Search for second-generation leptoquark pairs in $\bar{p} p$ collisions at $\sqrt{s}=1.8 \mathrm{TeV}$

B. Abbott, M. Abolins, V. Abramov, B.S. Acharya, D.L. Adams, M. Adams, S. Ahn, V. Akimov, G.A. Alves, N. Amos, et al.

To cite this version:

B. Abbott, M. Abolins, V. Abramov, B.S. Acharya, D.L. Adams, et al.. Search for second-generation leptoquark pairs in $\bar{p} p$ collisions at $\sqrt{s}=1.8 \mathrm{TeV}$. Physical Review Letters, 2000, 84, pp.2088-2093. 10.1103/PhysRevLett.84.2088 . in2p3-00004037

HAL Id: in2p3-00004037
 https://hal.in2p3.fr/in2p3-00004037

Submitted on 6 Mar 2000

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Search for Second Generation Leptoquark Pairs in $\overline{\mathbf{p}} \mathbf{p}$ Collisions at $\sqrt{s}=1.8 \mathbf{T e v}$

B. Abbott et al.
The D0 Collaboration
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

November 1999

Submitted to Physical Review Letters

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Notification

This manuscript has been authored by Universities Research Association, Inc. under contract No. DE-AC02-76CH03000 with the U.S. Department of Energy. The United States Government and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government Purposes.

Search for Second Generation Leptoquark Pairs in $\bar{p} p$ Collisions at $\sqrt{s}=1.8 \mathrm{TeV}$

B. Abbott,,${ }^{47}$ M. Abolins, ${ }^{44}$ V. Abramov, ${ }^{19}$ B.S. Acharya, ${ }^{13}$ D.L. Adams, ${ }^{54}$ M. Adams, ${ }^{30}$ S. Ahn, ${ }^{29}$ V. Akimov, ${ }^{17}$ G.A. Alves, ${ }^{2}$ N. Amos, ${ }^{43}$ E.W. Anderson, ${ }^{36}$ M.M. Baarmand, ${ }^{49}$ V.V. Babintsev, ${ }^{19}$ L. Babukhadia, ${ }^{49}$ A. Baden, ${ }^{40}$ B. Baldin, ${ }^{29}$ S. Banerjee, ${ }^{13}$ J. Bantly, ${ }^{53}$ E. Barberis, ${ }^{22}$ P. Baringer, ${ }^{37}$ J.F. Bartlett, ${ }^{29}$ U. Bassler, ${ }^{9}$ A. Belyaev, ${ }^{18}$ S.B. Beri, ${ }^{11}$ G. Bernardi, ${ }^{9}$ I. Bertram, ${ }^{20}$ V.A. Bezzubov, ${ }^{19}$ P.C. Bhat, ${ }^{29}$ V. Bhatnagar, ${ }^{11}$ M. Bhattacharjee, ${ }^{49}$ G. Blazey, ${ }^{31}$ S. Blessing, ${ }^{27}$ A. Boehnlein, ${ }^{29}$ N.I. Bojko, ${ }^{19}$ F. Borcherding, ${ }^{29}$ A. Brandt, ${ }^{54}$ R. Breedon, ${ }^{23}$ G. Briskin, ${ }^{53}$ R. Brock, ${ }^{44}$ G. Brooijmans, ${ }^{29}$ A. Bross, ${ }^{29}$ D. Buchholz, ${ }^{32}$ V.S. Burtovoi, ${ }^{19}$ J.M. Butler, ${ }^{41}$ W. Carvalho, ${ }^{3}$ D. Casey, ${ }^{44}$ Z. Casilum, ${ }^{49}$ H. Castilla-Valdez, ${ }^{15}$ D. Chakraborty, ${ }^{49}$ K.M. Chan, ${ }^{48}$ S.V. Chekulaev, ${ }^{19}$ W. Chen, ${ }^{49}$ D.K. Cho, ${ }^{48}$ S. Choi, ${ }^{26}$ S. Chopra, ${ }^{27}$ B.C. Choudhary, ${ }^{26}$ J.H. Christenson, ${ }^{29}$ M. Chung, ${ }^{30}$ D. Claes, ${ }^{45}$ A.R. Clark, ${ }^{22}$ W.G. Cobau, ${ }^{40}$ J. Cochran, ${ }^{26}$ L. Coney, ${ }^{34}$ B. Connolly, ${ }^{27}$ W.E. Cooper, ${ }^{29}$ D. Coppage, ${ }^{37}$ D. Cullen-Vidal, ${ }^{53}$ M.A.C. Cummings, ${ }^{31}$ D. Cutts, ${ }^{53}$ O.I. Dahl, ${ }^{22}$ K. Davis, ${ }^{21}$ K. De, ${ }^{54}$ K. Del Signore, ${ }^{43}$ M. Demarteau, ${ }^{29}$ D. Denisov, ${ }^{29}$ S.P. Denisov, ${ }^{19}$ H.T. Diehl, ${ }^{29}$ M. Diesburg, ${ }^{29}$ G. Di Loreto, ${ }^{44}$ P. Draper, ${ }^{54}$ Y. Ducros, ${ }^{10}$ L.V. Dudko, ${ }^{18}$ S.R. Dugad, ${ }^{13}$ A. Dyshkant, ${ }^{19}$ D. Edmunds, ${ }^{44}$ J. Ellison, ${ }^{26}$ V.D. Elvira, ${ }^{49}$ R. Engelmann, ${ }^{49}$ S. Eno, ${ }^{40}$ G. Eppley, ${ }^{56}$ P. Ermolov, ${ }^{18}$ O.V. Eroshin, ${ }^{19}$ J. Estrada, ${ }^{48}$ H. Evans, ${ }^{46}$ V.N. Evdokimov, ${ }^{19}$ T. Fahland, ${ }^{25}$ M.K. Fatyga, ${ }^{48}$ S. Feher, ${ }^{29}$ D. Fein, ${ }^{21}$ T. Ferbel, ${ }^{48}$ H.E. Fisk, ${ }^{29}$ Y. Fisyak, ${ }^{50}$ E. Flattum, ${ }^{29}$ F. Fleuret, ${ }^{22}$ M. Fortner, ${ }^{31}$ K.C. Frame, ${ }^{44}$ S. Fuess, ${ }^{29}$ E. Gallas, ${ }^{29}$ A.N. Galyaev, ${ }^{19}$ P. Gartung, ${ }^{26}$ V. Gavrilov, ${ }^{17}$ R.J. Genik II, ${ }^{20}$ K. Genser, ${ }^{29}$ C.E. Gerber, ${ }^{29}$ Y. Gershtein, ${ }^{53}$ B. Gibbard, ${ }^{50}$ R. Gilmartin, ${ }^{27}$ G. Ginther, ${ }^{48}$ B. Gobbi, ${ }^{32}$ B. Gómez, ${ }^{5}$ G. Gómez, ${ }^{40}$ P.I. Goncharov, ${ }^{19}$ J.L. González Solís, ${ }^{15}$ H. Gordon, ${ }^{50}$ L.T. Goss, ${ }^{55}$ K. Gounder, ${ }^{26}$ A. Goussiou, ${ }^{49}$ N. Graf, ${ }^{50}$ P.D. Grannis, ${ }^{49}$ D.R. Green, ${ }^{29}$ J.A. Green, ${ }^{36}$ H. Greenlee, ${ }^{29}$ S. Grinstein, ${ }^{1}$ P. Grudberg, ${ }^{22}$ S. Grünendahl, ${ }^{29}$ G. Guglielmo, ${ }^{52}$ J.A. Guida, ${ }^{21}$ J.M. Guida, ${ }^{53}$ A. Gupta, ${ }^{13}$ S.N. Gurzhiev, ${ }^{19}$ G. Gutierrez, ${ }^{29}$ P. Gutierrez, ${ }^{52}$ N.J. Hadley, ${ }^{40}$
H. Haggerty, ${ }^{29}$ S. Hagopian,,27 V. Hagopian, ${ }^{27}$ K.S. Hahn, ${ }^{48}$ R.E. Hall, ${ }^{24}$ P. Hanlet, ${ }^{42}$ S. Hansen, ${ }^{29}$ J.M. Hauptman, ${ }^{36}$ C. Hays, ${ }^{46}$ C. Hebert, ${ }^{37}$ D. Hedin, ${ }^{31}$ A.P. Heinson, ${ }^{26}$ U. Heintz, ${ }^{41}$ T. Heuring, ${ }^{27}$ R. Hirosky, ${ }^{30}$ J.D. Hobbs, ${ }^{49}$ B. Hoeneisen, ${ }^{6}$ J.S. Hoftun, ${ }^{53}$ F. Hsieh, ${ }^{43}$ A.S. Ito, ${ }^{29}$ S.A. Jerger, ${ }^{44}$ R. Jesik, ${ }^{33}$ T. Joffe-Minor, ${ }^{32}$ K. Johns, ${ }^{21}$ M. Johnson, ${ }^{29}$ A. Jonckheere, ${ }^{29}$ M. Jones, ${ }^{28}$ H. Jöstlein, ${ }^{29}$ S.Y. Jun, ${ }^{32}$ S. Kahn, ${ }^{50}$ E. Kajfasz, ${ }^{8}$ D. Karmanov, ${ }^{18}$ D. Karmgard, ${ }^{34}$ R. Kehoe, ${ }^{34}$ S.K. Kim, ${ }^{14}$ B. Klima, ${ }^{29}$ C. Klopfenstein, ${ }^{23}$ B. Knuteson, ${ }^{22}$ W. Ko, ${ }^{23}$ J.M. Kohli, ${ }^{11}$ D. Koltick, ${ }^{35}$ A.V. Kostritskiy, ${ }^{19}$ J. Kotcher, ${ }^{50}$ A.V. Kotwal, ${ }^{46}$ A.V. Kozelov, ${ }^{19}$ E.A. Kozlovsky, ${ }^{19}$ J. Krane, ${ }^{36}$ M.R. Krishnaswamy, ${ }^{13}$ S. Krzywdzinski, ${ }^{29}$ M. Kubantsev, ${ }^{38}$ S. Kuleshov, ${ }^{17}$ Y. Kulik, ${ }^{49}$ S. Kunori, ${ }^{40}$ F. Landry, ${ }^{44}$ G. Landsberg, ${ }^{53}$ A. Leflat, ${ }^{18}$ J. Li, ${ }^{54}$ Q.Z. Li, ${ }^{29}$ J.G.R. Lima, ${ }^{3}$ D. Lincoln, ${ }^{29}$ S.L. Linn, ${ }^{27}$ J. Linnemann, ${ }^{44}$ R. Lipton, ${ }^{29}$ J.G. Lu, ${ }^{4}$ A. Lucotte, ${ }^{49}$ L. Lueking, ${ }^{29}$ A.K.A. Maciel, ${ }^{31}$ R.J. Madaras, ${ }^{22}$ V. Manankov, ${ }^{18}$ S. Mani, ${ }^{23}$ H.S. Mao, ${ }^{4}$ R. Markeloff, ${ }^{31}$ T. Marshall, ${ }^{33}$ M.I. Martin, ${ }^{29}$ R.D. Martin, ${ }^{30}$ K.M. Mauritz, ${ }^{36}$ B. May, ${ }^{32}$ A.A. Mayorov, ${ }^{33}$ R. McCarthy, ${ }^{49}$ J. McDonald, ${ }^{27}$ T. McKibben, ${ }^{30}$ J. McKinley, ${ }^{44}$ T. McMahon,,51 H.L. Melanson, ${ }^{29}$ M. Merkin, ${ }^{18}$ K.W. Merritt, ${ }^{29}$ C. Miao, ${ }^{53}$ H. Miettinen, ${ }^{56}$ A. Mincer, ${ }^{47}$ C.S. Mishra,,29 N. Mokhov, ${ }^{29}$ N.K. Mondal, ${ }^{13}$ H.E. Montgomery, ${ }^{29}$ M. Mostafa, ${ }^{1}$ H. da Motta, ${ }^{2}$ E. Nagy, ${ }^{8}$ F. Nang, ${ }^{21}$ M. Narain, ${ }^{41}$ V.S. Narasimham, ${ }^{13}$ H.A. Neal, ${ }^{43}$ J.P. Negret, ${ }^{5}$ S. Negroni, ${ }^{8}$ D. Norman, ${ }^{55}$ L. Oesch, ${ }^{43}$ V. Oguri, ${ }^{3}$ R. Olivier, ${ }^{9}$ N. Oshima, ${ }^{29}$ D. Owen, ${ }^{44}$ P. Padley,${ }^{56}$ A. Para, ${ }^{29}$ N. Parashar, ${ }^{42}$ R. Partridge, ${ }^{53}$ N. Parua, ${ }^{7}$ M. Paterno, ${ }^{48}$ A. Patwa, ${ }^{49}$ B. Pawlik, ${ }^{16}$ J. Perkins, ${ }^{54}$ M. Peters, ${ }^{28}$ R. Piegaia, ${ }^{1}$ H. Piekarz, ${ }^{27}$ Y. Pischalnikov, ${ }^{35}$ B.G. Pope, ${ }^{44}$ H.B. Prosper, ${ }^{27}$ S. Protopopescu, ${ }^{50}$ J. Qian, ${ }^{43}$ P.Z. Quintas, ${ }^{29}$ R. Raja, ${ }^{29}$ S. Rajagopalan, ${ }^{50}$ N.W. Reay, ${ }^{38}$ S. Reucroft, ${ }^{42}$ M. Rijssenbeek, ${ }^{49}$ T. Rockwell, ${ }^{44}$ M. Roco, ${ }^{29}$ P. Rubinov, ${ }^{32}$ R. Ruchti, ${ }^{34}$ J. Rutherfoord, ${ }^{21}$ A. Sánchez-Hernández, ${ }^{15}$ A. Santoro, ${ }^{2}$ L. Sawyer, ${ }^{39}$ R.D. Schamberger, ${ }^{49}$ H. Schellman, ${ }^{32}$ J. Sculli,,47 E. Shabalina, ${ }^{18}$ C. Shaffer, ${ }^{27}$ H.C. Shankar, ${ }^{13}$ R.K. Shivpuri, ${ }^{12}$ D. Shpakov, ${ }^{49}$ M. Shupe, ${ }^{21}$ R.A. Sidwell, ${ }^{38}$ H. Singh, ${ }^{26}$ J.B. Singh, ${ }^{11}$ V. Sirotenko, ${ }^{31}$ P. Slattery, ${ }^{48}$ E. Smith, ${ }^{52}$ R.P. Smith, ${ }^{29}$ R. Snihur, ${ }^{32}$ G.R. Snow, ${ }^{45}$ J. Snow, ${ }^{51}$ S. Snyder, ${ }^{50}$ J. Solomon, ${ }^{30}$ X.F. Song, ${ }^{4}$ M. Sosebee, ${ }^{54}$ N. Sotnikova, ${ }^{18}$ M. Souza, ${ }^{2}$ N.R. Stanton, ${ }^{38}$ G. Steinbrück, ${ }^{46}$ R.W. Stephens, ${ }^{54}$ M.L. Stevenson, ${ }^{22}$ F. Stichelbaut, ${ }^{50}$ D. Stoker, ${ }^{25}$ V. Stolin, ${ }^{17}$ D.A. Stoyanova, ${ }^{19}$ M. Strauss, ${ }^{52}$ K. Streets, ${ }^{47}$ M. Strovink, ${ }^{22}$ L. Stutte, ${ }^{29}$ A. Sznajder, ${ }^{3}$ J. Tarazi, ${ }^{25}$ M. Tartaglia, ${ }^{29}$ T.L.T. Thomas, ${ }^{32}$ J. Thompson, ${ }^{40}$ D. Toback, ${ }^{40}$ T.G. Trippe, ${ }^{22}$ A.S. Turcot, ${ }^{43}$ P.M. Tuts, ${ }^{46}$ P. van Gemmeren, ${ }^{29}$ V. Vaniev, ${ }^{19}$ N. Varelas, ${ }^{30}$ A.A. Volkov, ${ }^{19}$ A.P. Vorobiev, ${ }^{19}$ H.D. Wahl, ${ }^{27}$ J. Warchol, ${ }^{34}$ G. Watts, ${ }^{57}$ M. Wayne, ${ }^{34}$ H. Weerts, ${ }^{44}$ A. White, ${ }^{54}$ J.T. White, ${ }^{55}$ J.A. Wightman, ${ }^{36}$ S. Willis, ${ }^{31}$ S.J. Wimpenny, ${ }^{26}$ J.V.D. Wirjawan, ${ }^{55}$ J. Womersley, ${ }^{29}$ D.R. Wood, ${ }^{42}$ R. Yamada, ${ }^{29}$ P. Yamin, ${ }^{50}$ T. Yasuda, ${ }^{29} \mathrm{~K}$. Yip, ${ }^{29}$ S. Youssef, ${ }^{27}$ J. Yu, ${ }^{29}$ Y. Yu, ${ }^{14}$ M. Zanabria, ${ }^{5}$ Z. Zhou, ${ }^{36}$ Z.H. Zhu, ${ }^{48}$ M. Zielinski, ${ }^{48}$ D. Zieminska, ${ }^{33}$ A. Zieminski, ${ }^{33}$ V. Zutshi, ${ }^{48}$ E.G. Zverev, ${ }^{18}$ and A. Zylberstejn ${ }^{10}$
(DØ Collaboration)
${ }^{1}$ Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{2}$ LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
${ }^{3}$ Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
${ }^{4}$ Institute of High Energy Physics, Beijing, People's Republic of China

${ }^{5}$ Universidad de los Andes, Bogotá, Colombia
${ }^{6}$ Universidad San Francisco de Quito, Quito, Ecuador
${ }^{7}$ Institut des Sciences Nucléaires, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France
${ }^{8}$ Centre de Physique des Particules de Marseille, IN2P3-CNRS, Marseille, France
${ }^{9}$ LPNHE, Universités Paris VI and VII, IN2P3-CNRS, Paris, France
${ }^{10}$ DAPNIA/Service de Physique des Particules, CEA, Saclay, France
${ }^{11}$ Panjab University, Chandigarh, India
${ }^{12}$ Delhi University, Delhi, India
${ }^{13}$ Tata Institute of Fundamental Research, Mumbai, India
${ }^{14}$ Seoul National University, Seoul, Korea
${ }^{15}$ CINVESTAV, Mexico City, Mexico
${ }^{16}$ Institute of Nuclear Physics, Kraków, Poland
${ }^{17}$ Institute for Theoretical and Experimental Physics, Moscow, Russia
${ }^{18}$ Moscow State University, Moscow, Russia
${ }^{19}$ Institute for High Energy Physics, Protvino, Russia
${ }^{20}$ Lancaster University, Lancaster, United Kingdom
${ }^{21}$ University of Arizona, Tucson, Arizona 85721
${ }^{22}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720
${ }^{23}$ University of California, Davis, California 95616
${ }^{24}$ California State University, Fresno, California 93740
${ }^{25}$ University of California, Irvine, California 92697
${ }^{26}$ University of California, Riverside, California 92521
${ }^{27}$ Florida State University, Tallahassee, Florida 32306
${ }^{28}$ University of Hawaii, Honolulu, Hawaii 96822
${ }^{29}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510
${ }^{30}$ University of Illinois at Chicago, Chicago, Illinois 60607
${ }^{31}$ Northern Illinois University, DeKalb, Illinois 60115
${ }^{32}$ Northwestern University, Evanston, Illinois 60208
${ }^{33}$ Indiana University, Bloomington, Indiana 47405
${ }^{34}$ University of Notre Dame, Notre Dame, Indiana 46556
${ }^{35}$ Purdue University, West Lafayette, Indiana 47907
${ }^{36}$ Iowa State University, Ames, Iowa 50011
${ }^{37}$ University of Kansas, Lawrence, Kansas 66045
${ }^{38}$ Kansas State University, Manhattan, Kansas 66506
${ }^{39}$ Louisiana Tech University, Ruston, Louisiana 71272
${ }^{40}$ University of Maryland, College Park, Maryland 20742
${ }^{41}$ Boston University, Boston, Massachusetts 02215
${ }^{42}$ Northeastern University, Boston, Massachusetts 02115
${ }^{43}$ University of Michigan, Ann Arbor, Michigan 48109
${ }^{44}$ Michigan State University, East Lansing, Michigan 48824
${ }^{45}$ University of Nebraska, Lincoln, Nebraska 68588
${ }^{46}$ Columbia University, New York, New York 10027
${ }^{47}$ New York University, New York, New York 10003
${ }^{48}$ University of Rochester, Rochester, New York 14627
${ }^{49}$ State University of New York, Stony Brook, New York 11794
${ }^{50}$ Brookhaven National Laboratory, Upton, New York 11973
${ }^{51}$ Langston University, Langston, Oklahoma 73050
${ }^{52}$ University of Oklahoma, Norman, Oklahoma 73019
${ }^{53}$ Brown University, Providence, Rhode Island 02912
${ }^{54}$ University of Texas, Arlington, Texas 76019
${ }^{55}$ Texas A 8 M University, College Station, Texas 77843
${ }^{56}$ Rice University, Houston, Texas 77005
${ }^{57}$ University of Washington, Seattle, Washington 98195

We have searched for second generation leptoquark (LQ) pairs in the $\mu \mu+$ jets channel using $94 \pm 5 \mathrm{pb}^{-1}$ of $\bar{p} p$ collider data collected by the $\mathrm{D} \emptyset$ experiment at the Fermilab Tevatron during 1993-1996. No evidence for a signal is observed. These results are combined with those from the $\mu \nu+$ jets and $\nu \nu+$ jets channels to obtain 95% confidence level (C.L.) upper limits on the LQ pair production cross section as a function of mass and β, the branching fraction of a LQ decay into a charged lepton and a quark. Lower limits of $200(180) \mathrm{GeV} / c^{2}$ for $\beta=1\left(\frac{1}{2}\right)$ are set at the 95% C.L. on the mass of scalar LQ. Mass limits are also set on vector leptoquarks as a function of β.

The observed symmetry in the spectrum of fundamental particles between leptons (l) and quarks (q) has led to suggestions of the existence of leptoquarks (LQ) [1]. Leptoquarks would carry both lepton and quark quantum numbers, and would decay to $l q$ systems. Although, in principle, leptoquarks could decay to any $l q$ combinations, limits on flavor-changing neutral currents, rare lepton-family violating decays, and proton decay, suggest that leptoquarks would couple only within a single generation [2]. This implies the existence of three LQ generations, analogous to the fermion generations in the standard model.

At the Fermilab Tevatron, leptoquarks are predicted [3] to be produced dominantly via gluon (g) splitting, $\bar{p} p \rightarrow g+X \rightarrow L Q \overline{L Q}+X$. This Letter reports on an enhanced search for second generation leptoquark pairs produced in $\bar{p} p$ interactions at a center-of-mass energy $\sqrt{s}=1.8 \mathrm{TeV}$. The experimental signature considered is when both leptoquarks decay via $\mathrm{LQ} \rightarrow \mu q$, where q can be either a strange or a charm quark depending on the electric charge of the LQ. The corresponding experimental cross section is $\beta^{2} \times \sigma(\bar{p} p \rightarrow L Q \overline{L Q})$, where β is the unknown branching fraction of a LQ to a muon (μ) and a quark (jet).

Previous studies by the DØ [4] and CDF [5] collaborations have considered pair production of scalar leptoquarks in $\mu \mu+$ jets final states. These studies provide lower limits on the mass of LQs of $119 \mathrm{GeV} / c^{2}$ and $202 \mathrm{GeV} / c^{2}$, respectively, for $\beta=1$. Lower limits of $160 \mathrm{GeV} / c^{2}$ for $\beta=1 / 2$ were obtained by $\mathrm{D} \emptyset$ from the $\mu \nu+$ jets final state [6] and by CDF from the $\mu \mu+$ jets final state [5]. For $\beta=0, \mathrm{D} \emptyset$ has obtained a lower limit of $79 \mathrm{GeV} / c^{2}$ from the $\nu \nu+$ jets channel [7].

The present study is complementary to previous DØ searches in the $\mu \nu+$ jets [6] and $\nu \nu+$ jets [7] final states, and greatly extends the previous search in the $\mu \mu+\mathrm{jets}$ channel [4]. The sensitivity for detection of leptoquarks is increased by considering a larger data set that uses the calorimeters to identify muon candidates, and employs several optimization techniques to enhance efficiency. These results are combined with results from other decay channels to improve mass limits on LQs. (A detailed description of this analysis can be found in Ref. [8].)

The DØ detector [9] consists of three major components: an inner detector for tracking charged particles, a uranium/liquid argon calorimeter for measuring electromagnetic and hadronic showers, and a muon spectrometer consisting of magnetized iron toroids and three layers of drift tubes. Jets are measured with an energy resolution of approximately $\sigma(E) / E=0.8 / \sqrt{E}(E$ in $\mathrm{GeV})$. Muons are measured with a momentum resolution of $\sigma(1 / p)=0.18(p-2) / p^{2} \oplus 0.003(p$ in $\mathrm{GeV} / c)$.

Event samples are obtained from triggers requiring the presence of a muon candidate with transverse momentum $p_{T}^{\mu}>5 \mathrm{GeV} / c$ in the fiducial region
$\left|\eta_{\mu}\right|<1.7\left(\eta \equiv-\ln \left[\tan \left(\frac{1}{2} \theta\right)\right]\right.$, where θ is the polar angle of a track with respect to the z-axis taken along the direction of the proton beam), and at least one jet candidate with transverse energy $E_{T}^{j}>8 \mathrm{GeV}$ and $\left|\eta_{j}\right|<$ 2.5. The data correspond to an integrated luminosity of $94 \pm 5 \mathrm{pb}^{-1}$ collected during the 1993-1995 and 1996 Tevatron collider runs at Fermilab [10].

Jets are measured in the calorimeters and are reconstructed offline with a cone algorithm having ra$\operatorname{dius} \mathcal{R} \equiv \sqrt{\Delta \phi^{2}+\Delta \eta^{2}}=0.5$. In the final event sample, two or more jets are required with $E_{T}^{j}>20 \mathrm{GeV}$ within $\left|\eta_{j}\right|<3.0$.

Muon candidates reconstructed in the muon spectrometer are required to have a track that projects back to the interaction vertex. The track is required to be consistent with a muon of $p_{T}^{\mu}>20 \mathrm{GeV} / c$ and $\left|\eta_{\mu}\right|<1.7$. In addition, the muon is required to deposit energy in the calorimeter consistent with the passage of a minimum ionizing particle (MIP). To reduce backgrounds from heavy quark production, candidate muons are required to be isolated from all jets passing the selection criteria listed above by $\Delta R_{\mu j}>0.5$ in the $\eta-\phi$ plane.

Single muon candidates can also be tracked in the calorimeters, where an isolated high $-p_{T}$ muon deposits only a small fraction of its total energy. This results in a unique energy signature consisting of energy from a MIP ($E_{\text {MIP }}$) $[6,11]$ and a large transverse energy imbalance $\left(E_{T}\right)$ in the calorimeter that is proportional to the muon momentum, and points in the azimuthal direction of the $E_{\text {MIP }}$. Muon candidates are restricted to the region $|\eta|<1.7$, and are required to have $\left|\Delta \phi\left(E_{\text {MIP }}-Z_{T}\right)\right|<0.25$ radians. The kinematic quantities (e.g., p_{T}^{μ}) of these candidates are calculated using the (η, ϕ) direction of the $E_{\text {MIP }}$ and the component of the E_{T} along the azimuthal direction of the $E_{\text {MIP }}$.

Dimuon candidate events are required to have two muons with $p_{T}^{\mu}>20 \mathrm{GeV} / c$. At least one muon must be in the central muon spectrometer $\left(\left|\eta_{\mu}\right|<1.0\right)$. A second muon with $\left|\eta_{\mu}\right|<1.7$ may be identified using either the muon spectrometer or the calorimeters.

After obtaining a sample of $\mu \mu+$ jets events, a selection is applied to the event topology. Heavy LQ pairs are expected to have a smaller Lorentz boost, and to decay more symmetrically, than the background events. To take advantage of these differences, the sphericity in the center-of-mass frame $\left(\mathcal{S}_{\mathrm{CM}}\right)$ is required to be greater than 0.05. $\mathcal{S}_{\mathrm{CM}}$ is defined as $1.5\left(\lambda_{1}+\lambda_{2}\right)$, with $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3}$ being the normalized eigenvalues of the momentum tensor. The momentum tensor is formed from the $E_{T}\left(p_{T}\right)$ of all jets (muons) in an event, and $\mathcal{S}_{\mathrm{CM}}=0$ (1) corresponds to a linear (spherical) topology.

Leptoquark events are simulated with the ISAJET [12] Monte Carlo event generator for scalar LQ $\left(S_{\mathrm{LQ}}\right)$, and with PYTHIA [13] for vector LQ $\left(V_{L Q}\right)$. The detection efficiencies for S_{LQ} and V_{LQ} of the same mass are found to

FIG. 1. Invariant mass of $\mu \mu+\mathrm{jets}$ events. The mass is calculated from all muons and jets that pass the selection criteria. The hatched regions give the background estimation, the square points are the $\mu \mu+\mathrm{jets}$ data, and the triangular points are the prediction for S_{LQ} from the Monte Carlo. Uncertainties on bins with no data points are obtained from the 68% confidence interval.
be consistent within the uncertainties. For massive vector leptoquarks ($m_{V_{L Q}}>200 \mathrm{GeV} / c^{2}$), efficiencies are insensitive to differences between minimal vector (MV, $\left.\kappa_{G}=1, \lambda_{G}=0[14]\right)$ and Yang-Mills (YM, $\kappa_{G}=\lambda_{G}=0$ [14]) couplings to standard model bosons [15]. Consequently, the S_{LQ} Monte Carlo is used to represent the shapes of distributions for both S_{LQ} and V_{LQ} analyses.

The leptoquark cross sections for S_{LQ} are next-to-leading-order calculations (NLO) [16] at a renormalization scale $\mu=m_{S_{\mathrm{LQ}}}$. The uncertainties are determined from variation of the renormalization/factorization scale from $2 m_{S_{\mathrm{LQ}}}$ to $\frac{1}{2} m_{S_{\mathrm{LQ}}}$. Both types of V_{LQ} cross sections are calculated to leading-order (LO) at $\mu=m_{V_{\mathrm{LQ}}}$ [14].

The dominant backgrounds are due to $W+$ jets and $Z+$ jets production, and are simulated using VECBOS [17] at the parton level and HERWIG [18] for parton fragmentation. Background due to $W W$ production is simulated with PYTHIA [13]. Background from $t \bar{t}$ production is simulated using HERWIG with a top quark mass of $170 \mathrm{GeV} / c^{2}$. All Monte Carlo samples are processed through a detector simulation program based on the GEANT [19] package.

After initial selection, there are 53 events in the data sample consistent with an estimated background of 53 ± 13 events. The distribution in invariant mass ($m_{\text {event }}$) calculated from all muons and jets passing the selection criteria is given in Fig. 1. The largest expected background is from $W+$ jets (43 ± 13 events) where E_{T} from a neutrino is misidentified as a second muon when low-energy jets or calorimeter noise mimic the energy signature of a MIP. The other backgrounds are from $Z+$ jets events $(5.6 \pm 0.9), W W$ events (2.3 ± 0.9, consistent with previous experimental limits at DØ [20]), and

FIG. 2. Output of the neural network. The network calculates a value for each event based on the inputs (see text) and a set of internal values which are determined during network training on S_{LQ} and background Monte Carlo.
$t \bar{t}$ events (2.1 ± 0.6). The uncertainty in the background estimate is dominated by the statistical uncertainty of the $W+$ jets Monte Carlo and the systematic uncertainty in the $W+$ jets production cross section. The estimate for the production of $200 \mathrm{GeV} / c^{2}$ scalar leptoquarks that pass all of the previous selection requirements is 3.7 ± 0.4 events. All leptoquark production estimates are for $200 \mathrm{GeV} / c^{2} S_{\mathrm{LQ}}$, and use the NLO cross section at a scale $\mu=2 m_{S_{\mathrm{L} Q}}$.

A neural network (NN) analysis [21] is employed to separate any possible signal from background. The NN is trained using a mixture of $W+$ jets, $Z+$ jets, and $t \bar{t}$ background Monte Carlo events, and an independently generated S_{LQ} Monte Carlo sample for a mass $m_{S_{\mathrm{LQ}}}=200 \mathrm{GeV} / c^{2}$. The NN uses seven inputs: $\left[E_{T}^{j_{1}}\right.$, $E_{T}^{j_{2}}, p_{T}^{\mu_{1}}, p_{T}^{\mu_{2}},\left(E_{T}^{j_{1}}+E_{T}^{j_{2}}\right), m_{\text {event }}$ and $\left(E_{T}^{j_{1}}+E_{T}^{j_{2}}\right) / \sum E_{T}^{j_{i}}$, where jets (muons) are ordered in $\left.E_{T}\left(p_{T}\right)\right]$, and 15 nodes in a single hidden layer to calculate an output. The network output $\left(D_{N N}\right)$ is shown in Fig. 2.

No evidence of a signal is seen either in the $D_{N N}$ discriminant or in any kinematic distribution. The $D_{N N}$ selection is optimized for the calculation of limits using a measure of sensitivity [6] calculated from samples of S_{LQ} and background Monte Carlo. The requirement is set at $D_{N N}>0.9$. For this selection no events are observed, consistent with an estimated background of 0.7 ± 0.5 events $(0.49 \pm 0.16 t \bar{t}, 0.15 \pm 0.04 Z+$ jets, $0.05 \pm 0.05 W W$, and $0_{-0.0}^{+0.5} W+$ jets events). The estimate for $200 \mathrm{GeV} / c^{2}$ S_{LQ} production is 3.3 ± 0.3 events.

The selection criteria are applied to the Monte Carlo for a range of LQ masses. The leptoquark detection efficiencies, estimated to be $10 \%-26 \%$ depending on the LQ mass, are listed in Table I, along with the 95% confidence level (C.L.) upper limits on the cross sections. The limits are calculated using a Bayesian approach, with a flat prior distribution for the signal cross section. The

 6.4% respectively） cy／spectrometer resolution for high－p_{T} muons（ 6.6% and
 addition，there are approximately equal uncertainties ficiencies is due to uncertainty in the simulation．In The dominant（ 10% ）systematic uncertainty in the ef－ sult since that value determines the relative contribution
of each channel to the total cross section．

\because－ 0
くへの＋＋や

 －ш！̣ әл！̣suәчәлduoo sə！̣

 Fig． 4 and summarized in Table II． 95% confidence level．Mass limits calculated from the $260 \mathrm{GeV} / c^{2}(\mathrm{MV})$ ，and $310 \mathrm{GeV} / c^{2}(\mathrm{YM})$ ，all at the for $\beta=1 / 2$ ．These limits are also shown in Fig．3，and
the lower mass limits obtained are： $180 \mathrm{GeV} / c^{2}\left(S_{\mathrm{LQ}}\right)$ ， combined cross section $(\mathrm{BR}=1)$ are listed in Table I，

 The results from the $\mu \mu+$ jets $\left(\mathrm{BR}=\beta^{2}\right)$ search are （225） GeV / c^{2} and $325(280) \mathrm{GeV} / c^{2}$ for scalar，MV，and
YM vector couplings，respectively． theory cross sections at $\mu=2 m_{S_{L Q}}$ for the $\mu \mu+$ jets de－
cay channel at $\beta=1(1 / 2)$ are： $200(145) \mathrm{GeV} / c^{2}, 270$ tained from comparing the cross section limits with the
theory cross sections at $\mu=2 m_{S_{L}}$ for the $\mu \mu+$ jets de－ The lower mass limits at the 95% confidence level ob－ for $\mu \mu+\mathrm{jes}$ ）．The resuts are civen f 1 ．

β	Scalar $\left(\mathrm{GeV} / c^{2}\right)$	MV $\left(\mathrm{GeV} / c^{2}\right)$	YM $\left(\mathrm{GeV} / c^{2}\right)$
1	200	275	325
$1 / 2$	180	260	310
0	79	160	205
TABLE II．Combined 95% C．L．lower mass limits for sec－			

Branching Fraction to Charged Leptons

support from the Department of Energy and National Science Foundation (USA), Commissariat à L'Energie Atomique (France), Ministry for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), CONICET and UBACyT (Argentina), and the A.P. Sloan Foundation.

[^0]
[^0]: [1] J.C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); E. Eichten et al., ibid. 34, 1547 (1986); W. Buchmüller and D. Wyler, Phys. Lett. B 177, 377 (1986); E. Eichten et al., Phys. Rev. Lett. 50, 811 (1983); H. Georgi and S. Glashow, ibid. 32, 438 (1974).
 [2] See, e.g., M. Leurer, Phys. Rev. D 49, 333 (1994).
 [3] M. Krämer et al., Phys. Rev. Lett. 79, 341 (1997).
 [4] DØ Collaboration, S. Abachi et al., Phys. Rev. Lett. 75, 3618 (1995).
 [5] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 81, 4806 (1998).
 [6] DØ Collaboration, B. Abbott et al., Phys. Rev. Lett. 83, 2896 (1999).
 [7] DØ Collaboration, B. Abbott et al., Phys. Rev. Lett. 80, 2051 (1998); D \emptyset Collaboration, B. Abbott et al., Phys. Rev. Lett. 81, 38 (1998).
 [8] D. Karmgard, Ph.D. Dissertation, The Florida State University, 1999 (unpublished). http://www-d0.fnal.gov/ results/publications_talks/thesis/karmgard/thesis.ps .
 [9] DØ Collaboration, S. Abachi et al., Nucl. Instrum. Methods Phys. Res. A 338, 185 (1994).
 [10] J. Bantly, et al., FERMILAB-TM-1930, 1995 (unpublished). In order to facilitate combination with previously published results, this analysis does not use the luminosity normalization given in $\mathrm{D} \emptyset$ Collaboration, B. Abbott et al., hep-ex/990625, sec. VII, pp. 21-22, (submitted to Phys. Rev. D). The updated normalization would have the effect of increasing the luminosity by 3.2%.
 [11] D \emptyset Collaboration, B. Abbott et al., Phys. Rev. D 57, 3817 (1998).
 [12] F. Paige and S. Protopopescu, BNL Report No. 38304, 1986 (unpublished); v7.22 with CTEQ2L.
 [13] T. Sjöstrand, Comp. Phys. Comm. 82, 74 (1994); v5.7.
 [14] J. Blümlein, E. Boos, and A. Kryukov Z. Phys. C 76, 137 (1997).
 [15] A. Boehnlein, Proceedings of the XXXIIIrd Rencontre de Moriond, QCD and High Energy Hadronic Interactions, (1998).
 [16] M. Krämer, T. Plehn, M. Spira, and P.M. Zerwas, Phys. Rev. Lett. 79, 341 (1997).
 [17] F.A. Berends et al., Nucl. Phys. B357, 32 (1991).
 [18] G. Marchesini et al., hep-ph/9607393; G. Marchesini et al., Comp. Phys. Comm. 67, 465 (1992); v5.7.
 [19] R. Brun and F. Carminati, CERN Program Library Writeup W5013, 1993 (unpublished); v3.15.
 [20] D \emptyset Collaboration, B. Abbott et al., Phys. Rev D 58, Rapid Communications 051101 (1998).
 [21] C. Peterson, T. Rögnvaldsson, and L. Lönnblad CERNTH.7135/94 (1993); JETNET v3.0.
 [22] D \varnothing Collaboration, B. Abbott et al., Nucl. Instrum. Methods Phys. Res. A 424, 352 (1999).

