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Abstract

From the Z decays recorded in 1994 and 1995 by the DELPHI detector at LEP,
the charged particle multiplicity of weakly decaying B hadrons was measured
to be:

4:97 � 0:03 � 0:06 ;

excluding the K0 and � decay products.
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1 Introduction

An important parameter needed in electroweak measurements concerning the b quark
is the charged particle multiplicity of weakly decaying B-hadrons, nB. As an example, the
e�ciency to identify a b�b quarks event depends almost linearly on the value of nB. Mea-
surements of the charged particle multiplicities of B hadron decays have been performed
previously by the CLEO [1], ARGUS [2], OPAL [3], DELPHI [4] and L3 [5] collabora-
tions. The �rst two results apply to equally mixed samples of B0

d and B
+ mesons, whereas

the others concern samples of B hadrons containing all weakly decaying B particles as
obtained in the fragmentation of a b-quark jet at high energy.

In 1994 and 1995 a large sample of Z decays was collected by the DELPHI experiment
with a new Vertex Detector [6] capable of measuring the coordinates of points on tracks in
three dimensions, thus improving considerably the b-tagging performance. In addition, a
major improvement in the reconstruction programs has enhanced the tracking e�ciency.
The improved b purity allows a better measurement of nB.

Two methods of measuring nB are used in this analysis, one based on the sign of the
track impact parameters and the other, used only as a cross check, based on reconstructed
secondary vertices. The B hadrons have a relative long lifetime (� 1.5 ps) and a high
mass (� 5 GeV), the fragmentation is hard and the decay products have a large value
of the impact parameter and originate from well displaced secondary vertices. Particles
coming from fragmentation of light quarks instead have an impact parameter distribution
centered around zero.

2 The DELPHI Detector

The DELPHI detector and its performance have been described in detail in ref. [7].
Here only the new Vertex Detector (VD) [6], the most relevant detector used in this
analysis, will be described.

The VD is the innermost detector in DELPHI. It is located between the LEP beam
pipe and the Inner Detector. In 1994 the DELPHI Vertex Detector [8] was upgraded to
provide a three-dimensional readout [6]. It consists of three concentric layers of silicon
microstrip detectors at radii of 6.3, 9 and 11 cm from the beam line, called the closer,
inner and outer layer respectively. The microstrip detectors of the closer and outer layers
provide hits in theR� and theRz-plane 1, while for the inner layer only theR� coordinate
is measured. For polar angles of 44� � � � 136� a track crosses all the three silicon layers
of the VD. The closer layer covers the polar region between 25� and 155�.

The measured intrinsic precision is about 8 �m for the R� measurement while for z it
depends on the polar angle of the incident track, and goes from about 10 �m for tracks
perpendicular to the modules to 20 �m for tracks with a polar angle of 25�. For charged
particle tracks with hits in all three R� VD layers, the impact parameter resolution is
�2R� = [61=(p sin3=2 �)]2 + 202�m2 while for tracks with hits in both the Rz layers it is
�2z = [67=(p sin5=2 �)]2 + 332�m2, where p is the momentum in GeV/c.

1In the DELPHI cartesian coordinate system z is along the beam line, � is the azimuthal angle in the xy plane, R is

the radius and � is the polar angle with respect to the z axis.



2

3 Event Selection and Simulation

The same event selection as in ref. [9] is used in this analysis. A charged particle is
accepted with a polar angle between 20� and 160�, a track length larger than 30 cm, an
impact parameter2 in the R� plane less than 2.5 cm and less than 10 cm in z and a
momentum larger than 200 MeV/c. Neutral particles are accepted if the energy is larger
than 700 MeV in the barrel electromagnetic calorimeter HPC [7] and 400 MeV in the
forward calorimeter FEMC [7]. Neutral particles are used in the jet axis reconstruction
and direction; the selection has been optimized to this extent. Events are selected if there
are at least six charged particles and if the summed energy of the charged particles is
larger than 15% of the center-of-mass energy. About 1,400,000 and 700,000 Z events are
selected respectively in the 1994 and 1995 data samples. The events collected at the three
di�erent center-of-mass energies (at the Z peak and two energies approximately 1.8 GeV
above and below the resonant peak) are selected in this analysis.

Simulated events were generated using the JETSET 7.3 parton shower (PS) Monte
Carlo program [10] tuned for the DELPHI data.

A good simulation of the impact parameter and the b-tagging variables for Z decays
into light quarks (udsc) is very important in this analysis. For this reason a �ne tuning
of the R� and z impact parameter resolutions has been developed and applied [11].

4 Analysis and results

4.1 The selection of Z ! b�b events

The b-tagging method used in this analysis is described in detail in ref.[12]. It com-
bines, in a linear way, four di�erent variables de�ned for each event hemisphere. The �rst
variable P+

H , originally proposed by ALEPH [13] and further developed by DELPHI [14],
represents the probability that, in a given hemisphere, all the tracks with positive im-
pact parameter originate from the primary vertex. The track impact parameters are
computed separately in the R� plane and along the z direction [15,11]. The sign of the
impact parameter is de�ned with respect to the jet direction. It is positive if the point of
closest approach of the track to the jet axis is downstream of the primary vertex along
the jet direction, and negative if it is upstream. In this way the same sign is assigned
to the R� and z impact parameters. Additional selection variables are de�ned only for
the event-hemispheres where a secondary vertex is reconstructed. They are: the e�ective
mass, the rapidity with respect to the jet direction and the energy of the charged parti-
cles included in the secondary vertex. Reconstructed secondary vertices are accepted if
L=�L � 4 where L is the distance from the primary vertex and �L is its uncertainty, which
happens in about 55% of the hemispheres with b-quarks. Whenever a secondary vertex is
reconstructed, the jet direction is recomputed as the direction from the primary vertex to
the secondary vertex and the sign of the impact parameter is rede�ned accordingly [15].

For a given selection variable x the ratio of the probability density function for back-
ground fB(x) and for signal events fS(x) is de�ned to be y = fB(x)=fS(x) [12]. In the
case of several independent variables the de�nition of this ratio is:

y =
fB(x1; :::xn)

fS (x1; :::xn)
=
Y fB(xi)

fS(xi)
=
Y

yi : (1)

2The impact parameter is de�ned as the distance of closest approach of a charged particle to the reconstructed primary
vertex. The impact parameter in the R� and Rz planes are evaluated separately.
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The hemisphere is tagged as likely to contain a b quark if the discriminating variable
y > y0; the choice of y0 de�nes the e�ciency and purity of the sample.

4.2 The impact parameter analysis

Events are divided into two hemispheres using the plane perpendicular to the thrust
axis. One hemisphere of the event is used for b-tagging and the other to measure nB.
Long lived neutral particles likeK0 and � are reconstructed and their decay products are
excluded from this analysis. The e�ciency of reconstructingK0 ! �+�� and �! p�� is
about 36% and 30% respectively [7]. The ratio of the number of K0 and � reconstructed
in data and simulation, when at least one of the tracks has hits in the VD, is 1.07�0.01
and 1.15�0.02 respectively.

Since the VD dominates the impact parameter resolution, only tracks with VD in-
formation are used. In particular, both for the probability computation and for the
secondary vertex reconstruction, tracks are accepted only if they have at least one R�
VD hit or at least one Rz VD hit [15]. Events are accepted if most of the tracks are
inside the acceptance of the VD, i.e. if j cos �thrustj < 0:65.

In order to reduce hemisphere-hemisphere correlations in the tagging e�ciency for
b-quarks, a separate primary vertex is computed for each hemisphere.

In the hemisphere opposite to the b-tagged one the di�erence:

N+� =
X

IP+
�
X

IP� (2)

is computed, in which
P
IP+ is the number of tracks with positive impact parameter

and
P
IP� is the number of tracks with negative impact parameter. In �gure 1 the

mean value of N+� is plotted for simulated events as a function of the discriminating
cut in the tagging variable y for primary b, c and uds hadron decay products, while
in �gure 2 the same quantity is plotted for the data. The corresponding distribution
obtained in the simulation has been superimposed as a histogram. The distribution of
N+� is well reproduced by the simulation over the whole range (�gure 3a). The measured
quantity N+� is lower than nB because of two reasons: (i) the request of having tracks
with VD hits (they are about 74% of the total number of reconstructed tracks) and (ii)
the experimental resolution that smears the jet direction.

Selecting events with a purity greater than 99.8% (i.e. for y > 3) the average is:

< N+� > = 3:197 � 0:015 (1994)

< N+� > = 3:157 � 0:021 (1995) ;

to be compared with:

< NMC
+� > = 3:177 � 0:012 (1994)

< NMC
+� > = 3:110 � 0:014 (1995)

in the simulation. The di�erence between 1994 and 1995 in the value of < N+� > is due
to the di�erence in the VD alignment between the two years. The detector was aligned
with about 10% better precision in 1994, resulting in about 0.5 more tracks per event
with VD hits than in 1995 (see table 1).

If NMC
0 is the generated value of nB in the simulation, the value of nB (and the

corresponding error) in the data is determined from N+� by the following equation:

nB = NMC
0 + (N+� �NMC

+� )� S+� ; (3)
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where S+� =
�NMC

0

�NMC
+�

is the sensitivity of the analysis to nB, with �NMC
+� being the

measured variation of NMC
+� for a change �NMC

0 of the generated B multiplicity. In the
simulation NMC

0 = 4.920�0.005 (with the charmed hadron decay tracks included) [10].
The parameter S+� of Eq.3 has been �tted by varying the generated multiplicity in the
simulation by �NMC

0 = �10%, giving S+� = 1:657 � 0:030 and 1:631 � 0:036 for the
years 1994 and 1995 respectively. The maximum between the uncertainty from the �t
and the di�erence of the values of nB obtained at NMC0

0 = NMC
0 �10% is included as a

systematic uncertainty below.
The values obtained are:

nB = 4:953 � 0:032(stat) (1994)
nB = 4:997 � 0:044(stat) (1995).

4.3 Systematic uncertainties

There are two sources of systematic uncertainties: detector e�ects and modelling of
the B hadron production and decays. This analysis shares many features with that of
the Rb measurement [9], and the evaluation of the systematic uncertainties has been done
following the recommendations contained in ref. [16] and the work done in ref. [9].

The following contributions are considered and summarized in table 1.
Impact parameter sign assignment. The de�nition of the sign of the impact

parameter is crucial to the tagging of b events. The sign is de�ned with respect to the jet
direction as explained in section 4.1. The jet direction is de�ned by the direction from
the primary to the secondary vertex whenever a secondary vertex is reconstructed. It has
been demonstrated that such a de�nition improves the b-tagging performance [15]. The
analysis has been repeated by computing the sign of the impact parameter using for the
jet direction the one de�ned by the jet clustering algorithm (JADE with ymin = 0:01).
The measured value of N+� is di�erent with respect to the previous one, but remains in
agreement with the value obtained in the simulation:

< N 0

+� >= 2:873 � 0:015;
< N 0MC

+� >= 2:855 � 0:012

for 1994 data. Similarly for 1995:

< N 0

+� >= 2:843 � 0:020,
< N 0MC

+� >= 2:797 � 0:016.

Using equation 3, the measured values are nB = 4:955 � 0:038 and 5:009 � 0:049 for the
years 1994 and 1995 respectively (with S0MC

+� = 1:968 � 0:032 and 1:926 � 0:044).
Detector resolution e�ects. To estimate the e�ects of the detector resolution, two

di�erent tests have been done. First, the simulation has been rerun with a tuning of
the R� and z impact parameter resolutions [11], showing a worse agreement with the
data than the default one (about 4% relative di�erence in the light and charm quark
e�ciencies). Second, the resolution of the detector as estimated from the data has been
used in the de�nition of the tagging probability of simulated events. This second test is
sensitive to systematics related to the simulation of the charm background since charmed
particles have a detectable lifetime and a non zero charged decay multiplicity (see �gure
1).

Radial misalignment of the vertex detector could shift the central Gaussian part
of the impact parameter distribution and shift its mean from zero. The systematic error
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due to this e�ect has been estimated by shifting the distribution of the impact parameter
in the simulated sample by the di�erence of data from simulation (0.2�m).

Tracking E�ciency. The tracking e�ciency was computed in the simulation by
comparing the number of reconstructed tracks and generated charged particles. Applying
the same track selection as used in the analysis, the tracking e�ciency was found to be
0.989 � 0.001. The 1% loss was considered as the systematic error on nB. The possible
loss of tracks, not properly simulated, in the cracks between the TPC sectors has been
studied. The di�erence between the number of tracks in data and simulation, integrated
over the regions of good and bad acceptance of the TPC, has been found to be about
0.2%. The eventual loss in e�ciency due to the requirement to have VD hits in the tracks
has been evaluated by computing the ratio between the number of tracks in data and in
simulation with VD hits in an anti-b-tagged sample. It has been found to be 0.995.

Another method to study the tracking e�ciency is to extract the average charged
particle multiplicity for the total Z sample using the selected tracks (i.e. with VD hits).
If NV D and NMC

VD is the mean value of charged tracks with VD hits in data and simulation
respectively and NZ0 is the generated value in the simulation (JETSET 7.3 [10]), the
average charged particle multiplicity for the total Z is given by NVD � NZ0=NMC

VD . The
values were measured to be 21.062 �0.008 (20.96�0.01) for 1994 (1995); the errors are
statistical only. Such results are in good agreement with the world average of 21.00 �0.13
[17]. From this method an error of 0.6% is assigned to the multiplicity scale uncertainty.

The two methods give consistent results; to be conservative, the largest uncertainty
from the �rst method has been chosen.

To study the e�ect due to the loss of low momentum particles the following procedure
is used. All the particles in one hemisphere are boosted back to the reconstructed B

center-of-mass system and the quantity N+� is computed as a function of cos(�B), where
�B is the angle between the particle and the B direction in the B rest frame. The low
momentumparticles emitted backwards can be lost in the reconstruction. The maximum
di�erence, 0.5%, between the ratios < N+� > = < NMC

+� > in four cos(�B) bins is the
systematic uncertainty due to the loss of low momentum particles. This contribution is
already included in the tracking e�ciency uncertainty.

Hemisphere correlation. The in
uence of the hemisphere correlation on the analysis
can be studied by doing the measurement with a single �tted primary vertex per event. It
was estimated in ref.[9] that the major contribution to the hemisphere correlation in the
tagging e�ciency for b-quarks comes from the common primary vertex. The correlation
can be substantially reduced whenever a separate primary vertex is computed for each
hemisphere. The di�erence between the values of nB computed using a single primary
vertex per event and a separate primary vertex per hemisphere is given as the systematic
uncertainty due to the hemisphere correlation. It is 0.015 and 0.034 for 1994 and 1995
years respectively (see table 1).

The linearity of the measurement was veri�ed by varying the average multiplicity of
B decays in the simulation by �10%.

In addition, since for the second analysis (see section 4.5) the shape of the multi-

plicity distribution had to be varied (see �gures 3b and 3c); the di�erence between the
two estimated values has been taken as the systematic uncertainty from this source.

The average b lifetime was varied as recommended in ref. [16].
The gluon splitting rates into b�b and into c�c were varied as recommended in ref. [16].
The branching ratio of D mesons into kaons was varied by �15%. As for the

measurement of Rb (see ref. [9]), this is the largest error, coming from uncertainties in
charm hadron decay properties.
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The K0 and � production rates in the simulation of b�b events were varied by �10%
and �20% respectively with respect to the measured values [4].

All studied systematic errors are summarized in table 1.

Source of systematics Range �nB � 10�2 Corr.

Sign assignment �0:2 (1:2) 0
Detector resolution �2:6 (3:1) 0
Radial VD alignment �1:4 (2:0) 0
Tracking e�ciency �5:0 (5:0) 1
Hemisphere correlations �1:5 (3:4) 0
Linearity �10% �0:1 (0:7) 0
Shape correction �1:7 (0:8) 0
B lifetime 1:55 � 0:05 ps �1:9 1
Gluon splitting g ! b�b (0:31 � 0:11)% �0:4 1
Gluon splitting g ! c�c (2:38 � 0:48)% �0:4 1
BR(D! K0X) 0:46 � 0:06 �1:1 1
K0 � production rate �10%;�20% �1:1 1
Total �6:7 (7:6)

Table 1: Systematic errors on the measurement of nB with the impact parameter method
for 1994 (1995) data. The last column shows the correlation coe�cient between years.

4.4 Results

The �nal result for 1994 data is:

nB = 4:953 � 0:032 � 0:067

and for 1995 data is
nB = 4:997 � 0:044 � 0:076 ;

where the �rst error is statistical and the second includes all systematic e�ects.
The results are compatible and have been combined assuming independent statistical

errors. The systematic error has been computed considering the full correlation of the
errors due to the method and to sample composition and the independence of the detector
related systematics because of the separate alignment and tuning procedure [11] for the
two years. The correlation coe�cient assumed between the two data sets is shown in the
last column of table 1.

With these assumptions the result for the combined 1994 and 1995 data samples is:

nB = 4:968 � 0:026(stat)� 0:064(syst) :

4.5 A cross check: the Secondary Vertex Analysis

An alternative method used to estimate the charged particle multiplicity is to count
the tracks that are assigned to a secondary vertex. A secondary vertex is reconstructed
requiring at least two tracks with VD hits and requiring the �t �2 � 4. It is accepted
if L=�L > 4, where L is the distance from the primary vertex and �L is its uncertainty.
The tracks that are (i) excluded by the secondary vertex search but (ii) pass close to the
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estimated 
ight direction of the B hadron and (iii) are far from the primary vertex are
forced to belong to the secondary vertex. This takes into account the cases where a D
meson decays far from the B decay vertex. Since a secondary vertex is reconstructed with
at least two tracks, the multiplicity distribution will be biased towards higher values.

The distributions of the tracks retained at the secondary vertex Nsec in data and
simulation do not agree at high values, as shown in �gure 3b. Reweighting the simulation
events in order to narrow the generated multiplicity distribution by about 5% gives better
agreement, as shown in �gure 3c; the results given below use the reweighted simulation.
Counting the number of tracks retained at the secondary vertex, Nsec, as a function of
the b-tagging variable (i.e. for increasing purity), (see �gure 4), the following results have
been obtained, when selecting events with a b purity greater than 99.8% (i.e. y > 3), for
the year 1994:

< Nsec >= 4:570 � 0:011,
< NMC

sec >= 4:583 � 0:009 ;

and for the year 1995:

< Nsec >= 4:580 � 0:016,
< NMC

sec >= 4:604 � 0:013.

If NMC
0 is the generated value in the simulation, the value of nB is determined as in

the previous method:

nB = NMC
0 + (Nsec �NMC

sec )� Ssec ; (4)

where the various terms have the same meaning as in Eq. 3 with the index 'sec' used to
identify the alternate analysis method. The coe�cients of Eq. 4 have been determined by
varying the generated multiplicity in the simulation by �NMC

0 = �10%, giving SMC
sec =

1:923�0:029 and 1:905�0:041 for the 1994 and 1995 data sets respectively. The maximum
between the uncertainty from the �t and the di�erence of the values of nB obtained at
NMC0

0 = NMC
0 �10% is included as a systematic uncertainty below.

The same systematic errors considered in the �rst analysis have been evaluated and are
listed in table 2. It should be noticed that this method su�ers from a bias because of the
requirement to have at least 2 tracks belonging to the secondary vertex. This translates
into a reduced sensitivity since a variation of 10% on the generated multiplicity gives a
variation of only 6% on the measured one. Moreover the shape of the Nsec distribution
does not agree between data and simulation and the simulation had to be reweighted in
order to reach agreement. The di�erence between the results obtained with and without
reweighting the simulation is given as a systematic error. For these reasons this analysis
is used only as a cross check and its results are not combined with the previous analysis.

The values of nB obtained with this method are:

nB = 4:895 � 0:029(stat:)� 0:108(syst:) (1994)
nB = 4:874 � 0:039(stat:)� 0:118(syst:) (1995).

Assuming correlation coe�cients as described in 4.4, combining the two years yields:

nB = 4:888 � 0:023(stat:)� 0:104(syst:) :

This result is compatible with the one obtained with the impact parameter analysis,
although it su�ers from a larger systematic uncertainty.
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Source of systematics Range �nB � 10�2 Corr.
Detector resolution �1:9 (2:5) 0
Radial VD alignment �0:4 (0:4) 0
Tracking e�ciency �4:8 (3:7) 0
Hemisphere correlations �2:3 (4:6) 0
Linearity �10% �5:0 (6:0) 0
Shape correction �5:4 (5:7) 0
B lifetime 1:55 � 0:05 ps �0:3 1
Gluon splitting g ! b�b (0:31 � 0:11)% �0:1 1
Gluon splitting g ! c�c (2:38 � 0:48)% �0:1 1
BR(D ! K0X) 0:46 � 0:06 �5:3 1
K0 � production rate �10%;�20% �1:4 1

Total �10:8 (11:8)

Table 2: Systematic errors on the measurement of nB with the secondary vertex method
for 1994 (1995) data. The last column shows the correlation coe�cient between years.

5 Summary

The average charged decay multiplicity nB of weakly decaying B hadrons produced in
a b-quark jet at the Z pole energy was measured by counting the di�erence between the
tracks with positive and negative impact parameters in a hemisphere:

nB = 4:97 � 0:03(stat:)� 0:06(syst:) ;

where the K0 and � decay contributions were not considered. A second method that
counts the tracks pointing to a secondary vertex gave a consistent result with a larger
systematic uncertainty.

At the �(4S) CLEO [1] and ARGUS [2] measured respectively 5.15�0.03�0.15 and
5.04�0.03�0.12, while at LEP in previous analyses OPAL [3], DELPHI [4] and L3 [5]
measured nB = 5:03�0:04�0:49, nB = 5:33�0:04�0:38 and nB = 4:90�0:04�0:10 re-
spectively. In all the casesK0 and � decay products had been subtracted. In the DELPHI
result [4], the contribution from B�� ! ��B, which is measured to be 0.16�0.03 [18], is
subtracted as well. Taking these facts into account, the present measurement is consistent
with the previous ones, but has a smaller uncertainty.
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Figure 1: The average value of N+� (the di�erence between the number of tracks with
positive and negative impact parameter in the hemisphere opposite to the b-tagged one)
from simulation is shown for b, c and uds hadron decay products as a function of the
discriminating cut in the tagging variable y, i.e. for increasing b purity in the selected
sample of events. The cut used in this analysis is y > 3: which corresponds to a b purity
>99.8%.
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Figure 2: Average value of N+� (the di�erence between the number of tracks with positive
and negative impact parameter in the hemisphere opposite to the b-tagged one) for the
data collected in 1994 and 1995 (full points). The superimposed histogram shows the
result of the simulation.
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Figure 3: (a) The distribution of N+� is shown for real data (dots) and simulation
(histogram, normalized to the real data). The distribution of Nsec is shown for real data
(dots) and simulation (histogram) (b) before and (c) after changing the shape of the
multiplicity distribution in the simulation.



14

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

5.25

5.5

5.75

6

-2 -1 0 1 2 3 4 5 6

Figure 4: The value of Nsec is shown for the data collected in 1994 and 1995 (full points).
The superimposed histogram is the simulation.


