
HAL Id: in2p3-00001119
https://hal.in2p3.fr/in2p3-00001119

Submitted on 6 Nov 1998

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Measurement of the inclusive charmless and
double-charm B branching ratios

P. Abreu, W. Adam, T. Adye, P. Adzic, G D. Alekseev, R. Alemany, P P.
Allport, S. Almehed, U. Amaldi, S. Amato, et al.

To cite this version:
P. Abreu, W. Adam, T. Adye, P. Adzic, G D. Alekseev, et al.. Measurement of the inclusive charmless
and double-charm B branching ratios. Physics Letters B, 1998, 426, pp.193-206. �10.1016/S0370-
2693(98)00147-6�. �in2p3-00001119�

https://hal.in2p3.fr/in2p3-00001119
https://hal.archives-ouvertes.fr


EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN{EP/98{07

15 January 1998

Measurement of the inclusive

charmless and double-charm

B branching ratios

DELPHI Collaboration

Abstract

The DELPHI experiment at LEP has measured the inclusive charmless B

hadron decay branching ratio, the B branching ratio into two charmed particles,
and the total number of charmed particles per B decay, using the hadronic Z
data taken between 1992 and 1995. The results are extracted from a �t to
the b-tagging probability distribution based on the precise impact parameter
measurements made using the microvertex detector. The inclusive charmless
B branching ratio, including B decays into hidden charm (c�c), is measured to
be 0:033 � 0:021. The B branching ratio into two open charmed particles is
0:136 � 0:042. The mean number of charmed particles per B decay (including

hidden charm) is 1:147� 0:041. After subtracting the B decay branching ratio
into hidden charm, the charmless B branching ratio is found to be 0:007 �
0:021, compatible with the Standard Model expectation. Models that predict
an additional contribution to the charmlessB branching ratio of 0.037 or higher
are excluded with at least 95% con�dence.

(Submitted to Physics Letters B)
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1 Introduction

At present no measurements exist of the inclusive branching ratio of B particles1 into
�nal states without a charmed particle.

In the Standard Model, charmless B decays are based on the rare processes: b ! u,
b! s(d) and b! s(d)g. The �rst process occurs at tree level but is suppressed because

the ratio of the CKM matrix elements Vub=Vcb is small. It is measured in semi-leptonic
B decays. The last two processes can occur only through penguin loop diagrams. The
inclusive branching ratio b! s is measured to be (1:9�0:5)�10�4 [1]. For the inclusive
b! s(d)g, no measurements exist; only some branching ratios into exclusive �nal states
are known [2]. In the Standard Model, the total charmless B decay rate is expected to
be 0:016 � 0:008 [3].

An outstanding puzzle in B physics is that the theoretical prediction [4] for the semi-
leptonic B branching ratio is higher than the measured values. This can be solved if, for
example, the non-leptonic contribution to B decays is larger than expected.

New physics beyond the Standard Model can enhance the predicted inclusive charmless
B branching ratio, through the contributions of new particles or avour changing neutral
currents in loop diagrams. As a possible solution to the puzzle, it has therefore been
suggested that the charmless B branching ratio may be as large as 0.10 to 0.15, due to
new physics [5]. A large branching ratio for the process b ! s(d)g is consistent with
present measurements of the kaon content in B decays [6], and is not excluded by limits
that can be derived from the measurement of the branching ratio b! s [7].

Since the b ! c�cs decay rate is hard to calculate reliably due to the small energy
release, an alternative possible solution to the puzzle that does not require new physics is

to assume a large branching ratio of 0.15 � 0.05 for b! c�cs followed by c�c annihilation [8],
which would be included in the measured charmless B branching ratio.

A third possible solution, that also does not require new physics and in addition does
not a�ect the measured charmless B branching ratio, is to assume a larger branching
ratio for b ! c�cs where the c�c quarks do not annihilate. However, this increases the
mean number of charmed particles per B decay. Explaining the measured semi-leptonic
B branching ratio in this way would imply a number of charmed particles per B decay
of about 1.30 � 0.05 [8] or 1.20 � 0.06 [9]. The present measurements of the number

of charmed particles in B decays at the �(4S) and LEP are based on branching ra-
tio measurements of B hadrons into D0

;D
+
;Ds;�c, and �c [10{12]. They have rather

large common systematic uncertainties because of uncertainties in the branching ratios
of charmed particles into exclusive �nal states. The recent CLEO result for the mean
number of charmed particles in B decays is 1:10 � 0:05 [10]. The average of the LEP
results is 1:17 � 0:07 if the same assumptions on branching ratios are made.

This paper presents measurements of the B decay branching ratios into no open charm,
Br0C, and into double open charm, Br2C, and the mean number of charmed particles per
B decay, Nc. The measured B decay branching ratio Br0C includes charmless B decays

and B decays into hidden charm (i.e. b ! (c�c)s decays that do not give open charm
states). A hidden charm contribution, estimated from the measured B ! J= ( 0)X
branching ratios to amount to 0:026�0:004 [10,13], is subtracted from the observed Br0C
to obtain the truly charmlessB branching ratio. The decays to hidden charm are counted
as contributing two charmed particles per decay to NC. The measured branching ratio
Br2C includes only B decays into two open charmed particles.

1In the text, the notation B refers to both B mesons (including the B0
s meson) and B baryons, except for �(4S)

measurements where it refers only to B0
d
and B+ mesons.
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2 Method

The measurement is based on a new application of the b-tagging technique [14] using
the precise track extrapolation provided by the microvertex detector. The b-tagging
probability is calculated in the following way [14]. First a primary vertex is �tted, then
each track measured in the microvertex detector is extrapolated to the primary vertex

and the lifetime signed impact parameter is determined. The lifetime sign is positive if
the track crosses the axis of the jet to which it belongs in front of the primary vertex,
negative if it crosses behind. From the impact parameter of each track and its error, the
probability that the track is compatible with the primary vertex is evaluated. Finally,
the combined probability, denoted by P+

H , is calculated; this is the probability for the
hypothesis that all the tracks with positive lifetime signs in a given hemisphere come
from the primary vertex. For hemispheres with one or more secondary vertices, P+

H tends
to be small.

The di�erence in P+
H between a hemisphere with a charmlessB decay and one with a B

decay giving one or two charmed particles is due to the lifetime of the charmed particles;
these di�erent classes of events have one, two or three secondary vertices respectively.
As shown in Figure 1, the distributions of the b-tagging probability per hemisphere P+

H

have di�erent shapes for simulated charmless (including hidden charm), single charm and
double (open) charm B decays; in general, additional secondary vertices in a hemisphere
result in a lower average probability. By �tting the P+

H distribution, the branching ratios
for charmless (including hidden charm), single charm and double (open) charm B decays
can be extracted.

It is clear that this technique allows a measurement of the B branching ratios Br0C
and Br2C and of the mean number of charmed particles NC that is largely independent
of previous measurements and has di�erent systematic errors.

In the following, the event selection and analysis are described, the results for the
branching ratios are presented, the results are discussed and compared with those of
other experiments, and an upper limit is given for possible new physics contributing to
the branching ratio of the b-quark into charmless particles.

3 Analysis

The DELPHI detector and its performance are described in [15,16]. The data taken
around the Z pole from 1992 to 1995 were analyzed. In 1992 and 1993 the silicon vertex
detector measured only the R� coordinate, while in 1994 and 1995 the z coordinate was
also measured; here R is the radius orthogonal to the beam axis, z is the coordinate
parallel to it, and � denotes the azimuthal angle. Details of the performance of the

vertex detector are given in [17].
The selection of hadronic events is based on the standard hadronic tag [18]. A total

of 674K, 711K, 1,359K and 636K hadronic events were selected for the 1992, 1993, 1994
and 1995 data.

The thrust axis of the event was calculated using charged and neutral particles. Events
that were fully contained in the vertex detector were selected by requiring the polar angle
of the thrust axis to lie between 57� and 123� for the 1992 and 1993 data; in 1994 and 1995
the vertex detector was longer so polar angles between 50� and 130� were accepted. The
measured particles were clustered into jets with the LUCLUS algorithm with an invariant

mass cut of 5 GeV/c2. The jets were ordered in energy. Events with hard gluons were
suppressed by requiring that the �rst two jets contained at least 70 % of the total energy.
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Samples of Z ! qq events generated by JETSET7.3 [19] with DELPHI tuning [20],
including the modi�ed description of B decays and in particular of their branching frac-

tions on the basis of recent data, were passed through the detector simulation program
DELSIM [16] and processed with the same analysis chain as the real data. The simulated
data set corresponds to 5,826K selected hadronic events.

Events were divided into two hemispheres according to the direction of the thrust
axis. The b-tagging probability P+

H de�ned above was calculated for both hemispheres.
To reduce the e�ects of far tails, very low b-tagging probabilities per track of 10�3 or lower
in R� (2:5� 10�3 in Rz) were transformed 2 to values ranging from 10�3 to 2 � 10�4.

A sample enriched in B events was selected by requiring that in one hemisphere, used
to tag the event, the hemisphere probability P+

H was less than 0.005 (0.01 for the 1992

and 1993 data). The value of the cut was chosen to optimize the e�ciency and purity
for b-quarks. In the 1994 and 1995 data the cut value could be lower, because of the
measurement of the impact parameter in the Rz plane.

In the opposite hemisphere, where the measurement was performed, it was required
only that at least two tracks had vertex detector hits and a positive lifetime sign.

One event can give at most two measurement hemispheres. Thus 41K, 54K, 202K
and 92K measurement hemispheres were selected for the 1992, 1993, 1994 and 1995 data
respectively. About 84% of the sample consisted of Z decays to b�b quark pairs.

The b-tagging probability distribution for the measurement hemispheres was used to
extract the charmless (including hidden charm), single charm and double (open) charm
B branching ratios. The following procedure was adopted.

The simulated events were divided into four classes, three for b quark decays and one
for the light (udsc) quark background:

(i) No open charm (0C): b ! u�ud, b ! ul�, b ! s, b ! d, b ! sg, b ! dg and
b! (c�c)s, where (c�c) is a hidden charm state

(ii) Double open charm (2C): b! c�cs
(iii) Single charm (1C): b! c�ud, b! cl�, b! u�cs
(iv) Light quark background (BKG): u; d; s; and c quark events.

The �rst category contained the charmless decays and also the decays into hidden charm
(c�c), like the J= and its excited states, because these states decay promptly. Category (ii)
contained the b quark decays into two open charmed particles (D0

;D
+
;Ds;�c;�c; or 
c).

Class (iii) contained only decays into one charmed particle. Events from up, down, strange
or charm quarks were put in category (iv). For each of the classes, the corresponding
b-tagging probability distribution F class(P ) was extracted from the simulation.

A constrained binned �2 �t was then performed using the following �tting function:

F(P ) = RN (1+�P )[Br0CF
0C(P )+Br2CF

2C(P )+Br1CF
1C(P )+RBKGF

BKG(P )] (1)

where P = � log(P+
H ), the F

0C;2C;1C;BKG(P ) are the distributions for the classes (i) to (iv),
RN is an overall normalization factor, RBKG is the background scaling factor, and � is the
slope parameter (see next paragraph). The parameters Br0C, Br2C, and Br1C are de�ned
as the branching ratios for no charm, double charm, and single charm; they add up to 1.
RN is proportional to the ratio of the number of hemispheres in data and simulation and
RBKG is a background scaling factor, which is equal to 1 if data and simulation agree.

The following parameters were determined in the �t: Br0C, Br2C, (Br1C was eliminated),
RBKG, RN , and �.

The background scaling factor RBKG was constrained to be around 1 and the slope �
around 0 by including in the �t an additional �2 contribution for RBKG with an error of

2Using the formula P 0 = Pminlog(Pmin)= log(P ) for track probabilities P less than Pmin = 1(2:5)� 10�3.
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0.1 and another for the slope � with an error of 3 � 10�3. The errors assigned to RBKG

and � correspond to their systematic uncertainties (see below).

4 Results

The constrained binned �2 �t to the data was performed for P values ranging from
0 to 15.5 for the 1992 and 1993, and from 0 to 40 for the 1994 and 1995 data3. Events

with P values above 15.5 or 40 were put in the last bin and used in the �t. The �tting
range was chosen to have more than about 100 entries per bin. The statistical error on
the simulation was included in the error per bin.

Figures 2 and 3 show the data and the result of the �t for each data set. The back-
ground, charmless (0C), double charm (2C) and single charm (1C) contributions are
indicated with di�erent shadings.

The result of the �t for the branching ratio Br0C is given in Table 1, and for the
branching ratio of B hadrons into two charmed particles Br2C in Table 2. The total
error corresponds to the statistical, correlated and uncorrelated year-to-year systematic

errors. The correlation in the �t between the two branching ratios is very small and can
be neglected. The �2 per degree of freedom of the �t is 68.7/57 for the 1992 data, 70.9/57
for 1993, 70.5/75 for 1994 and 85.6/75 for 1995. The background scale factors RBKG were
0.93, 0.87, 0.96 and 1.00, and the slope parameters � were �6�10�3, �2�10�3, 1�10�3

and 2�10�3, for the 1992, 1993, 1994 and 1995 data respectively. This is consistent with
the expectation that RBKG should equal one and � should equal zero within the assigned
errors of 0.1 and 3 � 10�3 respectively. The results were stable if the error on the slope
parameter in the constrained �t was varied by a factor 1.5.

data set Br0C stat. error uncorr. syst. corr. syst. total error
error error

1995 0.001 0.033 0.012 0.009 0.037

1994 0.036 0.029 0.012 0.009 0.033

1993 0.061 0.038 0.022 0.014 0.046

1992 0.057 0.046 0.022 0.014 0.053

combined 0.033 0.021

Table 1: Results for the charmlessB branching ratio Br0C including B decays into hidden
charm and the statistical and uncorrelated and correlated systematic errors.

A detailed breakdown of the systematic errors is given in Table 3. The contributions
in the �rst group were determined by varying the following parameters assumed in the
analysis according to the recommendations of the heavy avour working group [21]: the

fractions of Bs mesons (fBs) and �b baryons (f�b) in b jets, the average lifetime of the b
quark (�b), the lifetimes of the Bs and �b, the average fractions of the energy taken by the
B hadron < xb > and by the charmed particle in the B decay < xc >, where � in Table
3 refers to the Peterson fragmentation function, the average B hadron decay charged
multiplicity Nb (excluding tracks from K

0
s and � particles), the charged multiplicity NC

in charm decays, the branching ratio Br(D ! K
0
X), and the probability of a gluon

giving a c-quark or a b-quark pair in an event.
3The ranges di�er because the z coordinate was measured only in 1994 and 1995.
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data set Br2C stat. error uncorr. syst. corr. syst. total error
error error

1995 0.084 0.044 0.035 0.033 0.065

1994 0.143 0.043 0.035 0.033 0.065

1993 0.125 0.056 0.035 0.028 0.072

1992 0.198 0.053 0.035 0.028 0.070

combined 0.136 0.042

Table 2: Results for the branching ratio of B hadrons into two open charmed particles
Br2C and the statistical and uncorrelated and correlated systematic errors.

The measurement can also be sensitive to the relative numbers of charmed particles
with very di�erent lifetimes, in particular of the D+ and �c particles. Therefore the
fractions of D+ mesons (f(D+)) in single and double charm B decays and the fraction
of �c baryons in single charm B decays were varied within the indicated ranges. The
mean values and variations used for these branching ratios are extrapolations from the
measurements made at the �(4S) [10]. Finally, the e�ciencies for wrongly tagging light

quark and charm quark pairs as b-quark pairs were varied by 5% and 10% respectively,
as in [14].

The above systematic errors were considered to be fully correlated for the di�erent
years. Other correlated systematic errors were considered to be negligible.

Tables 1 and 3 show that the total correlated systematic error on the branching ratio
Br0C is rather small, namely 0.014 (0.009) for the 1992 and 1993 (1994 and 1995) data,
with the largest contributions coming from f�b, �b, < xb >, < xc >, and Nb. The total
correlated systematic error on Br2C is larger (see Tables 2 and 3) and amounts to 0.028
(0.033) for the 1992 and 1993 (1994 and 1995) data; the largest contributions come from

< xb >, < xc >, Nb, Br(D! K
0
X) and the charm and light quark e�ciencies.

The dominant source of uncorrelated systematic error is the tuning of the resolution
of the microvertex detector. The procedure for tuning the track impact parameter reso-
lutions and b-tagging probabilities for 1992 and 1993 data is described in detail in [22].
This tuning was also used for the DELPHI measurement of the fraction of b-quark events
in hadronic Z decays [14]4. The quality of both the track reconstruction and the tuning
were better for the 1994 and 1995 data than for previous years [23].

The resolution function was determined in the following way. The b-tagging probability
per track was studied in light quark events with negative impact parameters, and tuned

to be at. The same procedure was followed for real data and simulation, and two
resolution functions were extracted. The systematic error from the resolution function,
due to remaining discrepancies between data and simulation, was obtained by applying
to the simulation the resolution function of the data. The full analysis was then repeated.
The systematic error on the branching ratios is not correlated between the di�erent data
sets, because the tuning was done separately for each year. The uncorrelated systematic
error on the branching ratio Br0C was 0.022 in 1992 and 1993, and 0.012 in 1994 and
1995. The uncorrelated systematic error on the branching ratio Br2C was 0.035 for all

years.
4The Rb measurement made use of the simulated distributions of P only for the small light and charm quark contami-

nations. In contrast, here it is necessary to rely also on the simulation for the distributions for the various categories of B
decays (i.e. no, single, and double charm production).
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source value and variation �Br0C �Br0C �Br2C �Br2C

1992/1993 1994/1995 1992/1993 1994/1995

fBs
0:12 � 0:02 0.001 0.001 0.001 0.002

f�b 0:09 � 0:03 0.005 0.004 0.003 0.007

�b 1:55� 0:05 ps 0.005 0.003 0.007 0.006

�Bs
1:6� 0:15 ps 0.001 0.001 0.002 0.002

��b 1:3� 0:15 ps 0.002 0.002 0.005 0.004

< xb > 0:702 � 0:008 0.008 0.003 0.007 0.012

< xc > B decays �=0:42 � 0:07 0.003 0.004 0.012 0.016

Nb 5:25 � 0:35 0.004 0.004 0.012 0.006

Nc 2:53 � 0:06 0.001 0.001 0.002 0.001

Br(D ! K
0
X) 0:46 � 0:06 0.004 0.001 0.008 0.011

g ! c�c per event 0:0238 � 0:0048 0.001 0.001 0.001 0.001

g ! b�b per event (0:13 � 0:04) � (g ! c�c) 0.001 0.001 0.001 0.001

f(D+) 1C 0:23 � 0:03 0.001 0.001 0.002 0.004

f(D+) 2C 0:16 � 0:03 0.001 0.001 0.001 0.001

f(�c) 1C 0:10 � 0:03 0.002 0.001 0.006 0.002

uds e�ciency � 5% 0.003 0.002 0.009 0.003

c e�ciency � 10% 0.003 0.002 0.013 0.019

total corr. syst. 0.014 0.009 0.028 0.033

resolution function 0.022 0.012 0.035 0.035

total uncorr. syst. 0.022 0.012 0.035 0.035

Table 3: Breakdown of the systematic error on the branching ratio Br0C and Br2C. See
text for the de�nition of the symbols.

Including the background scaling factor RBKG and the slope parameter � in the �t
increased the statistical errors but reduced the systematic errors, thus reducing the total
errors signi�cantly. For example, varying the average lifetime of the b quark �b over the
range indicated in Table 3 with � �xed induced large changes in the branching ratios
Br2C and Br0C of about 0.035 and 0.048 respectively and large increases in the �2 of the

�t of order 25, corresponding to e�ects of order 5 standard deviations. Allowing � to vary
in the �t improved the agreement with the data and reduced the changes in the branching
ratios to below 0.01 (see Table 3). The e�ects due to the uncertainty in < xb > were
similar. The error assigned to � in the �t corresponded to the variations in � induced by
the systematic errors on �b and < xb >, so the �2 changes were reduced and became of
order unity.

In this way, therefore, the impact parameter information related directly to �b was
largely absorbed into the determination of the parameter � instead of a�ecting the branch-

ing ratios of interest here. Indeed, including � in the �t is almost equivalent to �tting
�b itself, but simpler to implement. This also avoided a possible circularity problem aris-
ing from the fact that such impact parameter information has been used previously to
determine �b assuming Standard Model values for these branching ratios.

The error assigned to RBKG in the �t reected the 10% uncertainty in the e�ciency
for charm (see Table 3).
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5 Interpretation of Results

The results for the branching ratios for the di�erent years are shown in Figure 4. The
�
2
=dof for combining the four results for the charmless B branching ratio (including

hidden charm) is 2.1/3, and that for the double (open) charm branching ratio is 2.7/3.
Taking into account the correlated and uncorrelated errors (see Table 2), the branching

ratio of B hadrons into two open charmed particles is measured to be:

Br2C = 0:136 � 0:042.

The result for the charmless B branching ratio including B decays into hidden charm is:

Br0C = 0:033 � 0:021.

Subtracting the hidden charm contribution of 0:026 � 0:004 [10,13] yields a charmless B
branching ratio without hidden charm of :

Br(b! no charm) = 0:007 � 0:021;

to be compared with the Standard Model expectation of 0:016 � 0:008 [3].
The measurement of the charmless B branching ratio is compatible with the Standard

Model prediction. Imposing the Standard Model value, the mean number of charmed
particles per B decay, NC , was extracted from the �t to the b-tagging probability dis-
tributions. The branching ratio for decays into hidden charm, Brc�c, was assumed to be
0:026 � 0:004. These decays were counted as contributing two charmed particles per B

decay, the rest of the charmless branching ratio as giving no contribution. The �t used
the formula NC = 1 + Br2C + Brc�c � Br

SM
0C , where BrSM0C is the charmless B branching

ratio in the Standard Model and BrSM0C +Brc�c = Br0C in equation 1 was kept �xed. The
result is summarized in Table 4 5.

The combined result is:

NC = 1:147 � 0:041 � 0:008,

where the last error comes from the uncertainty on the charmless B branching ratio in
the Standard Model. The �2=dof for combining the results for the four years is 2.5/3.

data set NC stat. error uncorr. sys. corr. sys. total
error error

1995 1.097 0.043 0.035 0.033 0.065

1994 1.154 0.042 0.035 0.033 0.063

1993 1.136 0.054 0.035 0.028 0.070

1992 1.203 0.050 0.035 0.028 0.067

combined 1.147 0.041

Table 4: Results for the mean number of charmed particles per B decay and the statistical
and uncorrelated and correlated systematic errors.

5Alternatively, one can extract NC using the measured value Br0C = 0:033� 0:021 assuming that this branching ratio
contains contributions from charmless and hidden charm B decays and no contribution from charm annihilation, as in the
Standard Model. This gives NC = 1+Br2C+ 2Brc�c�Br0C, and hence NC = 1:155� 0:041� 0:021, where the last error
comes from the experimental uncertainty on the measured branching ratio Br0C.
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An upper limit on new physics in charmless B decays can be derived from the mea-
sured charmless B branching ratio. Subtracting the Standard Model contribution, the

branching ratio for new physics is

Br(b! no charm)NEW = �0:009 � 0:021 � 0:008:

Taking into account that this branching ratio cannot be negative, the upper limit at
95% con�dence level is Br(b ! no charm)NEW < 0:037. Using a dedicated simulation
program for b! sg decays [6], the probability distribution for these decays was compared
to the no open charm distribution F0C(P ). The distributions were found to be identical
within statistical errors. Models that predict a large charmless B branching ratio in the
range 0.10 { 0.20 [5,8] are therefore excluded.

The measurement of B decays to two open charmed particles of Br2C = 0:136 �
0:042 can be compared to the recent preliminary results from the CLEO and ALEPH
experiments. CLEO measured the branching ratio for �B ! D

�

s X to be 0:10� 0:027 and
that for �B ! �DX to be 0:081�0:026 [24], while ALEPH presented in 1996 a preliminary
measurement of the branching ratio for the last process of 0:128�0:027�0:026 [25]. The
two branching ratios should be added to obtain the B branching ratio into double charm.
The results are compatible within the errors and con�rm the rather high B branching
ratio into two open charmed particles.

The measured number of charmed particles per B decay, NC = 1:147 � 0:041, is

compatible with the recent CLEO result for B+ and B0 mesons, NC = 1:10 � 0:05 [10]
and the previous LEP average of NC = 1:17� 0:07. All three values lie somewhat below
the theoretical expectation of NC=1.2 to 1.3.

6 Conclusion

Using a new application of the b-tagging technique, the inclusive charmless B branch-
ing ratio, the inclusive B branching ratio into two open charmed particles, and the mean
number of charmed particles per B decay have been measured.

The measured charmless B branching ratio, including B decays into hidden charm,
was found to be Br0C = 0:033 � 0:021. Subtracting the hidden charm contribution of
0:026�0:004 [10,13] yields a truly charmlessB branching ratio of 0:007�0:021. This result
agrees with the Standard Model expectation of 0:016�0:008 [3]. The corresponding upper
limit at 95% CL on charmless B decays due to new physics is Br(b! no charm)NEW <

0:037. This result puts severe constraints on models that predict a large charmless B
branching ratio.

The branching ratio of the b-quark into two open charmed particles Br2C was found
to be 0:136 � 0:042, compatible with recent preliminary measurements [24,25].

The mean number of charmed particles per B decay is NC = 1:147�0:041, compatible
with the recent CLEO [10] and LEP results. This new measurement, like the previous
measurements, is slightly lower than the theoretical expectation of NC=1.2 to 1.3.
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Figure 1: The b-tagging probability distribution per hemisphere, P+
H , from the 1994

simulation for charmless and hidden charm B hadron decays, B decays into one charm
particle, B decays into two open charm particles, and the udsc background.
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Figure 2: The b-tagging probability distribution for the measurement hemisphere for the
1992 data (above) and the 1993 data (below), shown by the points with error bars, and for
the corresponding simulations, shown by histograms; the di�erent hatch styles show the
contributions from B decays into single, double and no charm and from the background.
The di�erence between the data and the �t result divided by the error is also shown
below each plot.
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Figure 4: Summary of the results for the branching ratio of a b-quark into charmless �nal
states including hidden charm (upper plot), the branching ratio into double charm �nal
states (middle), and the number of charmed particles per B decay (lower). The error

bars correspond to the total (stat+syst) error.
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