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Abstract

Events in pp collisions at
√
s = 1.8 TeV with total transverse energy exceed-

ing 500 GeV are used to set limits on quark substructure. The data are

consistent with next-to-leading order QCD calculations. We set a lower limit

of 2.0 TeV at 95% confidence on the energy scale ΛLL for compositeness in

quarks, assuming a model with a left-left isoscalar contact interaction term.

The limits on ΛLL are found to be insensitive to the sign of the interference

term in the Lagrangian.

Typeset using REVTEX
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The first limit on the size of the atomic nucleus was obtained by Geiger and Marsden

in the Rutherford [1] scattering of α particles from nuclei. In an analogous way, we can

set a limit on the size of quarks by observing the scattering of the highest energy quarks

and antiquarks at the Fermilab Tevatron Collider at pp center-of-mass energies of 1.8 TeV.

The scattered quarks from within the proton emerge in the laboratory as collimated showers

of hadrons, called jets. The scalar sum of the transverse energies of the jets in any event

provides a measure of the hardness (the impact parameter) of collisions. The summed

transverse energy of the event is simply expressed

HT ≡
N
∑

i=1

Ei
T ,

where N is the number of jets in the event above some threshold, and Ei
T is the transverse

energy of jet i, essentially the momentum component of the jet in the plane transverse to

the beams [2].

HT is a robust quantity in the multiple interaction environment of the Tevatron, where

often a hard scattering is accompanied by one or more soft interactions that do not produce

high ET jets. Such overlapping events contribute only a small and easily corrected bias to

HT . For individual jets, the precise measurement of the hard-scattering vertex is crucial

for determining Ei
T , but changes in Ei

T induced by changing the position of the vertex

are partially compensated in HT . Efficiencies and resolutions are measured as functions of

Ei
T ; these are correlated weakly with HT because of an effective averaging over final-state

topologies. By treating the event as a whole, this analysis complements the more traditional

probes of QCD, such as measurements of the inclusive jet cross section [3,4], the dijet mass

spectrum [5], and the dijet angular distribution [6,7]. A measurement of dσ/dHT has been

published by the CDF collaboration [8].

This analysis focuses on a test of quark compositeness within the formalism of Eichten et

al. [9] for events with HT > 500 GeV. In the Lagrangian of Ref. [9], we test for compositeness

of left-handed quarks in the left-left isoscalar term,

Lqq = A (g2/2Λ2

LL
) q

L
γµq

L
q
L
γµqL ,

where A = ±1 is the sign of the interference term, ΛLL is the compositeness scale, and

the dependence on αs is contained in the compositeness coupling constant g2. The model
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is completely determined by specifying the two parameters A and ΛLL. In this model, all

three families of quarks are assumed to be composite, and both signs of the interference term

(resulting in constructive (−1) and destructive (+1) interference) are investigated. In this

search for quark compositeness at jet energies well above the mass of the top quark, with

HT > 500 GeV > 2mt ≈ 350 GeV, the only backgrounds considered are from instrumental

sources. For comparison to these results, Table I shows the previous quark compositeness

limits.

The DØ detector is described in detail in Ref. [10]. The principal components of the

detector used in this analysis are the calorimeter for measuring jets, and the central tracking

system for determining the hard-scattering vertex. The pseudorapidity, η = − ln(tan(θ/2)),

of the calorimeter extends to |η| ≤ 4.2, corresponding to a polar angle relative to the incident

proton of θ ≈ 2◦. The depth of the DØ calorimeter varies from 6 to 10 nuclear interaction

lengths, thereby providing good containment for jets. Jet energy resolution is approximately

80%/
√
E, and the resolution on the z-position of the hard-scattering vertex is ±8 mm.

Our analysis is based on 91.9 ± 5.6 pb−1 [11] of data taken during the 1994-1995 run

of the Tevatron. The hardware trigger required a minimum transverse energy exceeding

45 GeV in a region ∆η×∆φ = 0.8× 1.6 of the calorimeter, where φ is the azimuthal angle.

In addition, beam halo effects from the Main Ring, the preaccelerator to the Tevatron, were

minimized through timing restrictions. The software filter required at least one jet with

ET > 115 GeV. The combined selection efficiency was found to exceed 99% for events with

HT > 500 GeV.

A significant fraction of the data were taken at high instantaneous luminosity, which

resulted in more than one pp interaction in a beam crossing leading to an ambiguity in

selecting the primary event vertex. After event reconstruction, the two vertices with the

largest track multiplicity were retained. When there was a second reconstructed vertex in

the event, the imbalance in transverse momentum or missing ET (E/T ) was calculated using

transverse vector energies:

E/T ≡ |
N
∑

i=1

→

Ei
T | .

This was evaluated for both event vertex candidates, with the primary vertex chosen to

minimize E/T . The z-position of the vertex was required to satisfy |zvtx| ≤ 50 cm. The
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efficiency for this cut was measured to be approximately 90%, independent of HT .

Offline jet reconstruction used a fixed-cone algorithm with radius

R =
√

(∆η)2 + (∆φ)2 = 0.7 ,

and was fully efficient for ET > 20 GeV, the threshold applied to each jet for inclusion in HT .

The jet energy scale corrections applied to the data are described in Ref. [12]. Additional

offline cuts were applied to the events to minimize instrumental background and ambiguities

in defining Ei
T and E/T .

All jets with ET > 20 GeV and with |ηj| < 3.0 were required to pass jet selection

criteria, which included: (i) the electromagnetic fraction of the jet energy, measured in the

first layers of the uranium-liquid-argon calorimeter, was required to be between 0.05 and

0.95, except in the region between the central and end cryostats, where only the upper limit

was imposed; (ii) the fraction of energy in the outermost hadronic section was required to

be < 0.40; and, (iii) the ratio Ecell 1
T /Ecell 2

T was required to be < 10, where the calorimeter

cells comprising the jet were ordered in decreasing ET . An event was rejected if any of its

jets with ET > 20 GeV failed the quality or η requirements. The efficiency for a jet to pass

these criteria was parameterized as a function of ET , and the efficiency for an event to pass

the criteria was essentially independent of HT above 500 GeV.

The HT distribution for HT > 500 GeV is shown in Fig.1. The events passed all the

above selection criteria and were corrected for efficiencies and jet energy scale, but not for

resolution. The cross section falls by three orders-of-magnitude over the range in HT from

500 − 1000 GeV. Fig. 2 displays the fractional deviation between the data and the Monte

Carlo for the CTEQ4M PDF with a renormalization scale of Emax
T /2.

The HT spectrum expected from the standard model was provided by the jetrad [13]

Monte Carlo event generator, which is based on a next-to-leading order (NLO) QCD calcula-

tion. We tried several choices for the renormalization scale µ parameterized as µ = fE ·Emax
T

and µ = fH ·HT , where fE and fH are constants we varied from 0.25 to 1.50. We used two

parton distribution functions (PDFs): CTEQ4M [14] and MRST [15].

For ΛLL scales between 1.4 and 7.0 TeV, pythia [16] was used to simulate the effects

of quark compositeness to leading order (LO). The results for composite quarks relative
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to expectations from the standard model are also shown in Fig. 2 for ΛLL = 1.7, 2.0 and

2.5 TeV. The ratios are independent of the pythia renormalization scale for the range

considered here. Using the above ratio from pythia, we scaled the jetrad calculation for

each PDF to obtain our estimate of the expected cross section for any given ΛLL.

As seen in Fig. 2, quark compositeness would show up as a relative rise in the cross

section as a function of HT . Changes in renormalization scale affect the absolute cross

section, but not the shape of HT distribution. Cross sections calculated using CTEQ4M or

MRST PDFs differ in normalization but only slightly in shape. Our analysis will therefore

be based on comparison of the shapes of the measured and predicted HT distributions.

The event efficiency depends weakly on HT , and the corrections are applied directly

to the Monte Carlo generated events. The jet energies in the Monte Carlo are smeared

according to measured resolution functions. The effect of this smearing is also found to be

independent of HT , resulting in just an overall rescaling of the HT distribution. Finally, the

jet energy scale (and its uncertainty) is used to correct the Monte Carlo and to determine

bin-to-bin correlations in HT . The expected distribution, with a variable normalization, is

then compared directly to data.

The error bars in Fig. 2 are statistical, and the envelope indicates the systematic uncer-

tainty (one standard deviation) from the jet energy scale. The systematic uncertainties

range from 17% at the lowest bin shown, to 34% at the highest HT bin. Because these

uncertainties are highly correlated (> 92%) in HT , the line-shape of the HT distribu-

tion is quite constrained within the 95% confidence level (CL) limit. The distribution of

(Data−jetrad)/jetrad in Fig. 2 exhibits no deviation from QCD. From this measure-

ment, we conclude that there is no evidence for quark compositeness below an energy scale

of 2.0 TeV.

A modified Bayesian [17,18] procedure sets the 95% CL lower limits on quark compos-

iteness. The procedure considers the efficiencies, the smearing of jet energy in the Monte

Carlo, the integrated luminosity, the uncertainty and correlations on the jet energy scale,

and the normalization on the expected cross section. Because the efficiencies, resolutions,

and integrated luminosity are independent of HT , these parameters were included in the nor-

malization, which was defined to have a flat prior probability. A Gaussian prior was assumed
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for the jet energy scale, and a flat prior for ξ ≡ 1/Λ2
LL
. The standard model corresponds to

ΛLL → ∞ (ξ → 0). The renormalization scale was varied and the results are summarized

in Table II. The 95% confidence level limits are obtained from the ξ distributions by inte-

grating the posterior probability and requiring that 95% of the integral be below the limit.

Separate limits for both signs of the interference term and for the two PDFs, CTEQ4M and

MRST, are listed in Table II. In general, the limits show small increases for the negative

sign of the interference term, and the MRST PDF. The limits also slightly increase with

increasing renormalization scale.

We checked the stability of the limits given in Table II. The cut |ηj| ≤ 3 was tightened to

|ηj| ≤ 2, thereby excluding events with forward jets in the HT distribution, with essentially

no impact on the limits. Possible bias introduced by our selection of the hard-scattering

vertex was studied again, with no observed impact on the limits. The ET threshold of

the jets was increased from 20 GeV to 50 GeV, and the analysis repeated. The resulting

limits were consistent with those based on the 20 GeV threshold. Changing the assumed

jet energy resolution by ±1 standard deviation had little effect on the shape of the HT

distribution, and thus, little effect on the limit. Varying αs was investigated through use

of the CTEQ4A1-A5 PDFs for a single choice of µ and A, as shown in Table III. There is

very little change of the limit for 0.110 ≤ αs ≤ 0.122, corresponding to a Q2 range from

(50 GeV)2 to (230 GeV)2. The impact of the gluon content of the proton was studied using

the PDF MRST(g ↑) (one standard deviation high) and MRST(g ↓) (one standard deviation

low) [15]. The limits shown in Table III depend only weakly on this choice. Finally, the

distribution from jetrad (number of events in each HT -bin) was fluctuated according to

Poisson statistics, and the limit recalculated. The resulting limits were only 0.1 TeV higher

than the limits based on the data, providing a measure of the sensitivity of this analysis to

the finite statistics and uncertainties in energy-scale.

In summary, the measuredHT distribution above 500 GeV is well modeled by the jetrad

(NLO QCD) event generator. We find no evidence for compositeness in quarks, and set

lower limits on the compositeness scale as a function of renormalization scale, sign of the

interference term in the compositeness Lagrangian, and choice of PDF. These limits are not

affected by small variations in our analysis procedures. The average radius of the scattered
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quark (principally from the first family) is therefore less than ∆x ≈ h̄c/ΛLL ≈ 1× 10−4 fm.
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TABLE I. Previous 95% CL limits, given in TeV, on the left-left isoscalar quark compositeness

model.

Method Λ+

LL
Λ−

LL

Dijet Mass (DØ) [5] 2.4 2.7

Dijet Angular Distribution (DØ) [6] 2.1 2.2

Dijet Angular Distribution (CDF) [7] 1.8 1.6

TABLE II. The 95% CL lower limits on quark compositeness in TeV, for both CTEQ4M and

MRST PDFs, and for renormalization scales µ = fE · Emax
T and µ = fH ·HT (where Emax

T is for

the leading jet). For each PDF, the first limit is for A = +1 and the second is for A = −1.

fE CTEQ4M MRST fH CTEQ4M MRST

Λ+

LL
Λ−

LL
Λ+

LL
Λ−

LL
Λ+

LL
Λ−

LL
Λ+

LL
Λ−

LL

0.25 1.9 1.9 1.9 2.0 0.25 1.9 2.0 2.0 2.1

0.50 1.9 2.0 2.0 2.1 0.50 2.0 2.0 2.1 2.2

0.75 2.0 2.0 2.0 2.1 0.75 2.0 2.1 2.1 2.2

1.00 2.0 2.0 2.1 2.2 1.00 2.0 2.1 2.1 2.2

1.25 2.0 2.0 2.1 2.2

1.50 2.0 2.1 2.1 2.2
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TABLE III. The 95% CL lower limits on quark compositeness scale in ΛLL(TeV) for different

αs (CTEQ4A1-5) and different gluon content (MRST(g ↑) and MRST(g ↓)). The renormalization

scale is Emax
T /2, A = +1. The limits for CTEQ4M and MRST are included for comparison.

PDF Λ+

LL
PDF Λ+

LL
PDF Λ+

LL

CTEQ4A1 2.0 CTEQ4A2 2.0 CTEQ4M 1.9

CTEQ4A4 1.9 CTEQ4A5 1.9

MRST(g ↑) 2.0 MRST(g ↓) 2.1 MRST 2.0

FIG. 1. The HT distribution for HT above 500 GeV. Error bars are statistical, and the error

envelope shows the systematic error on the jet-energy scale. This cross section is corrected for

efficiencies and jet energy scale, but not for resolution.
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FIG. 2. Comparison of the measured HT distribution with jetrad (CTEQ4M and a renormal-

ization scale of µ = Emax
T /2). The errors on the points are statistical, and the error band represents

the highly correlated systematic uncertainty due to the jet energy scale. The superimposed curves

correspond to expectations for three compositeness scales.
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