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Abstract

In 1996 LEP ran at a centre-of-mass energy of 161 GeV, just above the thresh-
old of W-pair production. DELPHI accumulated data corresponding to an
integrated luminosity of 9:93 pb�1, and observed 29 events that are considered
as candidates for W-pair production. From these, a cross-section for the dou-
bly resonant e+e� ! WW process of 3:67 +0:97

�0:85 � 0:19 pb has been measured.
Within the Standard Model, this cross-section corresponds to a mass of the W-
boson of 80:40 � 0:44 (stat:) � 0:09 (syst:) � 0:03 (LEP) GeV=c2. Alterna-
tively, if mW is held �xed at its current value determined by other experiments,
the observed cross-section is used to obtain limits on trilinear WWV(V � 
;Z)
couplings.

(To be submitted to Physics Letters B)
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1 Introduction

The W-boson mass, mW, is one of the key parameters of the electroweak theory. The
combined measurements at p�p colliders give a value mW = 80:35 � 0:13 GeV=c2 [1{5].
This is in agreement with the determination mW = 80:352 � 0:033 GeV=c2 from a �t of
all electroweak data to the Standard Model [6].

In 1996, LEP provided e+e�collisions at a centre-of-mass energy of 161.31 GeV with
an integrated luminosity recorded by DELPHI of 9:93 pb�1, from which a measurement
of the W-pair cross-section has been obtained. The cross-section for W-pair production
near threshold depends strongly on mW, which can therefore be determined from this
measurement. It is also sensitive to the trilinear gauge coupling parameters (TGCs) at
the WWV (i.e. WW
 and WWZ) vertices, and can therefore be used to set limits on
these parameters if another measurement of mW is used. Limits on TGCs have previously
been obtained in p�p experiments [7].

The paper is organized as follows. In section 2, the DELPHI detector setup in 1996, the
event trigger, and the luminosity measurement are brie
y reviewed. The track selection
and lepton identi�cation are described in section 3. In section 4, the event selection and
the computation of cross-sections are presented for the di�erent decay channels, from
which a total cross-section is obtained. In section 5, a value for mW is derived. Limits
on TGCs are given in section 6.

2 Apparatus, Trigger and Luminosity

Detailed descriptions of the DELPHI apparatus and its performance can be found in
[8,9]. In 1996 the cylindrical 3-layer vertex detector was lengthened and extended with
additional silicon detectors covering the endcap region.

The response of the detector to various physics processes was modelled using the full
simulation program DELSIM [9,10], which incorporates the resolution, granularity, and
e�ciency of the detector components. The event generators chosen are described in the
relevant sections below.

The event trigger is described in [8,9]. From trigger e�ciencies measured for single
charged particles with redundant trigger combinations, the e�ciency for two charged
particles (which is the worst case for all events of interest in the present analysis) was
found to exceed 99%.

The luminosity was measured using the Small Angle Tile Calorimeter (STIC). It con-
sists of two lead/scintillator sampling calorimeters, located at � 220 cm from the interac-
tion point, providing full coverage of the region between 29 and 185 mrad with respect to
the beam axis. A detailed description of this detector can be found in [11]. Events corre-
sponding to Bhabha scattering were selected by requiring a coincidence of two coplanar
electromagnetic showers, each with energy larger than 65% of the beam energy. In order
to minimize the sensitivity to the position of the interaction point, asymmetric cuts were
imposed on the reconstructed radii of the two showers.

The calculation of the accepted cross-section was based on the event generator
BHLUMI 4:03 [12], which has a theoretical accuracy of 0:25% at LEP2 energies. The
generated events were passed through a full simulation of the detector, and anal-
ysed in the same way as the real data. The total experimental systematic error on
the luminosity amounts to 0:5%, with the main contribution arising from the un-
certainty in the radial cuts. For the data sample used, an integrated luminosity of
9:93 � 0:11(stat:)� 0:06(syst:) pb�1 was determined.
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3 Track Selection and Lepton Identi�cation

Charged particles were selected if they ful�lled the following criteria :

� polar angle with respect to the beam direction between 10� and 170�;
� momentum greater than 0.4 GeV/c;
� good quality, assessed as follows:

{ track length greater than 15 cm;
{ impact parameters with respect to the nominal interaction point less than 4 cm
(transverse and longitudinal with respect to the beam direction);

{ estimated relative error on momentum measurement less than 100%.

For neutral particles the following selection criteria were applied :

� energy of the shower greater than 0.5 GeV;
� additional requirements on shower quality, assessed as follows:

{ showers in the STIC calorimeter with deposits in more than one cell;
{ showers in the hadron calorimeter with energy uncertainties below 100%.

Electron identi�cation was performed in the polar angle range between 20� and 160�

by looking for characteristic energy deposition in the central and forward/backward elec-
tromagnetic calorimeters and demanding an energy-to-momentum ratio consistent with
unity. For this polar angle range the identi�cation e�ciency for high momentum elec-
trons was determined from simulation to be (77�2)%, in good agreement with e�ciencies
determined using Bhabha events measured in the detector.

Tracks were identi�ed as due to muons if they had at least one associated hit in the
muon chambers, or an energy deposition in the hadronic calorimeter consistent with a
minimum ionizing particle. Muon identi�cation was performed in the polar angle range
between 10� and 170�. Within this acceptance, the identi�cation e�ciency was deter-
mined from simulation to be (92 � 1)%. Good agreement was found between data and
simulation for high momentummuons in Z! �+�� decays, and for low momentumpairs
produced in 

 reactions.

4 Event Selection and Cross-Sections

The cross-sections determined in this analysis are de�ned to correspond to W pair
production through the three doubly resonant tree-level diagrams (\CC03 diagrams" [13])
involving s-channel 
 and Z exchange and t-channel � exchange. The selection e�ciencies
given in this section are also de�ned with respect to these diagrams only. Depending
on the decay mode of each W, �nal states which are fully hadronic, mixed hadronic-
leptonic (\semileptonic"), or fully leptonic are obtained with branching ratios derived
from the Standard Model of 45.9%, 43.7% and 10.4% respectively. In addition to their
production via the CC03 diagrams, the four-fermion �nal states corresponding to these
decay modes may be produced via other electroweak diagrams involving either zero, one,
or two massive vector bosons. The e�ects of the interference between the CC03 diagrams
and the additional diagrams have been treated as correction factors, which were applied
such that the cross-sections given below can be compared to theoretical estimates of the
CC03 cross-sections. The correction factors CCC03 were determined for the individual
decay modes using the 4-fermion generator EXCALIBUR [14], which is interfaced to
the DELPHI simulation package [10], and are given in table 1. The uncertainties are
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estimated to be about 1.5% and are taken into account in the systematic uncertainties
on the cross-sections given below.

WW decay mode CCC03

q�qq�q 0.996
e�q�q 1.087
�(� )�q�q 1.006
`�`� 1.045

Table 1: Correction factors CCC03 for the decay modes of WW pairs. For `�`� the
correction factor given is the average of all lepton combinations.

4.1 Fully Hadronic Final State

The event selection criteria were optimised in order to ensure that the �nal state was
purely hadronic and in order to reduce the residual background. The background is
dominated by electron-positron annihilation into q�q(
), with a cross-section about two
orders of magnitude larger than that for the signal.

For each event, all particles were clustered into jets using the LUCLUS algorithm [15]
with djoin = 6:5 GeV=c. At least 4 jets were required, with at least four particles in each
jet. Figure 1a shows the distributions of the di�erential 3-jet rate as a function of djoin
for data and for simulated WW and background events.

Events coming from the radiative return to the Z peak were rejected by requiring the
e�ective centre-of-mass energy of the e+e� annihilation to be larger than 115 GeV. The
e�ective energy was estimated from the momentum of the radiated photon. If an isolated
photon was recorded in the detector, its measured momentum was used; otherwise its
direction was assumed to be parallel to the beam axis, and its momentumwas calculated
by forcing a 2-jet interpretation of the event and then using only the angular information
of the jets [16]. Figure 1b shows the distributions of the e�ective energy for events with
at least 4 jets.

Events were then forced into a 4-jet con�guration, and a kinematically constrained �t
performed, imposing energy and momentum conservation. The �nal cut to separate WW
from q�q(
) events was made on the variable

D = Emin

Emax

� �min

(Emax�Emin)
;

where Emin; Emax are the energies of the jets with least and greatest energy, and �min is
the smallest interjet angle, after the constrained �t.

The D variable discriminates well between the signal and the q�q(
) background, for
the following reason. The signal, with both W's on or near mass-shell, consists of events
with two pairs of (nearly) back-to-back di-jets, the two di-jets being able to have any
orientation with respect to each other and each jet having an energy in the range of
about 30-50 GeV. In contrast, in q�qgg background events the quarks tend to have higher
energy than the radiated gluons, and the gluons tend to follow the quark directions. D
was required to exceed 0:013 GeV�1. Figure 1c shows the distributions of this quantity
after the other two cuts described above.

The selection e�ciency was computed from a sample of WW events generated with the
generator PYTHIA 5:7 [17] (with mW = 80.23 GeV=c2), with the fragmentation tuned
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Figure 1: Fully hadronic �nal state: comparison of data (points with error bars) with sim-
ulated q�q(
) background (cross-hatched areas) and WW signal (white areas) normalised
to the �tted cross-section. (a) Di�erential 3-jet rate (number of events changing from 4
to 3 jets) as function of djoin; (b) e�ective centre-of-mass energy for events with at least
4 jets; (c) D variable (as de�ned in the text) for 4-jet events with e�ective centre-of-mass
energy greater than 115 GeV.

to the DELPHI data measured at LEP1 [18], and was found to be (61:3 � 2:0)%. The
error includes the systematic uncertainty, which was estimated by varying all selection
criteria by at least the value of their experimental resolutions and taking the quadratic
sum of all contributions.

A residual background cross-section of 0:61�0:07 pb was estimated, with the dominant
contribution coming from e+e� annihilation into q�q(
) events, 0.4% of which survived the
WW selection procedure, corresponding to a residual cross-section of 0:58 pb. The other
contributions come from the channels e+e� ! ZZ (0.02 pb) and e+e� ! Ze+e� (0.01 pb).
The systematic uncertainty on the background was estimated from the variation of the
selection e�ciency for the q�q(
) background using di�erent generators. Furthermore the
accuracy of the simulation was checked on multihadronic events collected at the Z pole
and at collision energies between 130 and 140 GeV. These data were selected with the
161 GeV criteria downscaled in proportion to the collision energy, and good agreement
was found for the expected numbers of selected events.

From the full data sample, 15 events were selected. An unbinned maximum likelihood
�t to the distribution of the variable D, taking into account the expected background,
leads to a cross-section for fully hadronic events

�4jetWW = �totWW � BR(WW! 4 jets) = 1:56 +0:67
�0:55 � 0:13 pb,

where BR(WW! 4 jets) is the probability for the WW pair to give a purely hadronic
�nal state, and the �rst errors are statistical and the last is systematic. The e�ects of
colour reconnection are estimated to be negligible [19].

4.2 Semileptonic Final States

Events in which one W decays into `� and the other one into quarks are characterized
by two hadronic jets, one energetic and isolated charged lepton, and missing momentum
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resulting from the neutrino. The major backgrounds to these events come from radiative
q�q production and four-fermion �nal states containing two quarks and two charged leptons
of the same 
avour. Photon conversions in the detector lead to an increase of background
events in the electron channel.

Events were selected by requiring 6 or more charged particles and a missing momentum
of more than 10 GeV/c. Electron and muon tagging were applied to the events. In
q�q(
) events, the selected lepton candidates are either leptons produced in heavy quark
decays, misidenti�ed hadrons, or electrons from a materialized photon. These particles
generally have low momenta and small angles with respect to their quark jets. Therefore
the momentum of the selected muon or the energy deposited in the electromagnetic
calorimeters by the selected electron was required to be greater than 10 GeV, and the
angle �iso between the lepton and the nearest charged particle with a momentum greater
than 1 GeV/c was required to be larger than 10�. For leptons with momenta less than
20 GeV/c, �iso was required to be larger than 30�. Figures 2a and 2b show the distributions
of the isolation angle of the lepton and of its momentum. If more than one identi�ed
lepton passed these selections, the one of highest momentumwas considered as the lepton
candidate from the W decay. The angle between the lepton and the missing momentum
vector was required to exceed 90� for electrons and 60� for muons. All other particles
were forced into two jets using the LUCLUS algorithm [15]. Both jets had to contain at
least one charged particle, and the event was rejected if the invariant mass of the jets was
smaller than 30 GeV=c2, or if the angle between the jets was smaller than 80�.
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Figure 2: Semileptonic �nal state: (a) isolation angle of the lepton; (b) momentum of the
lepton; (c) polar angle of the missing momentum. The full lines are the expectations for
the �tted signal (white areas) plus the calculated background (cross-hatched areas); data
points are shown with statistical error bars. Distribution (a) contains all events with at
least 6 charged tracks and a lepton with momentum above 10 GeV/c; for (b) and (c), all
selection criteria are applied except the one on the variable described by each plot.

The radiative q�q(
) background was suppressed further by looking for evidence of
an initial state radiation (ISR) photon. Events were removed if there was an energy
deposition cluster of above 20 GeV in the electromagnetic calorimeters, unassociated
with a charged particle. Events with undetected ISR photons close to the beam direction
were suppressed by requiring the polar angle of the missing momentum vector to exceed
20� for lepton momenta above 20 GeV/c, or else to exceed 32�. Figure 2c shows the polar
angle distributions of the missing momentum. In addition, for e�q�q events the component
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of the missing momentum transverse to the beam axis, pTmiss, had to exceed 10 GeV/c,
and the angles between the missing momentum vector and the directions of both jets had
to exceed 10� for electrons in the polar angle range between 40� and 140� and to exceed
20� outside this range.

Four-fermion neutral current backgrounds (q�q``) were reduced by applying an ad-
ditional cut to events in which a second lepton of the same 
avour and with charge
opposite to that of the �rst was selected: the energy in a 10� cone around the second
lepton direction was required to exceed 5 GeV.

If no identi�ed lepton was found, the most energetic particle which formed an angle
greater than 25� with all other charged particles was considered as the lepton candidate;
this recovered unidenti�ed leptons and some additional W! ��� decays. In this case a
momentum greater than 20 GeV/c was required, and tighter cuts were also applied to
the magnitude of the missing momentum (required to be above 20 GeV/c), to its polar
angle (above 32�), and to its angles to both jets (above 20�).

To improve the selection of W! ��� decays, events with at least 6 charged particles
were selected if they showed a 3-jet topology for djoin > 4:0 GeV =c. A missing momentum
above 10 GeV/c with polar angle above 20� was required, and the missing energy had to
exceed 45 GeV. One jet had to be � -like, i.e. to have :

� charged multiplicity between 1 and 3;
� total multiplicity less than 5;
� total energy above 8 GeV;
� fraction of charged energy above 0.1;
� fraction of the jet energy in a cone of 5� around the jet axis above 0.7.

The angle between this jet and the missing momentum vector had to exceed 90�. In order
to reduce the background from q�q(
) events further, additional cuts on the invariant mass
of the two other jets (mjj > 40 GeV =c2), on the angle between them (cos �jj < �0:8), and
on their angle with the missing momentum vector (above 20�) were imposed. In addition,
events were rejected if the e�ective centre-of-mass energy of the e+e� annihilation (see
section 4.1) was above 150 GeV or in the range of the Z resonance (80-100 GeV).

The e�ciency for selecting the signal (WW! `�jj) was calculated using events sim-
ulated with PYTHIA 5.7 to be (60:9 � 3:0)%. The cross-section for background events
which pass all selection criteria was evaluated using di�erent generators to be 0:193 �
0:024 pb, with the main contributions coming from the channels e+e� ! q�q(
) (0.127 pb)
and e+e� ! Ze+e� (0.041 pb). The errors on signal e�ciency and background include
all systematic uncertainties, where the error on the background is dominated by hadron
misidenti�cation and photon conversions.

From a data sample corresponding to an integrated luminosity of 9:69 pb�1, 12 events
were selected. From this the WW cross-section for semileptonic decays was derived to be

�`�jjWW = �totWW � BR(WW! `�jj) = 1:77+0:67
�0:55 � 0:10 pb,

where the �rst errors are statistical and the last is systematic.

4.3 Fully Leptonic Final States

Events in which both W-bosons decay into `� are characterized by two energetic,
acollinear and acoplanar leptons of opposite charge, and by large missing energy and
momentum. In W! �� and W! e� decays, the energy of the lepton ranges typically
between 20 and 60 GeV; W ! �� decays produce either a single charged particle with
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a lower momentum, or a narrow jet. The relevant backgrounds are dilepton events from
e+e� ! Z(
), Bhabha scattering, and two-photon collisions.

In order to select a sample of purely leptonic events, a charged particle multiplicity
between 2 and 6 was required, with the total energy of these particles greater than 40 GeV.
All particles in the event were then clustered into jets using the LUCLUS algorithm [15]
with djoin = 5:0 GeV=c. The following selection was then applied to the jet variables,
thus including hadronic tau decays in the sample: a) only events with two reconstructed
jets were retained, b) the momentumof the leading jet was required to be between 20 and
60 GeV/c and that of the other jet between 12 and 50 GeV/c. Events with detected hard
photons, such as those from radiative Z production with the ISR photon entering the
detector acceptance, were explicitly rejected by requiring there to be no electromagnetic
calorimeter cluster with energy above 30 GeV and unassociated with a charged particle.

An acollinearity �acol > 10� and acoplanarity �apl > 10� were required; the former
suppresses non-radiative di-lepton production, the latter is also e�ective against radiative
background events. Cuts on the minimum polar angle of the two jets (� between 20�

and 160�) and on the direction of the missing momentum (j cos �missj < 0:94) further
reduced the backgrounds due to two-photon collisions and Bhabha scattering, which are
concentrated at low polar angles. Figure 3 shows the distribution of the momentum
spectrum of the leading jet and of the acoplanarity.
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Figure 3: Fully leptonic �nal states: (a) momentum of the leading jet; (b) acoplanarity.
The full lines are the expectations for the �tted signal (white areas) plus the calculated
background (cross-hatched areas), the data points are shown with statistical error bars.
All cuts are applied except the one on the variable described by each plot.

The global e�ciency of these selection criteria was computed to be (47:7 � 3:0)%;
it is considerably higher for events in which neither of the W-bosons decays to a tau
lepton. The total cross-section for background events which pass all the selection cuts was
computed from simulated events to be 0:06 � 0:04 pb. The errors contain the estimated
systematic uncertainties.

With the criteria described above, 2 events were selected in the full data sample. The
cross-section for purely leptonic �nal states was determined to be
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�`�`�WW = �totWW � BR(WW! `�`�) = 0:31 +0:39
�0:24 � 0:09 pb,

where the �rst errors are statistical and the last is systematic.

4.4 Total Cross-section

The total cross-section for WW production was obtained from a likelihood �t based
on the product of the probabilities of �nding the observed number of events in each �nal
state, using the branching fractions for each of them derived from the Standard Model,
giving:

�totWW = 3:67 +0:97
�0:85 � 0:19 pb,

where the �rst errors are statistical and the last is systematic. Similar results were
obtained by the other LEP experiments [21].

5 Determination of the Mass of the W-boson

As mentioned in Section 1, the cross-section for e+e� !W+W� near threshold is very
sensitive to the value of mW, and its measured value can therefore be used to estimate
mW. Such an estimate is, of course, strictly valid only within the Standard Model.

In the previous section the total cross-section for �(e+e� !W+W�) has been deter-
mined. As mentioned in section 4, the approach adopted here has been to correct the
data to correspond to a CC03 cross-section. This procedure involves several theoretical
uncertainties arising from the treatment of the �nite W-boson width, the uncertainty in
the Coulomb term (this term, representing the Coulomb force between the W pair, is
important near threshold), and from uncertainties in other radiative corrections. These
e�ects have been considered in detail in [13], where it is concluded that the present
theoretical uncertainty on the CC03 cross-section computation is about �2%. This cor-
responds to an uncertainty on mW of �0:04 GeV=c2. In this paper the program used for
the CC03 computation was that taken from reference [20]. As a cross-check, the result
was compared to that obtained using reference [22] and the calculations with the default
settings in the programs were found to agree at the level of 1%.

In addition, it was veri�ed that the selection e�ciency does not depend strongly on the
precise value ofmW. This study was performed at generator level, using the EXCALIBUR
generator, with cuts applied which emulated those applied to the data. Both for the CC03
subset of diagrams, and for all diagrams, the e�ciency was found to be independent
of mW within the range 80.1 to 80:6 GeV=c2 to within the statistical accuracy of the
generated samples (about 1:5%).

The mean LEP beam energy was determined using a model based on the �eld readings
of nuclear magnetic resonance probes installed in the dipole magnets. The probes were
calibrated with resonant depolarisation measurements at

p
s � mZ

y. A cross-check of
the energy scale was made using 
ux-loop measurements. The e�ect of the RF system
at the DELPHI interaction point was modelled, and a mean correction of 9 MeV was
applied to the centre-of-mass energy. From these studies the LEP luminosity-weighted
average centre-of-mass energy at DELPHI, ECM , was determined to be [23]

ECM = 161:31 � 0:05 GeV,
yThe presence of machine imperfections inhibits the build up of transverse polarization at energies signi�cantly higher

than 50 GeV, so the resonant depolarisation technique cannot be used at the WW threshold.
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where the error accounts for the calibration of the nuclear magnetic resonance probes at
high energy, the understanding of the RF system, and additional smaller e�ects.

From the value of the cross-section given in section 4.4, �totWW = 3:67 +0:97
�0:85 � 0:19 pb,

the value of the W-boson mass was then determined to be

mW= 80:40 � 0:44 (stat:) � 0:09 (syst:) � 0:03 (LEP) GeV=c2,

where the �rst error is from the statistical uncertainty on the cross-section, the systematic
error includes both the experimental systematic errors and the theory error discussed
above, and the LEP error comes from the uncertainty on the centre-of-mass energy.
Figure 4 shows the dependence of the WW cross-section at 161.31 GeV on mW together
with the DELPHI result.

A further check of the method was made by evaluating mW in a pure four-fermion
analysis, using EXCALIBUR to calculate cross-sections and to generate events which were
passed through the DELPHI simulation program for e�ciency determinations. Consistent
results were obtained.
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6 Determination of Limits on Trilinear Gauge Cou-

plings

If mW is taken to have the value of 80:35 � 0:13 GeV=c2 [5] determined in p�p ex-
periments, the WW threshold cross-section can be used to provide limits on possible
non-standard couplings at the WWV vertices. Here we interpret our measurement in
terms of two such couplings.

The �rst is �W�, the contribution from one of the three CP -conserving components of
dimension 6 in the Lagrangian LWWV which satisfy SU(2)�U(1) invariance and are not
excluded by previous measurements. According to the relations given in [24], a non-zero
value of �W� would imply non-standard values of the dipole couplings �
 and �Z and of
the WWZ coupling gZ .

The second is ~�W , a possible CP -violating quadrupole contribution de�ned in [25].
The relation between this TGC and the CP -violating couplings in other commonly used
schemes can be found in [25,26]. In particular, a non-zero value of ~�W would imply

non-zero values of the couplings f
;Z6 which, as pointed out in [27], are not subject to
the same kinematic suppression at the WW threshold as all the other couplings (both
CP -conserving and CP -violating). It is therefore of considerable interest to use these
data to impose limits on a possible contribution from this source.

The amplitudes contributing to the WW production process depend linearly on the
TGCs �i (� �W�; ~�W ); the cross-section therefore has a quadratic dependence on any
one TGC, which may be used in comparison with the observed production rate to derive
limits on any non-standard contribution. The dependences of the cross-section on the
�i considered here are such that their minima occur close to the Standard Model value,
�i = 0.

The number of events in each of the three channels considered in section 4 (hadronic,
semileptonic and fully leptonic) is given as a function of �i by:

Nj(�i) = L � f�sj(�i)�
s
j (�i) + �bj�

b
jg ; (1)

where L represents the integrated luminosity, and the �j represent the experimental e�-
ciencies in channel j determined in the four-fermion analysis mentioned in the previous
section, the superscripts s and b denoting signal and background respectively. The pre-
dicted variation with the �i of the Nj(�i) was evaluated using the four-fermion genera-
tors ERATO [28] and EXCALIBUR [14], to take the interference terms between doubly
resonant and other diagrams discussed in the previous section correctly into account.
Separate calculations using these two generators yielded compatible predictions for the
cross-sections. The probabilities of seeing 15, 12 and 2 events in the hadronic, semilep-
tonic and fully leptonic channels, respectively, when Nj(�i) are expected were evaluated
and then combined in maximum likelihood �ts of the �i, giving limits at 95% con�dence
level of

�1:9 < �W� < +2:0 ,
�1:1 < ~�W < +1:3 .

The e�ects of systematic errors were studied by convoluting the probability function
described above with Gaussian distributions of the relevant parameters and repeating the
�ts. They have been included in the results given. The dominant systematic e�ect comes
from the uncertainty in mW ; this leads to a broadening of the regions accepted in �W�

and in ~�W by � 0:04 at each end. Smaller systematic errors come from uncertainties
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in estimates of selection e�ciencies and from the statistical errors in the calculation of
background cross-sections, and from the uncertainty in the LEP energy.

7 Summary

From an integrated luminosity of 9:93 pb�1 accumulated by DELPHI at an energy of
161:31 GeV, the W-pair cross-section has been determined in its various decay modes,
giving a total cross-section

�totWW = 3:67 +0:97
�0:85 (stat:) � 0:19 (syst:) pb:

From these measurements, assuming Standard Model couplings, the value of the W
mass has been determined to be

mW= 80:40 � 0:44 (stat:) � 0:09 (syst:) � 0:03 (LEP) GeV=c2 ,

in agreement with previous measurements [1{5] and with a �t of electroweak data to the
Standard Model [6].

Alternatively, by assuming mW to be �xed at its current experimentally determined
value, we have derived 95% con�dence limits on TGCs of

�1:9 < �W� < +2:0 ,
�1:1 < ~�W < +1:3 .

where each limit is derived assuming that the other TGCs are �xed at their Standard
Model values, and the limits include estimates of the e�ects of systematic errors.

Acknowledgements

We thank the SL division of CERN for the excellent performance of the LEP col-
lider and their careful work on the beam energy determination. We are also grateful to
the technical and engineering sta�s in our laboratories and to our funding agencies for
their continuing support. It is a pleasure to thank Costas Papadopoulos for illuminating
conversations on four-fermion physics.



12

References

[1] UA2 Collaboration: J. Alitti et al., Phys. Lett. B276 (1992) 354.
[2] CDF Collaboration: F. Abe et al., Phys. Rev. Lett. 65 (1990) 2243;

CDF Collaboration: F. Abe et al., Phys. Rev. D43 (1991) 2070.
[3] CDF Collaboration: F. Abe et al., Phys. Rev. Lett. 75 (1995) 11.
[4] D0 Collaboration: S. Abachi et. al., Phys. Rev. Lett. 77 (1996) 3309.
[5] M.Rijssenbeek,W mass from the Tevatron, FERMILAB CONF-96/365-E, to appear

in the proceedings of the 28th International Conference on High Energy Physics,
Warsaw, 25-31 July 1996.

[6] The LEP Collaborations, the LEP Electroweak Working Group and the SLD Heavy
Flavor Group, A Combination of Preliminary LEP and SLD Electroweak Measure-
ments and Constraints to the Standard Model, CERN-PPE 96-183 (1996).

[7] CDF Collaboration: F. Abe et al., Phys. Rev. Lett. 74 (1995) 1936;
CDF Collaboration: F. Abe et al., Phys. Rev. Lett. 75 (1995) 1017;
D0 Collaboration: S. Abachi et al., Phys. Rev. Lett. 77 (1996) 3303;
D0 Collaboration: S. Abachi et al., Limits on Anomalous WW
 Couplings from
p�p ! W
 + X Events at

p
s = 1:8 TeV, Fermilab-Pub-96/434-E, hep-ex/9612002

(1996).
[8] DELPHI Collaboration: P. Aarnio et al., Nucl. Instr. & Meth. A303 (1991) 233.
[9] DELPHI Collaboration: P. Abreu et al., Nucl. Instr. & Meth. A378 (1996) 57.
[10] DELPHI Collaboration: DELPHI event generation and detector simulation - User

Guide, DELPHI Note 89-67 (1989), unpublished.
[11] A. C. Benvenuti et al., The DELPHI Small Angle Tile Calorimeter, contribution to

IEEE NSS 1994.
[12] S. Jadach, O. Nicrosini et al., Event Generators for Bhabha Scattering, Physics at

LEP2, eds. G.Altarelli, T.Sj�ostrand and F.Zwirner, CERN 96-01 (1996) Vol 2, 229.
[13] W. Beenakker, F. A. Berends et al., WW Cross-Section and Distributions, Physics

at LEP2, eds. G. Altarelli, T. Sj�ostrand and F. Zwirner, CERN 96-01 (1996) Vol 1,
79.

[14] F. A. Berends, R. Kleiss, R. Pittau, EXCALIBUR, Physics at LEP2, eds. G. Altarelli,
T. Sj�ostrand and F. Zwirner, CERN 96-01 (1996) Vol 2, 23.

[15] T. Sj�ostrand, PYTHIA 5.7 / JETSET 7.4, CERN-TH.7112/93 (1993).
[16] P. Abreu, D. Fassouliotis, A. Grefrath, R.P. Henriques and L. Vitale, SPRIME, A

Package for Estimating the E�ective
p
s0 Centre of Mass Energy in q�q(
) Events,

internal DELPHI note 96-124 PHYS 632 (1996), unpublished.
[17] T. Sj�ostrand, PYTHIA 5.719 / JETSET 7.4, Physics at LEP2, eds. G. Altarelli,

T. Sj�ostrand and F. Zwirner, CERN 96-01 (1996) Vol 2, 41.
[18] DELPHI Collaboration: P. Abreu et al., Z. Phys. C73 (1996) 11.
[19] W.J. Stirling, private communication.
[20] D.Bardin et al., GENTLE/4fan, Physics at LEP2, eds. G. Altarelli, T. Sj�ostrand

and F. Zwirner, CERN 96-01 (1996) Vol 2, 26.
[21] ALEPH Collaboration, paper in preparation;

L3 Collaboration, paper in preparation;
OPAL Collaboration, Phys. Lett. B389 (1996) 416.

[22] W.J. Stirling, Nucl. Phys. B456 (1995) 3.
[23] The working group for LEP energy, LEP Energy Calibration in 1996, LEP Energy

Group/97-01 (1997).
[24] G. Gounaris, J.-L. Kneur and D. Zeppenfeld, Triple Gauge Boson Couplings, Physics



13

at LEP2, eds. G. Altarelli, T. Sj�ostrand and F. Zwirner, CERN 96-01 (1996) Vol 1,
525.

[25] G.J. Gounaris and C.G. Papadopoulos, Studying trilinear gauge couplings at Next
Linear Collider, Democritos - Thessaloniki preprint DEMO-HEP 96/04, THES-TP
96/11, hep-ph/9612378 (1996).

[26] K. Hagiwara, K. Hikasa, R. D. Peccei and D. Zeppenfeld, Nucl. Phys. B282 (1987)
253.

[27] V.C. Spanos and W.J. Stirling, Constraining a CP -violating WWV coupling from
the W+W� threshold cross section at LEP2, Durham preprint DTP/96/54, hep-
ph/9607420 (1996).

[28] C.G. Papadopoulos, Phys. Lett. B352 (1995) 144;
C.G. Papadopoulos, ERATO: event generator for four fermion production at LEP2
energies and beyond, DEMO-HEP-96/02, hep-ph/9609320 (1996), to appear in Com-
puter Physics Communications.


