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Abstract

An upper limit for BR(Z° — 3g) is obtained from a correlation method, which
distinguishes statistically between quark and gluon jets by using the difference
in their charged particle multiplicity distributions. From the sample of threefold
symmetric three—jet events collected by the DELPHI experiment at LEP during
1991-1994, the 95% confidence level upper limit is deduced to be: BR(Z° —
3g) < 1.6 x 1072 for the JADE and BR(Z° — 3g) < 1.5 x 107% for the
DURHAM jet—finder.
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1 Introduction

The Standard Model predicts a very small branching ratio for the decay of the Z°-
boson into three gluons from quark loops [1]:

BR™M(7Z — 3g) ~2.0 x 107°. (1)

Compositeness of the Z—boson would induce new couplings and decay modes and a pre-
dicted branching ratio [2]:

BR(Z — 3g) <2.0x107%, (2)

much larger than the standard model expectation.

In this letter an upper limit for BR(Z — 3g) is determined from a sample of threefold
symmetric 3 jet events in which the angles between jets are in the range 120 4+ 20°. The
analysis is based on the difference between the charged particle multiplicity distributions
of quark and gluon jets. This difference is exploited by comparing the correlations present
between the jet multiplicities in symmetric 3 jet events, in general consisting of two quark
jets and one gluon jet, to those in uncorrelated fake events constructed by mixing jets
from different real events. This method, generally referred to as the correlation method,
has also been applied to the study of the ratio of the mean charged particle multiplicities
in gluon and quark jets in symmetric 3 jet events [3].

The data used were collected by the DELPHI experiment at LEP in the years 1991
to 1994 at centre-of-mass energies around 91.2 GeV. They consist of about 4 million
hadronic Z° decays.

2 The correlation method

The multiplicity correlation function is defined as :

P(nh na, nS)

Puncor(nh ny, nS) 7

C(n17n27n3) = (3)
where P(ny,ng,ns) is the probability of observing a 3 jet event in which the charged
particle multiplicities of the jets are equal to ny, ny and ns. Jets will always be numbered
such that ny > ng > ns. Puneor (N1, 2, n3) is the corresponding probability for uncorre-
lated jets constructed using the mixed event technique: one mixed event was obtained
from three different real 3 jet events by selecting one jet at random from each event.
Assuming the multiplicities of the individual jets in a real event to be uncorrelated,
the probability P(nq,n2,n3) can be expressed through the multiplicity distributions for
gluon jets, G(n), light (not b) quark jets, Q(n), and b—quark jets, B(n), respectively:

(nh ny, n3) (4)
%{(1 — R)[G(n1)Q(n2)Q(n3) + Q(n1)G(n2)Q(n3) + Q(n1)Q(n2)G(ns)] +
+8,[G(n1) B(n2) B(ns) + B(n1)G(n2) B(ns) + B(ni) B(na)G(ns)]} +
+BG(n1)G(n2)G(ns),

where 3 = N¥m Sjyg is the fraction of three—gluon events and 1 — (3 the fraction
of Z — qqg events in the symmetric 3 jet event sample, and R, = ['7/I'.q is the
7 — bb branching fraction. The particle multiplicity distribution of the gluon jet, G(n),

is assumed to be the same in 3—gluon events as in ¢gg events.



By construction, jets in the mixed event sample are completely uncorrelated. There-
fore:

Pncor(n1,n2,n3) = J(nq)J(n2)J(ns), (5)

where
Iy = 22 40m) 210~ R)Q) + BB + AG). (©

The experimental correlation function C'(ny, ng, ns) is determined by dividing the number
of measured events with given ny, ny and n3 by the normalized number of such events
from the mixed event sample.

Examples of the measured distribution P(nq,ns,ns) for jets obtained with the JADE
jet—finder (ymin=0.15), and the distribution Pyucor (11, 79, n3) for the mixed event sample
as well as the correlation function C(nq,n2,n3), are shown in Fig.l as a function of
the multiplicity ns for ny > 12. The significantly larger width of P,cor(n1,n2,n3) in
comparison to P(ny,ny,ns), and consequently the clear deviation of C'(ny,ns,ns) from
unity, provides evidence for the fact that quark and gluon jets have different charged
particle multiplicity distributions.

In the analysis the particle multiplicity distributions of gluon and quark jets, G(n),
B(n) and Q(n), are assumed to be described by Negative Binomial Distributions (NBD):

_(n—l—k—l)! w/k " 1
Pmm$»_7ﬂk—ml(1+MM) (5 /i ")

where 1 is the mean multiplicity and k is the width parameter related to the dispersion
of the distribution. The motivation for the choice of the NBD lies in the fact that it
describes well the charged particle multiplicity distributions in e¢*e™ annihilation as well
as those of the individual jets in Z° hadronic decays [4]. Additional motivation for the
use of the NBD for the parameterization of single jet multiplicity distributions can be
found in [5]. To cross—check that the results are not unduly sensitive to this assumption,
a Poissonian parameterization (PD) of the shapes of the multiplicity distributions was
also tried.

The unknown parameters were determined from a fit of the parametrized correlation
function C'(nq,n2,ns3) as defined by equations 3-6 to the measured one. The parameters
corresponding to light quark jets and the difference in mean multiplicity between b-quark
and light quark jets were fixed according to the published data [6,7]. The NBD width
parameter of b—quark jets, k;, was obtained from a separate fit to the charged particle
multiplicity distribution of the highest energy jet in b-tagged|[8] 3 jet events. Therefore
the finally fitted parameters are the NBD width parameter for gluon jets, k,, and the
fraction of 3—gluon events, 3.

3 Experiment and data selection

A detailed description of the DELPHI detector can be found elsewhere [9]. In this
analysis only charged particles were used. Their momenta were measured in the 1.2 T
solenoidal magnetic field by the following tracking detectors: the Micro Vertex Detector,
the Inner Detector, the Time Projection Chamber (TPC, the principal tracking device of
DELPHI), the Outer Detector and the Forward Chambers A and B.

A charged particle was required to satisfy the following criteria :

— momentum, p, greater than 0.2 GeV/¢;
— error on p < p;



— polar angle, 8, with respect to the beam between 25° and 155°;

— measured track length in the TPC greater than 50 cm;

— impact parameter with respect to the nominal beam crossing point within 5 ¢cm in
the transverse 2y plane and 10 cm along the beam direction (z-axis).

Hadronic events from Z° decays were then selected if

— there were at least 5 charged particles;

— the total energy of charged particles (assuming a pion mass) in each of the two
hemispheres defined with respect to the beam direction exceeded 3 GeV;

— the total energy of all charged particles was greater than 15 GeV.

A total of 2,861,000 events satisfied these cuts. The contamination from events due to
beam-gas scattering and to v interactions was estimated to be less than 0.1% and the
background from 717~ events to be less than 0.3% of the accepted events [10].

Samples of events with three jets were selected by applying either the JADE jet—
finder (with jet resolution parameter y,,;,=0.04 or 0.15) or the DURHAM jet—finder
(also known as the k algorithm, with y,,;,=0.015 or 0.035). These two jet—finders are
complementary in the way they assign low energy particles to the jets. The DURHAM
jet—finder suppresses soft particles with large angles to the jet axis whereas those particles
are often assigned to a jet by the JADE algorithm [11]. The DURHAM jet-finder is well
defined in perturbation theory, allowing calculations to incorporate leading terms to all
orders [12], and is therefore expected to facilitate comparison between the experimental
results and theoretical work.

Each reconstructed jet was required to contain at least 1 charged particle, to have the
jet axis lying in the region |cos 6| < 0.7, and to have a visible energy larger than 2 GeV.
To eliminate non-planar events, the sum of the angles between the three jets was required
to exceed 357°. Threefold symmetric 3 jet events of “Mercedes” type were then selected
by projecting the jets into the 3—jet event plane and requiring the angles between them
to be in the range 100° to 140°.

The jet selection criteria were tuned and the correlation method was checked by using
symmetric 3 jet eTe™ — ggg events generated by HERWIG 5.4 [13], which provides a
direct relation between partons and particles by daughter—-mother pointers. The jets were
selected by the JADE jet—finder or by using the pointers (referenced below as JADE or
HERWIG jets). The correlation method was used to fit the ratio of the mean multiplicity
in gluon jets to the mean multiplicity in quark jets, £ = (n),/(n),, for fixed values of the
parameters k, and k,. The correlation method resulted in £ = 1.36 & 0.06 for the JADE
jets and € = 1.37 £ 0.06 for the HERWIG jets. The ¢ value calculated directly from the
(n),/(n), ratio in HERWIG is 1.39. This indicates that the correlation method with the
adopted jet selection cuts provides an unbiased estimate of £.

The total numbers of symmetric 3 jet events obtained from the data sample using
the JADE jet-finder are 11023 at y,,;, = 0.04 and 10595 at y,,;, = 0.15. The total
numbers obtained using the DURHAM algorithm are 9964 at y,,;, = 0.015 and 11333
at Ymin = 0.035. The average visible jet energy carried by charged particles is equal to
18.0040.04 GeV for the DURHAM and 18.15£0.03 GeV for the JADE jet—finder.

In order to correct for the influence of imperfections of the DELPHI detector, the
correlation method was applied to the samples of simulated events from the DELPHI
detector simulation program DELSIM [10]. In DELSIM, events were generated using
the JETSET 7.3 PS program [14] with DELPHI default parameters [15]. Particles were
followed through the detector and the resulting simulated digitizations were processed
with the same reconstruction programs as the experimental data.



Detector imperfections introduce a systematic difference between Cj(ny,nq,ns) for
the events generated by JETSET and Cp(ny,ng,ns) for the events reconstructed after
DELSIM (i.e. after the detector simulation). In order to correct for this influence of
the detector, the correlation function C'(ny,ns,ns) observed for uncorrected data was
multiplied by the ratio K(nq,na,ns) = Cy(ny,na,ns)/Cp(ni, na,ns).

In order to take into account the imperfections of the jet finder algorithms, a fur-
ther correction factor was introduced. It was calculated as a ratio N(ni,ng,n3) =
Ceapected(N1, 2, 13) [ Copserved (N1, 12, n3) for a normalisation sample of events obtained
by generating symmetric Z° — ggg decays using JETSET. This correction is based
on the fundamental property that the correlation function should equal unity, i.e.
Cerpectea(n1,n2,n3) = 1, when the mixed events are constructed from the same num-
bers of quarks and gluons as real events. The total correction factor K - N is typically
between 0.9 and 1.1. An example is shown in Fig. 1b.

4 Results

The corrected correlation function C'(ny,nq, ns) is presented as a function of ns in Fig.
2 for the JADE jet—finder with y,,;, = 0.15 for several n; values. The curves in Fig. 2
are the results of the fit for all values of 5 < n; < 25. The numerical results of the fit are
presented in Table 1 for the central values of the fixed parameters.

In order to estimate the systematic errors due to the uncertainties in the values of the
fixed parameters, the fit was also performed for the central values of these parameters plus
or minus one standard deviation. The ratio of the average charged particle multiplicity
of gluon jets to the average charged particle multiplicity of quark jets is 1.24140.029 and
1.36940.040 for the DURHAM and JADE algorithms respectively [3]. The average value
of the difference between the mean charged particle multiplicity in b—quark jets and in
light quark jets, &y, was 1.34£0.11 [6,7]. The NBD width parameter for quark jets, k,,
is equal to 21.349.9 and 10.242.8 for the DURHAM and JADE algorithms respectively
[3]. The NBD width parameter for b-quark jets, k;, was determined in the same way
from the sample of b—tagged events and found to be equal to 26+6 and 2144 for the
DURHAM and JADE algorithms respectively. The corresponding systematic errors in 3
are detailed in Table 2.

Further systematic errors were estimated taking into account the variation of the
results obtained with different cuts on the highest jet multiplicity ny and the uncertainty
in the values of the total correction coefficients. The resulting systematic bias in the
values of 3 does not exceed 0.006 and 0.007 for the JADE and DURHAM jet—finders,

respectively. Including this error leads to the following final results for 3:

B = 40.035 £003k (stat.) £3520 (syst.) (JADE, ypmim = 0.04)
B = —0.045 +g0a0 (stat.) oo4 (syst.)  (JADE, Y, = 0.15)
B = —0.024 4903 (stat.) £oom (syst.)  (DURHAM, Y = 0.015)
B = —0.101 £5058 (stat.) 5003 (syst.)  (DURHAM, Y = 0.035).

The smaller systematic error for JADE compared to DURHAM may be understood be-
cause in the latter case low energy particles at large angles originating from the gluon
are frequently assigned to a quark jet, thus diminishing quark/gluon differences in the

DURHAM case.



Table 1: Fitted values of the width parameter of the charged particle multiplicity dis-
tribution in gluon jets, k,;, and the fraction of 3 gluon events in symmetric 3 jet events,
(, and the probability of each fit with parametrisation of multiplicity distributions by
Negative Binomial distribution and Poisson distribution (for which k, = k, = k, = c0).

(n)y/(n)y o kg ke k, Ié; Prob.
JADE (4min=0.04)
1.369  1.34 10.2 21 {2011 +0.0357354L 0.29
1.369 134 oo oo| oo +0.1357955% 0.09

JADE (ymin=0.15)
1.369 1.34 10.2 21 |28+12 —0.045%5:332 0.14
1.369 134 oo oo | oo  4+0.0531503 0.01

DURHAM (y,,:,=0.015)
1.241  1.34 21.3 26 38429 —0.0247092% 0.96
1.241 134 oo oo| oo 40.0027392 0.93

DURHAM (4,6, =0.035)
1.241  1.34 21.3 26 |31+14 —0.101735% 0.64
1.241 134 oo oo| oo —0.0227393% 0.52

The branching fraction BR(Z° — ggg) is calculated from /3 using the following for-

mulas:

N3N
BR(Z° — 3g) = 8- BR(Z° — hadr) - =22 . L (8)
Nhadr N’I‘

where N300/ Npqar is the fraction of symmetric 3 jet events in the hadronic event sample
and NY" /Ny is the fraction of symmetric decays in an T-like 17~ quarkonium state to
three gluons. The latter ratio was calculated using JETSET 7.3. The mass of the pseudo-
onium was chosen to be equal to the Z mass. Due to the identical helicity structure of
7% — ggg and T — ggg decays, the angular distributions for jets from the two sources
are expected to be identical. Thus N;¥" /Ny, should equal N3y"™/Ny. The numerical
value of the factor relating BR(Z — 3g) to 3 in eq.(8) was found from simulation to be
0.120 at ¥,,;,=0.04 and 0.0875 at ¥,,;,=0.15 for the JADE sample, 0.129 at y,,;,=0.015
and 0.115 at ¥,,,;,=0.035 for the DURHAM sample.

To calculate the 95% confidence level upper limits on the branching fraction BR(Z° —
999), the systematic errors were added in quadrature to the statistical errors and unphys-
ical negative values of 3 were forced up to have 3 = 0. The calculation gave:

UL{BR(Z — 3g)} = 0.016 (JADE, ypin = 0.04)

UL{BR(Z — 3g)} =0.008 (JADE, yui, = 0.15)
UL{BR(Z — 3g)} = 0.014 (DURHAM, yi, = 0.015)
UL{BR(Z — 3g)} = 0.015 (DURHAM, y,i, = 0.035).



Table 2: Contributions to the systematic error in 3 from the uncertainties in the param-
eters fixed in the fits.

Parameter value = error JADE 4,0, = 0.04 Ymin = 0.1

(ng)/(ny) = 1.369 % 0.040 003 005
Gy =1.34F 0.11 0002 o001

ky =102+ 2.8 0022 t 0027

by =21 44 005 o0

Total o037 o014

Parameter value + error  DURHAM v,,,;,, = 0.015 y,,:, = 0.035

(ng)/(n,) = 1.241 + 0.029 o0u £0.060
&y = 1.3 F 0.11 *5.003 o001
ky=21.349.9 0040 ryad

ky =26 £ 6 0003 5007

Total To0ts 008

The cross-check of using the Poissonian parametrisation of the multiplicity distribu-
tions gave similar estimates of the upper limit, namely 0.026, 0.0099, 0.017, and 0.011
respectively. A data sample from which b-tagged events are removed has been anal-
ysed by using a similar method. This sample was obtained by cutting on a b-probability
deduced from the measured impact parameters with respect to the interaction point [8].
The cut applied removed 80% of the bb-events. However, because of the reduced statistics
of the b-depleted sample, the limit was not improved.

5 Summary

By using a correlation method based on the difference between the particle multiplicity
distributions of quark and gluon jets, an upper limit at 95% confidence level for the
7Y — ggg branching ratio has been established:

BR(Z — 3g) <1.6 x 107*

for the JADE and
BR(Z — 3g) < 1.5 % 1072

for the DURHAM jet—finder. At the present level of statistics, no signal of the decay
Z° — ggg is observed.
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Figure 1: a) Measured distribution P(ny,ns, ns) obtained with the JADE jet—finder with
Ymin=0.15 displayed as a function of the lowest multiplicity ns for values of the highest
multiplicity ny above 11 and ny; > ny > ns, together with the corresponding distribution
Puncor(n1,n2,n3) for the mixed event sample. b) The correlation function C(nq,nz2,ns),
defined as the ratio of these two distributions, and total correction factor again as a
function of the multiplicity ns for ny > 12.
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Figure 2: The corrected correlation function C'(ny,nq,ns) as a function of the smallest
jet multiplicity ng for different values of the largest jet multiplicity ny. Symmetric 3—jet
events are selected from the sample of DELPHI data by using the JADE jet—finder with
Ymin €qual to 0.15. The curves are the result of the fit.



