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Abstract

In a sample of 1.5 million hadronic decays of the Z collected by the aleph detector, a search is

carried out for the decays B! D0
1(2420)`

��X and B! D�0
2 (2460)`

��X. The product branching

ratio for D0
1 production is measured to be

Br(b! B) � Br(B!D0
1`
��X) � Br(D0

1 !D�+��) = (2:04� 0:58stat� 0:34syst)� 10�3;

and a 95% con�dence level limit of

Br(b! B) � Br(B!D�0
2 `

��X) � Br(D�0
2 !D�+��) � 0:81� 10�3

is obtained for D�0
2 production.

A topological search sensitive to the processes above, but also to wide resonances that decay to

D�+�� and to non-resonant D�+�� production is also carried out, yielding

Br(b! B)�Br(B!D�+��`��X)= (3:7� 1:0stat � 0:7syst)� 10�3.

Direct evidence of D�� production inconsistent with D0
1 and D�0

2 in semileptonic B decay is

presented.
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1 Introduction

The composition of the inclusive semileptonic branching ratio of the B meson in terms of ex-

clusive branching ratios is a long-standing problem which a�ects a number of studies. Exper-

imentally, 39�6% of the inclusive rate is not accounted for [1] by the decays B ! D`�� and

B!D�`��, contrary to initial expectations [2, 3, 4].

Two possible explanations are direct four-body decays, such as B! D��`�� , and decays to

L=1 charmmesons. Four such mesons, with the properties listed in Table 1, are expected [5, 6, 7].

From Heavy Quark E�ective Theory [8], the spin of the light quark combined with the angular

momentum due to the orbital excitation, Jlq , is a conserved quantity in the limit of in�nite heavy

quark mass. States with Jlq of 3/2 are expected to be easily visible narrow resonances and two

physical states, D1(2420) and D
�

2(2460), have been observed [9] in two body decays. States with

Jlq of 1/2 are expected to be wide resonances which cannot be distinguished from four-body

decays with the available experimental statistics. This paper uses the term \non-resonant" to

indicate both direct four-body decays and wide resonances.

Mass Width Decay Modes

JP Jlq (MeV) (MeV)

1+ 1/2 � 2420 (unobserved) >�250 D� �

0+ 1/2 � 2360 (unobserved) >�170 D �

D1 1+ 3/2 2421�2 20�4 D� �

D�

2 2+ 3/2 2458�2 23�6 D �, D��

Table 1: Charm mesons with orbital excitations, their quantum numbers, masses, widths, and

allowed strong decays to D � and D�� in the in�nite heavy quark mass limit.

The decay of the Z boson at lep provides a source of boosted B mesons, and the tracking

resolution of the aleph detector permits the identi�cation of B meson decays using their distinc-

tive vertex topology. Semileptonic decays of B mesons are reconstructed by identifying events

containing a lepton1 and a D�+. The typical decay length of the B meson is 2.6mm, and can be

measured with an average resolution of 280�m. This is used to di�erentiate tracks originating

at the B decay point from tracks originating at the primary interaction point.

This letter reports the measurements of the decays B !D0
1`
��X, B !D�0

2 `
��X and non-

resonant B ! D�+��`��X with the aleph detector at lep. The data sample is 1.5 �106
hadronic decays of the Z collected in 1991, 1992, and 1993.

2 The ALEPH Detector

The aleph detector is described in detail in Reference [10], and only a brief description of the

apparatus is given here.

A high resolution vertex detector (vdet) [11], consisting of two layers of double sided silicon

microstrip detectors surrounds the beam pipe. The inner layer is at an average radius of 6.3 cm

from the beam axis and covers 85% of the solid angle, and the outer layer is at an average radius

of 10.8 cm and covers 69%. The spatial resolution for the r� coordinate is 12�m. For the z

coordinate, it varies between 12 and 22�m, depending on the polar angle of the track. The vertex

detector is surrounded by a drift chamber (itc) with eight axial wire layers up to a radius of

26 cm, and a time projection chamber (tpc) that measures up to 21 three-dimensional points per

track at radii between 40 and 171 cm. These detectors are immersed in an axial magnetic �eld of

1.5 T and together provide a transverse momentum resolution of �p=p = 0:0006p (p inGeV=c), as

measured with 45GeV/c muons. For tracks with hits in both layers of the vdet, the resolution of

1In this paper, \leptons" will refer to either electrons or muons. Charge conjugate reactions are always implied.
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the 3D impact parameter is � = 25�m+95�m=p (p inGeV=c); in both the r� and rz views. The

tpc also provides up to 338 measurements of speci�c ionization of a track. It is surrounded by

an electromagnetic calorimeter (ecal) of lead / proportional-chamber construction, segmented

into 15 mrad � 15 mrad projective towers and read out in three sections in depth, with energy

resolution �(E)=E = 0:18=
p
E(E inGeV): The iron return yoke of the magnet is instrumented

with streamer tubes to form a hadron calorimeter (hcal), with a thickness of over 7 interaction

lengths and it is surrounded by two additional double layers of streamer tubes to aid muon

identi�cation.

The interaction point is reconstructed on an event-by-event basis [12, 13], with a measured

resolution of 85�m, averaged over all directions for bb events.

3 B! D0

1
`��X and B! D0�

2
`��X

The decays B!D0
1`
��X and B!D�0

2 `
��X have a distinctive three vertex topology. For exam-

ple, the decay
B� �! D0

1�
��

j�!D�+ ��
��

j�!D0 �+
�

j�!K��+

where �+
�
denotes the pion from D�+ decay, and ��

��
denotes the pion from D0

1 decay
2, has the

topology shown in Fig. 1.

The primary background is from the decay B
0 ! D�+`��, where a fragmentation track

is poorly measured and assigned to the D�+`� vertex. Unlike the signal, it will produce ���
candidates of either sign. However, the combinations where the ��� is of the same sign as the

lepton (i.e. the right sign) occur more often than the opposite (wrong) sign combinations,

because the mean expected charge of the event hemisphere containing the D�+`� is non-zero.

The decays B!D0
1`
��X and B !D�0

2 `
��X are identi�ed in events where a D�+ and a high

momentum (� 3GeV/c) lepton are found in the same hemisphere of a hadronic Z decay [14].

Electrons are identi�ed by comparing the momentum measured in the tpc with the energy

measured in the ecal, the depth and shape of the ecal shower, and the speci�c ionization

information from the tpc. Including the momentum requirement, the electron identi�cation

e�ciency is 62%, with a hadron misidenti�cation rate of 2�10�3. Muon candidates are accepted

if they have a hit pattern characteristic of a penetrating particle in the hcal or if they have at

least two associated hits in the muon chambers. The muon identi�cation e�ciency is 66%, with

a hadron misidenti�cation rate of 8�10�3. Lepton identi�cation in aleph is described in detail

in Reference [15] 3.

Two complementary approaches to event selection are taken. In one approach (Selection

A), a large sample of D�+`� events is chosen, and stringent requirements are applied to ensure

that the ��
��

candidate does not pass through the interaction point. In the second (Selection

B), a cleaner sample of D�+`� events is chosen, and stringent requirements are then made on

the quality of the D�+`� vertex and on the measurement of the ��
��

position relative to that

vertex, but the requirement that the ��
��
candidate does not pass through the interaction point

is relaxed. The overall e�ciencies of the two selections are comparable.

3.1 Event Selection A

The D�+ is reconstructed in the channel D�+!D0�+
�
, and the D0 is reconstructed in four decay

channels: D0! K��+, D0! K��+���+, D0! K0
S �

+��, D0! K��+�0. The mass di�er-

2The symbol ��
��

also denotes pions from non-resonant decays.
3For this paper, the requirement that dE/dx information be available for electron candidates was dropped,

and muon candidates with hits in both layers of the muon chambers passing tight matching criteria were also

accepted.
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ence m(D0�+
�
)�m(D0) is required to be within two standard deviations (� � 0.75MeV/c2) of

145.5MeV/c2. The electron momentum cut is lowered to 2GeV/c to increase the acceptance for

the D�+`� sample. The vertex formed by the D0 decay products is required to be separated from

the interaction point by more than twice the resolution of the decay distance for that event,

and the reconstructed mass must lie within two sigma of the known D0 mass. The D0 mass

resolution in the di�erent decay channels is given in Table 2. For channels with a charged kaon,

the speci�c ionization measurement, when available, must be consistent (within two sigma) with

the expected rate for kaons. For D0! K��+���+ and D0! K0
S �

+��, the momentum of the

kaon is required to be over 2.0GeV/c. For D0! K��+�0, the momentum of the K� is required

to be larger than 3.0GeV/c, and the momentum of both pions to be more than 1.5GeV/c. In

the K��+���+ channel, the D0 candidate is rejected if the �t of the four tracks to a common

vertex has a �2 probability of less than 0.1%. Candidate K0
S are rejected if the decay length is

less than 2.0 cm or if the measured mass is more than two standard deviations (� � 5MeV/c2)

from the K0
S mass. Neutral pions are identi�ed by �tting pairs of ecal energy deposits using

the constraint that the mass of the pair is the �0 mass. Candidate �0 are rejected if the �2 of

this �t corresponds to a probability of less than 1.0%. Table 2 lists the D�+ candidate subsample

sizes and background rates as estimated from a �t to the sidebands for both selections.

To identify pions from D0
1 and D�0

2 decay, a momentum requirement is used, since these

pions have a harder momentum spectrum than fragmentation tracks. This requirement on

the momentum of the ��
��

candidate also reduces multiple scattering uncertainties. The ��
��

candidate is therefore required to have a momentum greater than 1GeV/c. To further reduce

tracking uncertainties, the ��
��
is required to have at least one vdet hit. To reject fragmentation

tracks, the impact parameter of the ��
��

relative to the interaction point is required to be more

than three times its uncertainty. The �2 of the D�+`���
��

vertex is required to correspond to a

probability of 1% or better. The e�ciencies are given in Table 3.

3.2 Event Selection B

The D�+ is also reconstructed in the channel D�+!D0�+, and the D0 is reconstructed in the

decay modes D0 ! K��+ and D0 ! K��+���+. The procedure is described in more detail in

Reference [16].

The D0 candidate is required to have a momentum greater than 7GeV/c. In the chan-

nel D0 ! K��+���+, the speci�c ionization measurement, when available, must be consistent

(within two sigma) with the expected rate for kaons. In addition, the momentum of at least two

of the four D0 decay tracks is required to be greater than 1GeV/c.

The �2 of the D�+`� vertex �t is required to be less than 5 for 3 d.o.f., corresponding to a

probability of 17.2%. The calculated uncertainty on the B decay length is required to be less than

500�m, and a D�+`� candidate is rejected if the distance of the vertex from the interaction point

is less than twice the uncertainty. Furthermore, the D�+`� vertex is required to be upstream

of the D0 vertex. Finally, the invariant mass of the D�+`� system must lie between 2.7 and

4.5GeV/c2. Table 2 lists the D�+ candidate subsample sizes, background rates as estimated

from a �t to the sidebands for both selections, and the D0 mass resolutions.

If the impact parameter of a candidate ��
��

relative to the interaction point is less than its

uncertainty, the candidate is rejected. The error on the impact parameter relative to the D�+`�

vertex is required to be less than 250�m. The impact parameter of the ��
��
with respect to the

D�+`� vertex divided by its resolution, �=��, is shown for simulated signal events in Fig. 2(a),

for background events in Fig. 2(b), and for the data in Fig. 2(c). The distribution for signal

events is �tted to A1(x exp�x2=2�2) + A2(x exp�x=�), where the second term is included to

model the tail due to non-Gaussian e�ects in the tracking. The �t to �=�� is used to calculate

the probability � that the ��
��
originates from the D�+`� vertex:

� =

Z
1

�=��

R�(x)dx: (1)

3



where R�(�=��) is the �tted function. The ��
��

is required to have a probability of originating

from the D�+`� vertex greater than 10%. The e�ciencies are given in Table 3.

D0 resolution Selection A Selection B

Channel (MeV/c2) D�+`� bkg. D�+`� bkg.

D0! K��+ 12 322�20 30�5 133�17 1.7�0.7
D0! K��+���+ 9 341�21 72�3 179�14 20.5�2.3
D0! K0

S �
+�� 10 97�10 18�2 | |

D0! K��+�0 23 226�20 116�7 | |

Table 2: D0 mass resolutions, �tted number of D�+`� and background events within a �2�
window around the �tted mass.

Selection A Selection B

Channel Signal E�ciency Signal E�ciency

D0! K��+ 8.41�1.16% 7.93�1.42%
D0! K��+���+ 3.38�0.54% 5.88�0.90%
D0! K0

S �
+�� 3.27�0.56% |

D0! K��+�0 1.10�0.19% |

Table 3: E�ciencies for B!D0
1`
�� for the four decay modes.

3.3 Results

The parameter �m�� is de�ned as the di�erence between the measured masses of the D�+��
��

system and the D�+, and has a measurement error of 3 to 4MeV/c2, much less than the widths of

the D0
1 and D

�0
2 resonances. The distribution of �m��, as found in the data with event selections

A and B are shown in Figs. 3 and 4, respectively.

The right sign distribution is �rst �t to two Breit-Wigner resonances with masses and widths

set to the known values, plus a background function. In neither selection is there a signi�cant

contribution from D�0
2 . Accordingly, the quoted results are from a re�t of the distribution

retaining only the D0
1 contribution.

There are 12.6 + 5:0
� 4:2 events in the signal peak with selection A, and 16.8�5.0 with selection

B. If the mass and width of the D0
1 resonance are not constrained, the �tted mass and width of

the resonance are respectively 2410 + 6
� 7 MeV/c2 and 33 + 30

� 29 MeV/c2 for event selection A, and

2424�4MeV/c2 and 20�3MeV/c2 respectively for event selection B.

The results from the two selection procedures are consistent. The complementarity of the

two approaches to event selection results in event samples with little overlap. In the region of

the resonance, only six events are found in common by both selection procedures, corresponding

to a correlation coe�cient of 41%. The results from the two selections are combined [17] to

reduce the statistical and the uncorrelated systematic uncertainties. From the number of events

in the resonant peak and the detection e�ciency, the product branching ratio

Br(b! B) � Br(B!D0
1`
��X) � Br(D0

1 !D�+��) = (2:04� 0:58stat� 0:34syst)� 10�3;

is measured.

To set a limit on the production of D�0
2 , the two distributions are re�t, excluding the region

within �2 half-widths of the D�0
2 . These �ts are used to estimate the background to any possible

D�0
2 contribution. Allowing for the overlap in the two selections, a 95% con�dence level limit of

0:81� 10�3 for the corresponding D�0
2 product branching ratio is obtained.
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3.4 Systematic Uncertainties

Most sources of systematic uncertainty are common to both selections. The mass and width

of the D0
1 resonance are varied by the uncertainties in their published values. The systematic

uncertainty due to background subtraction is obtained by using several di�erent parametriza-

tions for the background function in the �t. The e�ciency of the �2 requirement for the B

decay vertex (� 76% for most channels) as calculated from Monte Carlo simulation is assigned

a 10% uncertainty. The lepton identi�cation e�ciency is assigned an uncertainty of �5%. The
momentum distributions of the decay products are primarily determined by the b fragmentation

process in Z decay, and that is well measured from the study of inclusive lepton spectra [18].

There is a dependence of the e�ciency on the lifetime of the B� meson; the error is calculated

by varying the lifetime by the uncertainty in its published value.

In event selection A, the entry for D0 e�ciencies includes the uncertainty in the correction

to the e�ciency calculated from Monte Carlo simulation for the vertex quality requirement in

D0! K��+���+. An uncertainty of �10% in the V0 �nding e�ciency (which a�ects only the

K0
S �

+�� channel) is also included.

In event selection B, there is an uncertainty from the shape of the distribution of the distance

from the D�+`� to the ��
��
. This is estimated by varying the parameters of the �t to this

distribution by their uncertainties.

The systematic uncertainties are summarized in Table 4.

Selection A Selection B

Source �syst(10
�3) �syst(10

�3)

M,� of D0
1 �0.31 �0.22

Background Function �0.25 �0.15
B� Vertex E�ciency �0.17 �0.24
Monte Carlo Statistics �0.08 �0.18
D�+, D0 Branching Ratios �0.06 �0.10
Lepton ID E�ciency �0.09 �0.12
b Fragmentation �0.03 �0.03
B� Lifetime �0.01 �0.03
D0 ID E�ciency �0.03 |

Probability Function � | �0.08
Total �0.45 �0.44

Table 4: Systematic uncertainties for event selections A and B respectively, in Br(b! B) �
Br(B!D0

1`
��X) � Br(D0

1 !D�+��).

4 B! D�+��
��
`��X

In contrast to the previous cases, the resonant structure cannot be used to extract the signal in

B !D�+��
��
`��X. Nevertheless, the characteristic topology of this decay mode is su�cient for

its identi�cation.

4.1 Event Selection

The event selection begins with the clean D�+`� sample of the selection B, and stringent re-

quirements are then applied to the ��
��

candidates. The distance from the interaction point to

the D�+`� vertex is required to be greater than three times its uncertainty. The candidate ��
��
is

accepted if the error on the distance from the D�+`� vertex is less than 150�m and if its impact

parameter with respect to the interaction point is more than 2.5 times its measurement error. In
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the D0 ! K��+���+ decay channel, the lower limit of the invariant mass of the D�+`� system

is increased to 3GeV/c2.

If there is more than one ��
��
candidate, the one with the greatest momentum is chosen. This

occurs for one event in D0 ! K��+ and for two events in D0 ! K��+���+.

4.2 Results

The probability distribution � is described in Section 3.2. By construction it is uniform between

zero and one for signal events. For background events it is peaked towards low values of �, as

shown in Fig. 5(a). The distribution of the signal probability in the data is shown in Fig. 5(b).

There is a clear excess of 18 events with a high probability (� > 0:2) in the right sign sample,

and no corresponding excess in the wrong sign sample. The �m�� distribution of these events is

shown in Figure 6. Excluding the resonance region 0:38 < �m��< 0:44, nine events are found in

the right sign sample, as shown in Fig. 5(b). Figure 7 shows one of the nine events outside the

resonance region. In this event, all the particles in the decay with the exception of the neutrino

are reconstructed, and the track to vertex assignment is unambiguous.

The signal is estimated from the events with � > 0:2, after background subtraction. The

number of background events in the signal region is Nbkg = (f�>0:2=(1� f�>0:2))�Nrsb, where

f�>0:2 is the fraction of hadronization pions that fall in the signal region, and Nrsb is the number

of right sign background events in the low probability region. From Monte Carlo simulation,

f�>0:2 = 0:100 � 0:017. After subtracting 4.5 events from the low probability region due to

signal, Nrsb = 19:5�5:0, and consequently, Nbkg = 2:2�0:7, leaving a signal of 15:8�4:3 events.
The e�ciency after requiring � > 0:2 is 5.03�0.85% in the K��+ channel and 3.42�0.43%

in the K��+���+ channel. The branching ratio for the sum of non-resonant and resonant D0
1

and D�0
2 semileptonic B decays is

Br(b! B)� Br(B! D�+��`��X) = (3:7� 1:0stat � 0:7syst)� 10�3: (2)

4.3 Systematic Uncertainties

Systematic uncertainties which also occur in the measurement of D0
1 production are estimated

as in Section 3.4. The dependence of the fraction of events in the � > 0:2 region on various

selection criteria for both signal and background has been studied with simulated events, and

found to be negligible. In the observed signal it is not possible to disentangle the contribution

due to non-resonant D�+�� from the contributions due to wide resonances. These processes

are not well known, and could have di�erent e�ciencies. In order to allow for these e�ects, a

systematic uncertainty of 10% has been estimated, based on Monte Carlo studies.

The systematic uncertainties are summarized in Table 5.

Source �syst(10
�3)

B� Vertex E�ciency �0.37
Wide vs. Non-res. E�ciency �0.37
Monte Carlo Statistics �0.38
D�+, D0 Branching Ratios �0.16
Lepton ID E�ciency �0.18
B Fragmentation �0.03
B� Lifetime �0.08
Probability Function � �0.12
Total �0.72

Table 5: Systematic uncertainties in Br(b! B) � Br(B!D�+��`��X)
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5 Conclusions

Signals for semileptonic decays of B mesons into both the D0
1 resonance and into non-resonant

D�+�� (or into wide resonances, which are experimentally indistinguishable with this data sam-

ple) are observed by the aleph experiment at lep.

The product branching ratio for D0
1 production is measured to be

Br(b! B) � Br(B!D0
1`
��X) � Br(D0

1 !D�+��) = (2:04� 0:58stat� 0:34syst)� 10�3;

From isospin arguments, Br(D0
1 !D�+��) must be less than 2/3. Using the branching ratio

Br(b!B�)=0.37�0.03 from Reference [19], Br(B!D0
1`
��X)� 0:83�0:28%. Consequently, this

mode alone explains at least 20�7% of the unidenti�ed semileptonic decays of the B meson.

At the 95% con�dence level,

Br(b! B) � Br(B!D�0
2 `

��X) � Br(D�0
2 !D�+��) � 0:81� 10�3.

Because Br(D�0
2 !D�+��) is 31% or less [9], this does not provide a strong constraint on

Br(B!D�0
2 `

��X).

The product branching ratio for the sum of all decays producing D�+��`��X in the �nal

state is measured to be

Br(b! B)�Br(B!D�+��`��X)= (3:7� 1:0stat � 0:7syst)� 10�3:

If all the D�+�� production is from resonances, either narrow or wide, then the isospin and

meson production arguments above give Br(B !D��`��X) > (1.5�0.5)%. These modes thus
explain at least 37�13% of the unidenti�ed semileptonic decays of the B meson.

Excluding the events close to the D0
1 resonance, there remain nine events for an estimated

background of two events. This is evidence for non-resonant D�� production in semileptonic B

decays.
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Figure 3: Distribution of �m��, for (a) the right sign and (b) wrong sign samples, using event

selection A. The right sign sample is �tted to a background plus a Breit-Wigner resonance, as

described in the text.
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selection B. The right sign sample is �tted to a background plus a Breit-Wigner resonance, as
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Figure 7: A reconstructed B+ !D���+�+� event. (a) A �sheye r� view showing the aleph

detector. (b) An r� view with the vdet and itc information. (c) A close-up view of the

interaction region. The K+ (identi�ed by its dE/dx) and �� form a D
0
vertex with an error of

213�m along the 
ight direction. The intersection of the D
0

ight path with the �+ gives the B+

decay point, which is known to 253�m along the 
ight direction. Two pions are unambiguously

assigned to this vertex. The negative pion has the low momentum (0.8GeV/c) characteristic of

D�� decay. The 1.9GeV/c positive pion has a distance of closest approach to the D���+ vertex

is 36�58�m. The mass of the D���+ system is 2542MeV/c2.
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