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Abstract

We study �� correlations in the exclusive reaction �pp! 2�+2�� at rest measured

by the CPLEAR experiment. Avoiding the introduction of an arbitrary reference

sample, we analyse di�erential distributions for equal charge pion pairs removing

the phase-space factor event by event. A peak at small relative momenta is most

pronounced for large total momentum of the pair. The physical implications of

bosonic symmetrization for the properties of the pion source, in particular its radius,

are brie
y discussed. The two extremes considered are the chaotic Hanbury-Brown{

Twiss mechanism and the coherent Skyrmion model.

(Submitted to Zeitschrift f�ur Physik C)



1 Introduction

Any emission amplitude for identical bosons must be symmetrized. In particular,
observable e�ects can be expected for a pair of pions if their momenta become equal, i.e. for
vanishing relative momentum. Bose{Einstein (BE) correlations is the name often assigned
to a very speci�c dynamic picture { the Hanbury-Brown{Twiss (HBT) mechanism [1] {
linking the two-pion correlation function at small relative momentum to the space-time
properties of the pion emitting source, in particular its size [2{4].

The goal of this paper is to study the pion correlations in nucleon{antinucleon
annihilation at rest where interesting deviations from the stochastic HBT picture of the
BE correlations have been observed [5{10]. In the present paper we concentrate on the
pion correlations from the exclusive annihilation channel 2�+2��. The main results of
this paper are independent of any model assumptions. In particular, we do not rely on
the ratio of correlation functions for pion pairs with equal and unequal signs which often
have been used in the literature [5, 7{9, 11, 12], nor do we construct any other reference
samples which are known to be a source of ambiguities [13{19]. The constraints originating
from energy-momentum conservation in nucleon{antinucleon annihilation at rest are very
strong and we shall show that they considerably distort the commonly used correlation
functions.

Removing the phase-space factor, event by event, we determine directly for the �rst
time the square of the amplitude for pion-pair emission and the corresponding correlation
functions. Our results for the di�erential distributions con�rm that equal charge two-pion
correlations do indeed peak at small relative momenta.

In Section 2 we describe the analysis of the single-variable correlation function to
make a connection with previous analyses. In Section 3 we present detailed results for
the double di�erential distributions, systematically varying the kinematical conditions.
Section 4 contains a brief discussion of the underlying physics in relation to earlier studies
and alternative mechanisms for pion emission.

2 Analysis of the 2�+2�� data

The reaction �pp ! 2�+2�� at rest in the CPLEAR experiment proceeds from S-
and P -wave atomic states [20]. The corresponding pion distribution for the �nal state
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con�guration fpig; i = 1; 2; 3; 4, has the form

d�(fpig) � jT (k; fpig)j2k!0
d�4(p; p1; p2; p3; p4) : (1)

Here T (k; fpig) is the amplitude of the �pp! 2�+2�� annihilation from the initial �pp state
with relative momentum k, d�4(p; p1; p2; p3; p4) is the four-particle relativistic phase space,
and the limit k ! 0 implies the incoherent addition of the S- and P -wave annihilation
occurring in the experiment. The four-vectors in Eq. (1) are pi = (Ei;pi), and p =
(2mp; 0), the total four-momentum for �pp annihilation at rest. The notation implies a
sum over initial spin states, and all quantum numbers specifying the initial spin state are
suppressed. In this paper we shall determine jT (k; fpig)j for each event directly.

2.1 Event selection

The CPLEAR detector [21] is cylindrically symmetric and placed inside a solenoidal
magnet of 3.6 m length and 2 m diameter, with a �eld of 0.44 T. Antiprotons of 200
MeV/c momentum, provided by LEAR, stop and annihilate at the centre of the detector,
in a spherical target of 7 cm radius �lled with gaseous hydrogen at 16 bar. Tracking is
provided by two layers of proportional chambers, six layers of drift chambers, and two
layers of streamer tubes. Outside the tracking devices there are 32 sectors of Scintillator
(S1) { Cherenkov (C) { Scintillator (S2) sandwiches providing particle identi�cation. The
outermost detector is an 18-layer gas-sampling electromagnetic calorimeter.

The data analysed here represent a small fraction of the CPLEAR data and were
collected with the so-called minimum-bias trigger in 1993 and 1994 1). This trigger re-
quires a hit in the scintillator S1 in coincidence with the incoming antiproton and accepts
events in the entire phase space, limited only by the energy thresholds and geometrical
acceptances. From the total of about 5:5�107 minimum-bias events, well balanced between
opposite magnetic-�eld polarity settings, 107 four-prong events were selected according to
the following criteria:

1. four tracks balanced in charge;
2. good quality of track reconstruction (minimal number of tracking hits, good �2 for

the track �t) and the vertex coordinates of all track pairs are inside the target sphere.

To select exclusively the events of the 2�+2�� channel, kinematical and topological cuts
were applied:

1. the 4� invariant mass m4�, measured with a resolution of �(m4�) = 0:05 GeV, is
required to be consistent with 2mp (jm4� � 2mpj < 0:08 GeV) and the missing
energy to be very small (less than the �0 mass);

2. the momentum of each track (pion) must be in the range 0:06 � p� � 0:92 GeV/c;
3. an opening angle � 60 mrad between any two charged tracks is required to avoid

pion pairs with insu�cient two-track resolution and lepton pairs from 
 conversion
and �0 Dalitz decays.

A total of 4:2 � 105 2�+2�� events remained, characterized by very little missing
energy and negligible kaon contamination (a big advantage over many previous pion cor-
relation studies). With a single-track momentum resolution of about 5%, a resolution of

1) The data published earlier in Ref. [8] were collected in 1991 and 1992 with the same trigger.
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�(M2) � 0:005 GeV2 is achieved in the region of interest (low M2). A typical bin width
is 0.02 GeV2.

The measured pion momentum distributions for �+ and �� are plotted in Fig. 1.
The perfect agreement between these two spectra shows that there are no systematic
di�erences. The shape of the momentum distribution is quite close to phase space which
is also shown in Fig. 1. The structure around 0:45 GeV is from �� events.
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Figure 1: The measured single-pion momentum distribution dN�=djp�j for the 2�+2��

channel, values for �+ (�) and �� (�) are shown. The line is the phase-space distribution
for the 2�+2�� channel.

2.2 Correlation functions for inclusive distributions

One of the de�nitions of pion pair correlations is based on the two-particle density
in momentum space:

c(p1; p2) = �2(p1; p2)� �1(p1)�1(p2) ; (2)

where �2(p1; p2) is the two-particle inclusive density and �1(p1) is the single-particle in-
clusive density. All observables not appearing explicitly are integrated out. The inclusive
distributions are related to the di�erential cross-sections:

�1(p1) = ��1
d�

d3p
1
=2E1

(3)

�2(p1; p2) = ��1
d�

d3p
1
=(2E1) d3p2

=(2E2)
: (4)
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Alternatively the two-particle correlations can be described in terms of the ratio

C(p1; p2) =
�2(p1; p2)

�0(p1; p2)
; (5)

where �0(p1; p2) is the two-particle distribution in the absence of correlations, with various
prescriptions being used in the literature. One choice, consistent with Eq. (2), is the prod-
uct of the single-particle densities �0(p1; p2) = �1(p1)�1(p2). Another choice of reference
sample mentioned in the introduction is to take the two-particle inclusive distribution for
unlike pions: �0(p1; p2) = �+�

2
(p1; p2) [5{8]. In this case some experimental uncertainties

cancel out in the ratio R2(p1; p2) = �
++j��

2
(p1; p2)=�

+�
2

(p1; p2). However, the correlation
function thus calculated is expected to be distorted by the di�erent dynamics for particles
of unlike charge [5, 22].

Averaging over angles and momenta, the correlation functions can be expressed as
a function of one parameter, i.e. the two-pion invariant mass M :

C(M) =
�2(M)

(�1 � �1)(M)
(6)

�2(M) =
Z
�(M �

q
(p1 + p2)2)�2(p1; p2)

d3p
1
d3p

2

(2E1)(2E2)
(7)

(�1 � �1)(M) =
Z
�(M �

q
(p1 + p2)2)�1(p1)�1(p2)

d3p
1
d3p

2

(2E1)(2E2)
: (8)

The invariant mass M is uniquely related to the square of the momentum di�erence:

(p1 � p2)
2 = 4�2 �M2 = �Q2; (9)

where � is the pion mass and Q is the di�erence of the three-momenta of the two pions
in their centre-of-mass system (CMS), therefore the variables M2 and Q2 are equivalent.

Because of the total energy-momentum conservation, the ratio C(M) is not a con-
stant even if the distributions d�=(d3p

1
=2E1) and d�=(d3p

1
=2E1)(d

3p
2
=2E2) are deter-

mined by phase space alone. As long as the two particles carry a small fraction of the
total energy, which is a typical situation for high-energy collisions, these e�ects are not
signi�cant. However, for the �pp annihilation at rest, the dependence of C(M) on M is
signi�cant even for the pure phase-space distribution, as shown in Fig. 2 for the annihila-
tion into four pions. It is clear that these kinematical correlations must be removed from
the correlation function C(M) to study the dynamics of the pion production.

2.3 Single-variable two-pion correlations

We present here the single-variable two-pion correlations R2(M) and C(M) which
have been frequently used in previous analyses. In order to isolate the correlation e�ects
we compare the experimental density with a four-pion phase-space distribution corrected
for experimental cuts and e�ciencies in the same way as the data.

The data sample of 4:2�105 events was used to calculate the two-particle distributions
�2(M) de�ned by Eq. (7) for pairs of identical pions, �++

2
(M) and ���

2
(M), and pairs of

unlike pions2), �+�2 (M). The corresponding two-particle density from the phase-space

2) Here and below all distributions for unlike-pion pairs contain multiple entries per event corresponding
to all possible �+�� combinations.
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Figure 2: (a) The calculated invariant-mass distributions �2(M) and (�1 � �1)(M) and (b)
the correlation function C(M) for �pp ! 4� at

p
s = 2mp, assuming a pure phase-space

distribution. The error bars shown are the statistical errors of the phase-space integration.

simulation is called �PS
2
(M). In Figs.3a and 3b we consider the ratios of distributions for

like- and unlike-pion pairs normalized to phase space, �
++j��j+�

2
(M)=�PS

2
(M), for which

the kinematical correlations discussed in Section 2.2 cancel. Figure 3c shows the ratio of
experimental two-particle distributions

R2(M) =
�
++j��

2
(M)

�+�2 (M)
: (10)

The results for R2(M) are consistent with those previously reported [8]. Comparing
Figs. 3a and 3b one sees that the peak in R2(M) is mostly due to the strong depletion
of the unequal charge distribution at small Q2 which is due to the presence of � mesons
and other resonances, absent in the �+�+ and ���� channels. It is therefore dangerous to
deduce model parameters from the ratioR2(M), as has been discussed many times [4,9,22].

To study the correlation function C(M) in Eq. (6), the two-particle distribution for
uncorrelated pion pairs was calculated using the event-mixing method. In this method
two particles are selected from two di�erent events of the experimental data set, the
invariant mass of the pair is calculated, and the corresponding distribution (�1 � �1)(M)
is generated. The complete data sample was used in this procedure, i.e. no extra cuts
were applied3). The experimental distribution (�1 � �1)(M) normalized to phase space
(see below) is plotted in Fig. 3d. Separate (�1 � �1)(M) distributions were analysed for
++, ��, and +� pion pairs and all found to be consistent. We have checked that the
direct evaluation of (�1 � �1)(M) using the experimental single-particle density �1(p) leads
to consistent results. The ratio shown in Fig. 3d is fairly 
at at small Q2. The small
structure seen for Q2 < 0:2 GeV2 is not physical. Figures 4a and 4b show the correlation
function C(M). In order to account for the trivialM -dependence which arises because of
to the energy-momentum conservation for the pure phase-space distribution (see Fig. 2)
and from the experimental cuts, the following double ratios were calculated (see Figs. 4c

3) Note that the event mixing in the analysis of high-energy collisions usually involves further selection
criteria, see for example [13].
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Figure 3: Experimental two-particle distributions �2(M), Eq. (7), divided by phase space
�PS
2
(M) for (a) pairs of identical pions, �+�+ (�) and ���� (�), and (b) pairs of unlike

pions. (c) The ratio R2 of the experimental two-particle distributions for like and unlike
pions: �++

2
(M)=�+�

2
(M) (�) and ���

2
(M)=�+�

2
(M) (�). (d) The ratio of the experimental

distribution (�1 � �1)(M) to the phase-space distribution (�1 � �1)PS(M).
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and 4d):

C++j��j+�(M)

CPS(M)
=
�
++j��j+�

2
(M)

(�1 � �1)(M)
:

�PS
2
(M)

(�1 � �1)PS(M)
: (11)

Note that the distributions for like and unlike pairs in Figs. 4c and 4d look similar
to the corresponding distributions shown in Figs. 3a and 3b except for normalization. The
like-sign correlation function in Fig. 4c shows a weak peaking at small Q2, but the signal
is not strong enough for a meaningful analysis. We shall show in the next section that the
weakness of the signal is due to the integration over the mass of the second pion pair in
phase space.

3 Di�erential two-pion correlations

So far we presented results for the inclusive correlation functionC++j��(M)=CPS(M)
where all kinematical variables except M have been integrated out. The correlation signal
can be isolated by considering a double di�erential density. We introduce the two-pion
subsystems a and b with four-momenta pa = (p1 + p2) and pb = (p3 + p4) and invariant
masses Ma and Mb. Integrating over the angles specifying the relative orientation of the
momenta in the �nal state we de�ne the double di�erential cross section:

d�

dM2
adM

2

b

� W (s;Ma;Mb)
Z
jT (k; fpig)j2k!0

d
abd
12d
34 (12)

where the factor W (s;Ma;Mb) is given by

W (s;Ma;Mb) =
Pabp
s

vuut 1� 4�2

M2

a

! 
1� 4�2

M2

b

!
; (13)

Pab =

s
(s� (Ma +Mb)2))(s� (Ma �Mb)2)

4s
: (14)

Here Pab is the relative three-momentum of the two-pion pairs. Removing the phase-space
factor W (s;Ma;Mb) we de�ne the double di�erential density:

%(Ma;Mb) =
1

W (s;Ma;Mb)

d�

dM2
adM

2

b

(15)

�
Z
jT (fpig)j2d
abd
12d
34 : (16)

Note that the pair of variables (Ma;Mb) can be replaced by (Q;Pab), where the
Q of Eq. (9) is twice the relative three-momentum between the pions 1 and 2 in their
centre-of-mass system and the relative momentum Pab is equal to the total momentum,
Pab = jp

1
+ p

2
j, in the overall CMS. Note also that, contrary to �2(Ma) � d�=dMa

of Eq.(7), the di�erential density %(Ma;Mb) is a constant if the relativistic phase-space
approximation is valid, i.e. if the matrix element T has no momentum dependence.

Figure 5 shows the physical region in the (M2

a ;M
2

b ) plane for the reaction �pp! 4�
at rest, with the contour plot displaying the values of P 2

ab. The region of small Q2 where
symmetrization e�ects are expected is in the lower left corner.

Di�erential cross-sections and densities for equal-charge pairs are shown in Fig. 6.
There is a strong enhancement as both invariant masses approach threshold:M2

++
;M2

�� !
4�2. This peaking occurs for a large relative momentum Pab between the two-pion pairs.
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The di�erential density %(M+�(a);M+�(b)) for the unlike-pion pairs with the invari-
ant masses M+�(a) and M+�(b) is plotted in Fig. 7. Contrary to the case of the like-pion
pairs, there is no signi�cant enhancement at smallM2

+� in this distribution. A character-
istic feature of %(M2

+�(a);M
2

+�(b)) is the strong signal from � mesons.
In order to check that the � mesons do not simulate pion correlation signals for like-

charge pion pairs at small Q2 we show in Fig. 8 double di�erential densities for the events
where �� con�gurations are removed, %no ��(M++;M��), and for the events exclusively
from �� con�gurations, %only ��(M++;M��). The �-meson pairs have been de�ned by the
following condition for the unlike-pion pairs a and b:

(M2

a �m2

�) + (M2

b �m2

�) < 2:2m� �� ; (17)

where m� and �� are the mass and the width of the � meson. The suppression of the ��
events is made incoherently; there are 1:34 � 105 events (46% of the total) outside the ��
region. As shown in Fig. 8a, the �� states do not produce the enhancement at smallM++

and M��, which is therefore not due to kinematical re
ections from the �� channel.
In order to verify that the enhancement in %(M++;M��) atM

2

++
;M2

�� ! 4�2 is not
produced by kinematical re
ections from any other resonance channels we used a Monte
Carlo simulation for the following channels with four pions in the �nal state: �0�0 !
2�+2��, �0�+�� ! 2�+2��, a�

2
�� ! �0�+�� ! 2�+2��, f2�

+�� ! 2�+2��. The
events were generated with the CPLEAR simulation program and subsequently passed
through the same analysis criteria as real data. The results are plotted in Fig. 9 and show
no signi�cant enhancement in the region of interest.

It is known that the resonant mechanisms �0�+�� ! 2�+2�� and a�
2
�� ! �0�+�� !

2�+2�� dominate the S-wave �pp annihilation at rest into 2�+2�� [25, 26]. The Monte
Carlo results shown in Fig. 9 do not take the amplitude symmetrization into account.
In order to investigate possible e�ects of the symmetrization we performed calculations
using a properly symmetrized amplitude for �pp(3S1)! �0(�+��)L=0 ! 2�+2��. A mod-
erate enhancement in the di�erential density %(M++;M��) was found for this mech-
anism at small values of M++ and M��. This enhancement, however, is signi�cantly
smaller than the one seen in the experimental data. The amplitude corresponding to the
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Figure 6: (a) The di�erential density %(M++;M��) and (b) the di�erential cross-section
d�=dM2

++
dM2

�� vs. the invariant-masses squared of the like-pion pairs. The solid line
shows the boundary Pab = 0:7 GeV. (Note that in each �gure the grey shades are renor-
malized to the same range of contrast.)
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the unlike-pion pairs. The circle shows the region de�ned by Eq. (17).

a�
2
�� ! �0�+�� ! 2�+2�� mechanism was found to be small for small values of M++

and M��.
For the further discussion in Section 4 we construct the following partial projections

of the two-particle density. The two-dimensional space (M2

++
;M2

��) is divided into slices
M2

i � M2

��j++
< M2

i+1 and the projections of %(M++;M��) are de�ned by

%i(M++j��) =
Z M2

i+1

M2
i

%(M++;M��)

%PS(Ma;Mb)
dM2

��j++ : (18)

The di�erential density %PS(Ma;Mb) is calculated using the four-pion phase-space sample
with the experimental cuts, where the pure phase-space distribution without these cuts
would be a constant. The projections %i(M++) are shown in Fig. 10. For small values
of M��, the peak in the projections %i(M++) at M

2

++
! 4�2 is strongly enhanced in

comparison with the inclusive correlation function in Fig. 4c. The corresponding results
for %i(M��) are consistent.

4 Discussion

One of the original motivations for studying pion pair correlations in annihilation
at rest and in high-energy reactions is the HBT model [1], which was originally developed
for light emission from a star. When applied to pion production [2, 4] it is assumed that
pions are emitted from a �nite-size source with a random phase at each emitting point.
The chaoticity of the phase is critical for the standard argument [2,4], leading to the HBT
enhancement of pion pair emission near Q2 = 0. The slope of the correlation function is
linked to the source radius R, and the relative strength of the peak � re
ects the phase
chaoticity (� = 0 for coherent pion emission, � = 1 for fully incoherent emission). Since in
proton{antiproton annihilation the signal in C(M) is weak, we restrict the analysis to the
partially projected distributions %i(M), using a Gaussian parametrization for each slice i,

%i(M) = Ni(1 + �i exp (�R2

iQ
2)) : (19)
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Figure 9: The di�erential density %(M++;M��) for the MC events corresponding to the
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The values of R and � resulting from �tting the projections in Fig. 10 are shown in
Table 1. The �t was performed for both �+�+ and ���� correlations, and the results
are consistent within the error bars. Shown also are the �ts where the events from the
kinematical region of the �� pairs are excluded from the data completely.

The value for the source size R depends rather weakly on the projection forM2

�� <

0:6 GeV2 which is a reasonable cut-o�. The strength � decreases with increasing M2

��

since the correlation signal in %i(M++) is strongest for the projection corresponding to the
lowest range of M��. As mentioned earlier, this enhancement occurs at a large relative
momentum Pab between the two-pion pairs.

Table 1: The radius R and the strength � of the �+�+ and ���� correlations obtained
from a �t of the partially projected distributions %i(M) to Gaussian shape, Eq. (19). The
mass interval for the �rst pion pair is indicated in the table; the �t was performed in the
mass interval for the second pair 4�2 � M2 � 0:8 GeV2.

�+�+ correlations
M2

�� interval R � N �2=NDF

(GeV2) (fm)
all events

(0:1; 0:2) 0:38� 0:02 3:7� 0:5 1:07� 0:13 14:0=11
(0:2; 0:3) 0:30� 0:01 4:0� 0:6 0:67� 0:08 12:1=11
(0:3; 0:4) 0:28� 0:01 3:1� 0:5 0:66� 0:08 8:9=11
(0:4; 0:5) 0:36� 0:03 1:1� 0:1 1:08� 0:07 6:2=11
(0:5; 0:6) 0:33� 0:04 0:7� 0:1 1:07� 0:08 11:9=11

�� excluded
(0:1; 0:2) 0:39� 0:02 8:4� 1:2 0:57� 0:01 10:0=11
(0:2; 0:3) 0:40� 0:02 4:3� 0:5 0:68� 0:02 8:7=11
(0:3; 0:4) 0:46� 0:02 2:2� 0:1 0:88� 0:01 6:2=11
(0:4; 0:5) 0:56� 0:04 1:1� 0:1 1:01� 0:01 10:6=11
(0:5; 0:6) 0:68� 0:17 0:43� 0:20 1:04� 0:04 8:1=11

���� correlations
M2

++
interval R � N �2=NDF

(GeV2) (fm)
all events

(0:1; 0:2) 0:40� 0:02 3:5� 0:2 1:14� 0:08 23:3=11
(0:2; 0:3) 0:32� 0:02 3:5� 0:6 0:78� 0:10 8:2=11
(0:3; 0:4) 0:33� 0:02 2:0� 0:2 0:92� 0:08 12:8=11
(0:4; 0:5) 0:33� 0:03 1:4� 0:2 0:96� 0:08 5:5=11
(0:5; 0:6) 0:37� 0:04 0:87� 0:08 1:10� 0:06 6:8=11

�� excluded
(0:1; 0:2) 0:41� 0:01 7:8� 0:8 0:62� 0:07 19:0=11
(0:2; 0:3) 0:42� 0:02 4:0� 0:3 0:76� 0:05 2:4=11
(0:3; 0:4) 0:52� 0:02 2:2� 0:1 0:96� 0:03 9:1=11
(0:4; 0:5) 0:56� 0:04 1:4� 0:1 0:99� 0:02 5:0=11
(0:5; 0:6) 0:66� 0:09 0:62� 0:15 1:03� 0:02 3:8=11

It is natural to obtain the largest e�ect for a situation where the space resolution
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P�1ab is able to resolve the source radius R. In order to resolve a source of size R � 0:5 fm
we expect that each pion in the pair should have momentum q > 1=R � 0:4 GeV. This
corresponds to Pab � 2q > 0:8 GeV, i.e. only a small corner of the (M2

++
;M2

��) plane is
suitable for this purpose. However, our result shows that in this favourable kinematical
region the strength � � 4, while for the conventional HBT correlation one expects 0 �
� � 1. Problems with the strength parameter � for �pp annihilation at rest in the HBT
framework have been noted earlier [5{10]. Our results for the di�erential density cast
further doubts on a naive interpretation based on the HBT mechanism.

The size of the pion emission source given in Table 1 is smaller than other determi-
nations for �pp annihilation at rest [5{10]. In particular, the single Gaussian �t [6] gives
R � 0:8 fm, and the double Gaussian �t [7, 8] gives two radii: R1 � (0:7 � 1:0) fm and
R2 � (1:7 � 2:4) fm. The main reason is that the double di�erential density in Eq. (15)
used here allows the pion emission source to be probed with variable and controlled reso-
lution determined by the total momentum of the pion pair. The previous determinations
for the �pp annihilation at rest were based on integrated distributions which included pion
pairs with insu�cient total momentum to resolve the small size of the source. Note also
that in Refs. [5{8] the radii were determined from the ratio R2(M).

While the HBT model leads to peaking at small Q2, the statement cannot be re-
versed, as has been noted repeatedly in the literature [4, 9]. In fact an enhancement of
the correlation function near Q2 = 0 can be obtained without requiring chaoticity or
thermodynamic elements in the annihilation mechanism. One example is the Skyrmion-
inspired ansatz of Ref. [23]. The basic annihilation process is assumed to be very fast
and entirely coherent. Translating the �ndings of Ref. [24] into the notation used here for
the annihilation into four pions, a peak is predicted for C(M) near Q2 = 0 which results
from averaging over angles and the momentum Pab. To achieve the required destructive
oscillations Pab has to be large. This is exactly as observed in Fig. 10, since the slices
with a smaller value of Mb =M�� correspond to larger Pab. Again the observation of the
peaking and its kinematic properties are not su�cient proof of the correctness of the un-
derlying dynamic model. On the other hand the slope of the correlation peak near Q2 = 0
is related to the spatial extension of the pion source in the Skyrmion model as well.

5 Conclusion

For �pp! 2�+2�� at rest we have established that the like-sign pion pairs are cor-
related at small relative momentum (or small invariant mass). In the exclusive 2�+2��

channel considered here the phase-space factor is eliminated event by event for the dou-
ble di�erential invariant-mass distributions. The double di�erential density %(M++;M��)
thus constructed shows a very clear enhancement at small values of M++ or M��. It is
de�nitely not due to the presence of any resonances in the �+�� channel. At the same
time the signal is fairly weak for the single-variable correlation function C(M) because of
the integration over all phase space available for the second pion pair.

The interpretation of the observed correlation signal by a conventional stochas-
tic HBT mechanism remains questionable. While the present results do not allow us to
conclusively discriminate between di�erent correlation mechanisms, further analysis of
correlation functions beyond single-variable inclusive distributions may be useful for this
purpose.

A similar study of the exclusive reaction �pp! 2�+2���0 is under way. The prelim-
inary results are similar to those of the 4� annihilation channel discussed here. It would
be interesting to do a similar analysis for the annihilation into four and �ve neutral pions.
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