental acceptance factors are common to the four rates and cancel in (2). We
corrected for any residual difference between the rate acceptances by introducing three normalization
factors, defined as

� � = �(K+��)=�(K��+), where the efficiencies involved,�(K; �), are those of the charged parti-
cles at the production vertex (primary vertex normalization);
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Figure 1: a) Proportion of different background channels relative to the semileptonic signal. b) Decay-
time distribution for real data (squares) and simulated data (open diamonds). The expected background
contribution is shown by the solid line.

a) b)

� � = �(e��+)=�(e+��), which takes into account the different detection efficiencies,�(e�) for the
particles in the two final states (secondary vertex normalization);

� ! = �(K�e�)=�(K�e�), which is the ratio of the efficiencies for detecting an event with equal and
opposite curvature sign for the primary charged kaon and the decay lepton (curvature correlation).
Owing to the form of the asymmetry (2), only the last normalization factor,!, is important in this

measurement of�m. The other two factors,� and�, enter in the asymmetry as(1 � �) and(1 � �),
and only to second order, since both sides of the asymmetry containK0 andK0, ande+ ande�. They
were handled in the same way as in the time-reversal analysis [5], leading to a neglible contribution to
systematic errors.

Special care was taken to minimize any detection efficiency correlation between tracks, and track
isolation criteria were applied to avoid such correlations both at the online selection and in the offline
analysis. We have ensured with a high statistics Monte Carlo simulation that the normalization factor!

was equal to unity (with an error of�4� 10�4) for the data sample taken with the less restrictive trigger
in the upgraded apparatus. For earlier data samples, taken with a more restrictive trigger, a small bias
(! = 0:9957�0:0009) was observed and corrected. This bias was calibrated by simulating the restrictive
trigger decision on the unbiased sample. The overall correction is small compared to the statistical error
of the measurement (�(�m) = (+0:0006 � 0:0001) � 1010 �h=s).

An important point in this analysis is the accuracy with which we can determine the background
contamination in the final data sample. With respect to Ref. [1], by refining the selection criteria we have
reduced the amount of background by a factor of three at small decay times, with only a small loss in
signal, and the corresponding systematic error by a factor of two.

Using a Monte Carlo simulation, we have determined the relative background contributions from
various neutral-kaon decays, namely�e� and��� (when the electron, or muon, and pion assignement
are exchanged),�+��, �+���0 and�0�0 (with one Dalitz decay or one converted photon), as shown in
Fig. 1a. The agreement between the observed decay-time distribution and the simulated one is very good
(Fig. 1b). By changing the analysis cuts, on both real and simulated data, we estimated that we control
the contributions of all background channels to better than�10%.

4 Fit and systematic errors
A fit of Eq. (2) to the data was performed letting�m andRe(x) free. The dilution in the asym-

metry caused by the background (see Section 3) was taken into account as in Ref. [1]. The starting point
of the fit was fixed at 1�S to avoid any possible residual annihilation background.

The systematic errors were evaluated by letting the variable describing the error source to vary
during the fit procedure within its uncertainty. The systematic errors related to normalization and back-
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ground were already mentioned in Section 3. We discuss now the regeneration effects and the precision
of the decay-time measurement.

Since in the construction ofA�m all terms linear in the regeneration amplitudes cancel, corrections
for regeneration effects are not essential for this measurement of�m.

Extensive studies have shown that after the kinematic constrained fits, the absolute time-scale is
known with a precision of�2 � 10�4 [3, 6]. The decay-time resolution was computed using simulated
data, and found to vary from 0.05�S to 0.20�S as a function of the neutral-kaon decay time. Folding
the resolution distributions to theA�m asymmetry results in a shift of+0:0013� 1010 �h=s for the value
of �m and�2:9 � 10�3 for the value ofRe(x). The uncertainty of this correction was estimated to be
�10%. Finally, the uncertainty on�S [2] was also considered.

The systematic errors of�m andRe(x) are summarized in Table 1.

Source �(�m) �(Re(x))
[1010 �h=s] [10�3]

background level �0:0002 4:4
normalization �0:0001 0:1
decay-time resolution �0:0001 0:3
absolute time-scale �0:0001 0:3
�S �0:0001 0:7

Total �0:0003 4:5

Table 1: Systematic errors

5 Results

Figure 2: The asymmetryA�m versus the neutral-kaon decay time (in unit of�S). The solid line repre-
sents the result of the fit.

The measured asymmetry, together with the fitted function, is plotted in Fig. 2. Fit residuals are
shown in the inset. Our final results are the following:

�m = (0:5295 � 0:0020stat � 0:0003syst)� 1010 �h=s ; (3)

Re(x) = (�1:8� 4:1stat � 4:5syst)� 10�3 ; (4)

�2= d.o.f. = 0:94 : (5)
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The correlation coefficient between�m andRe(x) is equal to0:40.
Our �m measurement is the single most accurate value and has the same error as the present

world average. TheRe(x) measurement improves the present limit on possible�S = �Q rule violation
by a factor of three.
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