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Abstract

Using a data sample corresponding to about 1,233,000 hadronic Z decays collected by
the ALEPH experiment at LEP, the reaction e+e� ! HZ� has been used to search for the
standard model Higgs boson, in association with missing energy when Z� ! ��� , or with a
pair of energetic leptons when Z� ! e+e� or �+��. No signal was found and, at the 95%
con�dence level, mH exceeds 58:4 GeV/c2.
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1. Introduction

In the minimal standard model, the spontaneous breaking of SU(2)L � U(1)Y is

achieved at the expense of the introduction of a doublet of complex scalar �elds � in

self-interaction. As � develops a vacuum expectation value, the W and Z bosons acquire

their masses while three of the four initial degrees of freedom are absorbed. A single neu-

tral scalar particle, the Higgs boson H, therefore results with an unspeci�ed mass mH.

However, for a given mass of the Higgs boson, the theory predicts its production rates and

partial decay widths unambiguously [1].

At LEP, the bremsstrahlung process e+e� ! HZ� ! Hf�f is the dominant Higgs boson

production mechanism. This process has already been investigated by ALEPH [2] and by

the other LEP collaborations [3]. With the data collected in 1989 and 1990 (corresponding

to about 190,000 hadronic Z decays) ALEPH reported a 95% C.L. lower limit of 48 GeV/c2

for the Higgs boson mass [2], by searching for almost all the possible topologies arising

from the various �nal states produced in the bremsstrahlung process, depending on the Z�

and H decay modes.

With the much larger data sample, corresponding to about 1,233,000 hadronic Z decays,

collected by ALEPH between 1989 and 1992, the previous analysis becomes sensitive to a

higher Higgs boson mass and could naively be repeated without any changes. However,

a more complete background study, carried out with accordingly enlarged Monte Carlo

samples, led to the following conclusions.

(i) In order to keep the predicted background at a manageable level, some of the selection

criteria have to be tightened. After a preselection identical to that of ALEPH's pre-

vious analysis, several critical cuts have been optimized on Monte Carlo with the aim

of minimizing, on average, the 95% C.L. upper limit on the number of signal events

produced. Since this upper limit depends on the absolute background level, these cuts

are expected to change again as more integrated luminosity becomes available.

(ii) After applying the same optimization criterion, only the search for acoplanar jets,

relevant for H! hadrons and Z� ! ��� (the H��� channel), and the search for energetic

lepton pairs in hadronic events, relevant for H ! hadrons and Z� ! e+e� or �+��

(the Hl+l� channel) are kept in the analysis. The other topological searches, with

much smaller relative e�ciencies for the Higgs boson search, have to be forsaken

because of too small signal-to-background ratios.

These important statistical issues, relevant for the search strategy, are addressed in

Section 2. In Sections 3 and 4 the background studies for the searches for energetic lepton

pairs in hadronic events and for acoplanar jets are presented in detail. The �nal result is

derived in Section 5.

1



A detailed description of the ALEPH detector can be found in Ref. 4. Charged particle

momenta are measured by a magnetic spectrometer consisting of a precision vertex detector

(VDET) operational since 1991, of a cylindrical drift chamber (ITC), and of a large time

projection chamber (TPC). The 1.5 T axial magnetic �eld is provided by a superconducting

solenoidal coil. The transverse momentum resolution achieved is �p=p = 6:10�4 p (p

in GeV/c).

Photons are measured with an energy resolution �E=E = 0:18=
p
E + 0:01 (E in GeV)

in the electromagnetic calorimeter (ECAL), a 22 radiation length thick sandwich of lead

planes and proportional wire chambers with �ne longitudinal and transverse read-out seg-

mentation. Photons and electrons are identi�ed in ECAL by the characteristic longitudinal

and transverse developments of their associated showers. The 1.5 m thick iron return yoke

of the magnet is interleaved with 23 layers of streamer tubes and acts as a hadronic

calorimeter (HCAL) providing, together with ECAL, a measurement of the hadronic en-

ergy with a resolution �E=E = 0:80=
p
E (E in GeV) and, together with two layers of

muon chambers, muon identi�cation. ECAL is supplemented down to 2� of the beam

axis with an additional electromagnetic calorimeter (LCAL) also used for the luminosity

measurement.

An algorithm [2] combines all these measurements to provide a determination of the

energy 
ow, with an accuracy on the measurable total energy �E=E = 0:65=
p
E (E in GeV)

and with a typical resolution of 30 mrad on jet direction measurements.

In the data sample used for the analysis reported here, all major components of the

detector were required to be simultaneously operational and all major trigger logic relevant

to hadronic Z decays had to be enabled.

2. Statistical issues

A search for rare events always faces the two con
icting aims of reaching the highest

acceptance for the signal while maintaining the expected background contamination at

the lowest level. Some biases may occur in this process when cuts are suggested by an

examination of the data. In order to avoid such analysis biases, the sensitivity of the Higgs

boson search has been optimized, for mH = 60 GeV/c2, in the following way.

(i) Monte Carlo samples corresponding to typically �ve times the total integrated lumi-

nosity are produced for all known background processes. Signal Monte Carlo samples

are also produced.

(ii) A set of variables aimed at discriminating the signal and the various backgrounds

is chosen. The cut to be performed on each of these variables is determined by

minimizing the average value N(x) of the 95% C.L. upper limit on the number of signal

events produced which would be obtained with an in�nity of gedanken experiments

in the absence of any signal contribution:

N(x) =
e�b(x)

"(x)

�
3:00 + 4:74b(x) + 6:30

b2(x)

2!
+ 7:75

b3(x)

3!
+ : : :

�
:
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In this formula, x is the location of the cut and b(x) is the number of background

events expected when the cut is applied. This number is determined from the background

Monte Carlo distribution of the variable x obtained when all other cuts have been applied,

smoothed and extrapolated so that an analytical representation of b(x) is available. The

numbers 3.00, 4.74, 6.30, : : : are the 95% C.L. upper limits on the number of signal events

expected if 0, 1, 2, : : : background events are observed, while the coe�cients of these

numbers are the corresponding Poisson probabilities. Finally, "(x) is the acceptance of the

search for the signal, as a function of the cut location x.

An increase of the acceptance "(x) of a given topological search leads to a reduction

of N(x) in the absence of background. Since this also usually increases the amount b(x)

of background expected, and hence N(x), a minimization procedure [5] has indeed to be

used in order to determine the optimal value of x. In practice, this optimum corresponds

to a value of b(x) much smaller than one event expected. A complete example of this

procedure is given in Section 4. This strategy automatically leads to tighter cuts when the

total integrated luminosity increases. Otherwise, while keeping the same acceptance for

the signal, the expected background level b(x) would increase, and therefore N(x) too.

The same criterion, i.e. the minimization of N, can be used in order to decide a priori

which of the various topological searches should be considered in the derivation of the

�nal result, each of those increasing at the same time the overall e�ciency and the overall

background level. It then turns out that all topological searches except the search for

acoplanar jets, relevant for the H��� channel, have to be abandoned [6].

However, when an event is selected in a topological search such that information on the

mass mH of the candidate Higgs boson is available, it is possible to use this information in

a way such that the occurrence of this event will a�ect the signal production cross-section

upper limit only in a restricted mass range [7]. The total visible mass can be used as an

estimate of mH in the H��� channel, but the method is most powerful in the Hl+l� channel

because of the superior resolution achieved on mH when it is measured as the mass of the

system recoiling against the lepton pair. When the optimization procedure is modi�ed to

take into account not only the level but also the mass distribution of the background, the

result is that it is justi�ed to keep the Hl+l� channel in the analysis.

It is also possible to take into account, for any candidate event, the information that it

was selected in a given topological search, with a probability proportional to the e�ciency

of that search [5]. In this way, when simple event counting is performed, the upper limit

on the signal production cross-section is not degraded by including additional searches,

provided that their contribution to the overall e�ciency is su�ciently small, even if they

are heavily background contaminated. However, this is not necessarily true if the mass

information is used as indicated above, and a complete optimization has to be performed

to decide which channels to include. The result is that, with the amount of data now

accumulated, only the H��� and Hl+l� channels are kept.
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Although background Monte-Carlo simulations have been heavily used in the design of

the analysis, no background subtraction procedure is foreseen a priori if candidate events

should show up in the end. Therefore, the con�dence level attached to the �nal result will

not depend on any assumptions related to the background shape or intensity.

3. Search for energetic lepton pairs in hadronic events

This search addresses the con�guration (H ! hadrons)(Z� ! e+e� or �+��), and

largely relies on the excellent lepton identi�cation capabilities of the ALEPH detector.

As a preselection, only events with at least six charged particle tracks coming from the

interaction point and carrying more than 10% of the centre-of-mass energy are considered.

Energetic pairs are selected as pairs of oppositely charged particle tracks with individual

momenta in excess of 3 GeV/c, with a scalar sum of momenta greater than 20 GeV/c,

and with an invariant mass greater than 5 GeV/c2. Furthermore, the scalar sum of their

transverse momenta with respect to the thrust axis of the rest of the event has to exceed

15 GeV/c. Events with no such pairs are rejected.

For each pair, at least one of the two particles has to be positively identi�ed as an

electron or as a muon, according to the strict criteria of Ref. 2. These criteria are also

applied to the second particle except when the track extrapolates to a non-instrumented

region of the ECAL for electrons, or of the HCAL for muons. The pairs formed with an

electron and a muon are rejected.

This preselection, which is identical to the one presented in Ref. 2, has been applied

to a Monte Carlo sample of 1,700,000 hadronic Z decays, which revealed that:

(i) the requirement that one of the two tracks be isolated is particularly e�cient at re-

jecting background events from Z! q�q while keeping a high e�ciency for the signal.

Here, a track is isolated when no other charged particles are found inside a cone of

30� half-opening angle around its momentum direction and when less than 1 GeV of

neutral energy | apart from identi�ed bremsstrahlung photons | is detected in the

same cone. The size of the isolation cone has been determined with the optimization

technique presented in the previous section;

(ii) the bulk of the background events, when a looser isolation cut is applied, comes from

Z decays into b�b, especially when the two b-quarks decay semi-leptonically.

Therefore, a Monte Carlo sample of 350,000 Z! b�b events corresponding to 1,600,000

hadronic Z decays and another sample of 47,000 Z ! b�b events with two subsequent

b-quark semi-leptonic decays corresponding to 4,000,000 hadronic Z decays, have been

simulated and analyzed. No events from any of these samples, equivalent altogether to

almost six times the integrated luminosity recorded by now, were found to satisfy the

above selection criteria, con�rming the low level of expected background.
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At this level, the ultimate background source to the Hl+l� channel is the four-fermion

process e+e� ! l+ l�q�q, characterized by a topology very close to that of the signal. In

the electron channel, the cross-section for this process develops a pole when at least one

of the two electrons is at very low angle with respect to the beam axis. A luminosity

equivalent to �ve times the data has been simulated for this topology, due to the so-

called two-photon processes, using a dedicated Monte Carlo program described in Ref. 8.

When both electrons escape undetected along the beam direction, this reaction does not

contribute to the topology of interest here. However, a small contribution arises from

the con�guration in which one of the electrons is scattered at a large angle to the beam

direction, with the other one still being undetected, when a real or fake electron is found in

the recoiling hadronic system. This contribution is removed by requiring that (i) qeP
mis

L

be smaller than 15% of the centre-of-mass energy, where qe is the sign of the charge of the

most energetic electron and Pmis

L
the signed missing longitudinal momentum, and (ii) by

rejecting events with more than 10 GeV within 12� of the beam axis.

One thousand l+l�q�q events with the two leptons in the detector acceptance, corre-

sponding to about thirty times the actual recorded luminosity, have been generated for

each of the three lepton 
avours. This has been done using the FERMISV Monte Carlo gen-

erator [9] which includes all the lowest order diagrams contributing to this �nal state and

the �rst order QED corrections, but no QCD corrections. Since the leptons are required in

the preselection to form a rather large invariant mass and to be very energetic, the recoiling

hadronic system tends to be characterized by a low mass and a low multiplicity. For the

e+e�q�q and the �+��q�q �nal states, the hadronic mass can be accurately computed from

the lepton momenta, using energy-momentum conservation. This recoil mass is required

to be larger than 40 GeV/c2. To remove most of the events coming from the �+��q�q

�nal state for which this technique cannot be used, it is required that the total charged

multiplicity be at least 8 when the missing energy is larger than 10% of the centre-of-mass

energy.

Altogether, FERMISV predicts 3:1�0:3 background events while no events are observed

in the data. The distribution of the recoil mass, presented in Fig. 1 after the removal of

the 40 GeV/c2 cut, exhibits a slight excess at low values and a de�cit at high values with

respect to the absolutely normalized prediction, but these discrepancies are alleviated by

including QCD corrections. For hadronic masses below 20 GeV/c2, the diagram of Fig. 2a

is dominant and the cross-section should be increased by � 20%, taking into account the

experimental value of the e+e� ! hadrons cross-section for
p
s = Mq�q. For high hadronic

masses, when the diagram of Fig. 2b becomes dominant, the parton level calculation is

inappropriate since gluon radiation competes with and reduces virtual photon radiation,

as has been shown to be the case for real photon emission [10]. With this e�ect taken into

account, the number of events expected to be seen above 40 GeV/c2 is reduced by a factor

of � 2, leading to a better agreement between observation and expectation.

The � 1:5 background events expected are to be compared to 0.67 events expected

from a 60 GeV/c2 Higgs boson. However, as mentioned in Section 2, the resolution on

the recoil mass (500 MeV/c2 for a 60 GeV/c2 Higgs boson) could be used to improve the

e�ective signal-to-background ratio.
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4. Search for acoplanar jets

In this section, the topology of interest consists of an acoplanar hadronic system ac-

companied by missing energy. It addresses the con�guration (H ! hadrons)(Z� ! ���)

and has been optimized for the search for a 60 GeV/c2 Higgs boson, making use of the

accurate reconstruction of the energy 
ow in the ALEPH detector.

For this topology, the preselection is performed on events with a total visible mass

smaller than 70 GeV/c2 and with at least eight charged particle tracks coming from the

interaction point and carrying more than 10% of the centre-of-mass energy. Again, this

preselection is identical to the one presented in Ref. 2, and is only brie
y recalled here.

In order to avoid energy losses around the beam direction, the fraction of the total

visible energy that is measured beyond 30� of that direction is required to exceed 60%,

and the energy measured within 12� of the beam axis has to be smaller than 3 GeV.

The events are then divided into two hemispheres by a plane perpendicular to the thrust

axis, and the angle between the directions of the total momenta measured in the two

hemispheres (the acollinearity angle) is required to be smaller than 165�, which removes

the bulk of the Z decays into two back-to-back jets.

Events resulting from photon-photon collisions are usually not collinear and exhibit a

large missing energy along the beam axis due to the initial electron and positron which

escape detection. They are rejected by requiring a visible mass above 25 GeV/c2 when the

total momentum transverse to the beam is smaller than 10% of the centre-of-mass energy.

In addition, the invariant masses measured in both hemispheres are required to be larger

than 2.5 GeV/c2. This last cut is also very e�cient against the few remaining Z decays

into �+�� and against the �+��q�q four-fermion �nal state with a low mass q�q pair.

A large acollinearity might also be due to an e+e� annihilation into two jets accompa-

nied by a hard initial state radiation. To remove such events, it is required that the angle

between the total momentum direction and the beam axis be larger than 21.8�, and that

the angle between the two hemisphere directions projected onto a plane perpendicular to

the beam (the acoplanarity angle) be smaller than 175�.

Although this preselection is aimed at rejecting two-jet events, it is also e�cient against

three-jet events, when the three jet energies are well measured. However, when at least

one of the energies is mismeasured, the directions of the total momentum and of the

two hemisphere momenta are a�ected so that the distributions of the acollinearity and

acoplanarity angles are smeared out. Three con�gurations can be distinguished.

(i) When only one jet energy is mismeasured, the total missing momentum clearly points

towards the direction of this jet, and is therefore not isolated. This type of events is

rejected by requiring that less than 1 GeV be detected in a cone of half-opening angle

25.8� around the missing momentum direction. This cut is also e�cient at removing

the �+��q�q four-fermion �nal state with a low-mass �+�� pair.
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(ii) When at least two jet energies are poorly measured, the previous cut is not e�cient

because the direction of the missing momentum is no longer related to a given jet.

However, the three jet directions tend to remain in a given plane, which can be

characterized by a value close to 360� for the sum S of the three jet-jet angles obtained
when the event is forced to form three jets. The distributions of S obtained from

the 1,700,000 hadronic Z decay Monte Carlo sample and from a sample of 7,000

e+e� ! H��� simulated events with mH = 60 GeV/c2 are presented in Fig. 3. Only

events satisfying all the above selection criteria, together with the one described

below, enter these distributions. After applying the optimization procedure, S is

required to be smaller than 345�.

(iii) The remaining background events are also three-jet events with at least one jet energy

mismeasured, but now accompanied by a hard initial state radiation. The simple

properties (i) and (ii) are therefore lost, but this situation can still be addressed

using energy-momentum conservation since it is possible to recompute the energies

of the three jets assuming that their directions have been well measured and that

a photon escaped along the beam axis. The energy of the undetected photon is

also computed by this method. The topology of such background events is sketched

in Fig. 4a, and that of the events expected from the signal in Fig. 4b. All of the

recomputed energies should be positive in the �rst case. In contrast, for the signal,

since the jets coming from a Higgs boson decay tend to be contained in the hemisphere

de�ned by the original Higgs direction, one of the recomputed jet energies has to be

negative in order to fake a jet in the opposite hemisphere.

In order to cope with this topology, the minimum Emin of the three recomputed jet

energies is used. The distribution of the acoplanarity angle vs Emin is shown in Fig. 5a

for background events. It is obtained from the 1,700,000 hadronic Z decay Monte Carlo

sample enriched by a sample of 6,000 q�q
 simulated events with a radiated energy in

excess of 10 GeV, corresponding altogether to 6,000,000 hadronic Z decays. All these

events indeed tend to have a positive Emin while preserving an acoplanarity angle close

to 180�, in contrast to the events from e+e� ! H��� , as shown in Fig. 5c. All the Monte

Carlo background events, corresponding to 2:8� 0:7 events expected, are rejected by the

requirement that the acoplanarity angle be smaller than 162� when Emin exceeds �1 GeV.
As shown in Fig. 5b, the 2 events remaining in the data are also removed by these cuts.

The value of the acoplanarity cut has been set with the optimization procedure de-

scribed in Section 2. First, the distribution of the acoplanarity angle is determined by

�tting the Monte Carlo distribution, inevitably statistically limited after all other cuts

have been applied, with an exponential shape. The result of the �t, shown in Fig. 5d,

has been checked to reproduce accurately the number of events observed in the tail of

the Monte Carlo distribution. The e�ciency of the selection is then obtained from the

H��� Monte Carlo sample with mH = 60 GeV/c2 and is shown in Fig. 5e as a function of

the value of the acoplanarity cut. The optimized value is �nally computed by minimizing,

when the acoplanarity cut is varied, the average of the 95% C.L. upper limit on the number

of signal events produced. As shown in Fig. 5f, the absolute minimum is reached when
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the acoplanarity cut is set at 162�. With an integrated luminosity twice as large as the

luminosity recorded by now, and provided that the other criteria remain unchanged, the

cut would be set at 160�.

In order to understand the origin of the background events rejected only by the cuts

discussed in (i) and (ii) once this last criterion is applied, the isolation cut has been

loosened to 3 GeV and the S cut to 355�. It is then observed that most of the background

events satisfying these looser criteria come from Z decays into b�b, especially when at least

one of the two b-quarks decays semi-leptonically. The Monte Carlo samples of 350,000

Z! b�b events corresponding to 1,600,000 hadronic Z decays, and of 47,000 Z! b�b events

with two subsequent semi-leptonic decays, corresponding to 4,000,000 hadronic Z decays,

can therefore be used to check the robustness of these two cuts. No events from the �rst

sample survive the cuts. One event of the second sample combining two semi-leptonic

decays, a clean three-jet topology and a radiated photon energy of 20 GeV along the beam

direction, is kept with an S value of 341�.

This corresponds to 0.18 events expected in the ALEPH data from Z decays into

hadrons. Less than 0.20 events are expected from Z decays into �+�� or from two-photon

processes, and 0.06 events are expected from the four-fermion process e+e� ! �+��q�q.

Altogether, a total of 0:24+0:27
�0:15 background events are expected to be found, to be compared

to 1.54 signal events for a 60 GeV/c2 mass Higgs boson. Even when the initial 70 GeV/c2

mass cut is removed, no additional background events are expected and no events are

observed in the data.

As an alternative to the cut optimization method described in Section 2, a neural

network technique has been developed for the H��� channel. In this method, a feed-forward

neural network [11] with three twelve-node hidden layers is trained on various Monte Carlo

samples including (i) 200,000 hadronic Z decays, (ii) several dedicated samples for speci�c

backgrounds and (iii) the H��� signal. From eight input variables essentially identical to

those described above, a discriminating output variable is produced on which a cut is

made. In the case of a single variable, placing the cut at the edge of the last event seen in

the data does not cause any bias. With such a cut on the output variable, the e�ciency is

36% for mH = 55 GeV/c2, which is sizeably smaller than the 51% of the previous method.

Since it has not yet been possible to achieve a higher e�ciency in this �rst neural network

approach, the results reported in this letter are derived using the classical cut technique.

5. Result of the analysis

The two topological searches used in this analysis speci�cally address the Hl+l� and

the H��� channels, but are also sensitive, although with a low e�ciency, to the channels

(H! hadrons)(Z� ! �+��) and (H! �+��)(Z� ! hadrons).

No events were observed in a data sample corresponding to about 1,233,000 hadronic

Z decays. The numbers of signal events expected in this sample are shown in Table 1 for

di�erent Higgs boson mass hypotheses. The production cross-section has been determined
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as in Ref. 2, except that the radiative corrections are now taken into account as calculated

in Ref. 12. Furthermore, the numbers of Table 1 have been derived with a branching ratio

of the Higgs boson into �+�� of � 8%, as obtained [13] with a calculation of the hadronic

partial widths up to the third order of QCD and using a b-quark constituent mass of

4:7 � 0:3 GeV/c2. The various sources of systematic uncertainties on these numbers can

be listed as follows.

� An uncertainty of 0.2% is due to the determination of the number of multihadronic

events in the data sample.

� The allowed range for the top-quark mass, mt = 134+22
�25GeV/c

2, obtained from

ALEPH data [14] with mH = 60 GeV/c2, results in an uncertainty of �0:6% on

the ratio of the HZ� to q�q cross-sections.

� The limited signal Monte-Carlo statistics introduces a contribution of 0.9% to the

uncertainty.

� The uncertainties in the hadronization and fragmentation mechanism of the q�q pair

originating from the Higgs boson contribute another 1% for the H��� channel. The

Hl+l� channel is much less a�ected by these uncertainties since the corresponding

selection criteria are essentially related to the leptons.

� The modelling of the lepton identi�cation is accurate at the 2% level (this a�ects only

the Hl+l� channel).

� Finally, the ambiguity on the value of the b-quark constituent mass entering the

calculation of the (H! b�b) decay partial width introduces a �1% uncertainty on the

corresponding branching ratio. This translates into �0:7% for the number of events

expected.

The overall systematic uncertainty is therefore below 2%. The number of signal events

expected, conservatively reduced by this amount, is presented in Fig. 6 as a function of

the Higgs boson mass. With no events observed, an improved 95% C.L. Higgs boson mass

lower limit of 58.4 GeV/c2 is obtained.
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Channel H��� He+e� H�+�� Other Total

mH (GeV/c2) E�. (%) Nexp E�. (%) Nexp E�. (%) Nexp Nexp Nexp

50 55 7.68 59 1.39 69 1.63 0.41 11.11

55 51 3.74 55 0.69 66 0.84 0.19 5.46

60 43 1.54 49 0.30 61 0.37 0.07 2.28

65 34 0.53 44 0.12 56 0.15 0.02 0.82

Table 1. E�ciencies and numbers of signal events expected in the searches for acoplanar

jets and for energetic lepton pairs in hadronic events, when applied to the H���, He+e�,

H�+�� channels, with H ! hadrons, and to all the other possible �nal states, such as

�+��q�q, for Higgs boson masses of 50, 55, 60 and 65 GeV/c2.
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Figure 1: Distribution of the mass recoiling against the lepton pair, when relaxing the cut
at 40 GeV/c2 on this quantity, for e+e� ! l+l�q�q Monte-Carlo events generated with the
FERMISV program with an absolute normalization (shadowed histogram), and for the data
(points with error bars). Negative squared recoil masses m2

rec
occur when the sum of the

measured lepton momenta is larger than the centre-of-mass energy; in this case, the recoil

mass is de�ned as �
q
jm2

rec
j.



Figure 2: Two Feynman graphs for the process e+e� ! l+l�q�q:

a) contributing essentially to the low recoil mass domain;

b) contributing essentially to the high recoil mass domain.



Figure 3: Distribution of the sum S (see text), all other cuts being applied:

a) for the 1,700,000 hadronic Z decay Monte Carlo sample with an absolute normalization
(shadowed histogram) and for the data (triangles with error bars);

b) for H��� simulated events with mH = 60 GeV/c2.

Note the di�erence of scale between the two �gures. The cut at 345� is indicated by an
arrow.



Figure 4: Schematic view of the topology of �nal states, seen in the plane transverse to
the beam axis:

a) for a q�qg
 event, all the recomputed jet energies are positive;

b) for a H��� event, the recomputed energy of jet 2 is negative.



Figure 5: Distribution of the acoplanarity angle versus the minimum of the three recom-
puted jet energies (see text), all other cuts being applied:

a) for a Monte Carlo sample equivalent to six million hadronic Z decays;

b) for the data;

c) for H��� simulated events with mH = 60 GeV/c2.

d) Distribution of the acoplanarity angle, all other cuts being applied, for the data (trian-
gles with error bars) and the Monte Carlo (shadowed histogram). The full line results
from a �t of the Monte Carlo distribution with an exponential shape, and is used to
determine the number of background events expected.

e) Acceptance of the search as a function of the acoplanarity cut, for a Higgs boson mass
of 60 GeV/c2.

f) Average of the 95% C.L. upper limit on the number of H��� events produced as a
function of the acoplanarity cut, for a Higgs boson mass of 60 GeV/c2. The minimum
(indicated by an arrow) is reached for a cut at 162�.

The optimized cut is indicated by a dashed-dotted line in (a), (b), and (c), and by an
arrow in (d).



Figure 6: Number of signal events expected, reduced by the overall systematic uncertainty
of 2%, as a function of the Higgs boson mass. Also shown is the 95% C.L. upper limit on
the number of signal events.


