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Abstract

Multifragmentation of “fused systems” was observed for central very
heavy ion collisions between 30 and 50 MeV/u. Most of the resulting
charged products were well identified thanks to the high performances of
the INDRA 4 array. By comparing two heavy fused systems with dif-
ferent masses and the same available energy (~ 7 MeV per nucleon), an
experimental evidence for bulk effect was observed. This experimental
fact can be related to bulk instabilities in the liquid-gas coexistence re-
gion of nuclear matter (spinodal instabilities) or perhaps simply taken
as a signature of a full exploration of phase space during the multi-
fragmentation process. Experimental charge correlations for fragments
show a weak but non ambiguous enhancement of events with nearly



equal-sized fragments. Such an enhancement is interpreted as a “fossil”
signal of spinodal instabilities in finite nuclear systems.

1 Introduction

The decay of highly excited nuclear systems through multifragmentation (emis-
sion of several fragments in a short time scale) is, at present time, a subject of
great interest in nucleus-nucleus collisions. If this process has been observed
for many years, its experimental knowledge in the Fermi energy domain was
strongly improved only recently with the advent of powerful 47 devices. Well
defined systems or subsystems which undergo multifragmentation have been
carefully selected. Moreover central collisions between heavy nuclei have re-
vealed the importance of a compression phase followed by expansion to cause
multifragmentation [1].

We report here on studies performed with INDRA [2] of multifragmentation
of very heavy fused systems formed at the same excitation energy : 29X e 4%
Sn at 32 MeV/u and 1°Gd+"*U at 36 MeV/u. They can be identified to well
defined pieces of nuclear matter and reveal bulk properties to be compared to
models in which bulk or volume instabilities are present.

When studying experimentally multifragmentation of systems with more
than 200 nucleons, fragments with Z in the range 20-50 are produced. For
such fragments a careful energy calibration was performed for solid state de-
tectors (silicon detectors or mineral scintillators) [3, 4]. Moreover for CsI(T1)
scintillators a better understanding of the light response was obtained; a direct
consequence was an improvement for heavy fragment identification in ioniza-
tion chamber - CsI(Tl) modules [4]

Many theories have been developed to explain multifragmentation (see for
example ref. [5] for a general review of models). One can come in particular to
the concept of multifragmentation by considering a liquid-gas phase transition
in excited nuclear matter. It is commonly believed that, during a collision,
a wide zone of the nuclear matter phase diagram may be explored and that
the nuclear system may enter the liquid-gas phase coexistence region {at low
density) and even more precisely the unstable spinodal region (domain of neg-
ative incompressibility). Thus, a possible origin of multifragmentation may be
found through the growth of density fluctuations in this unstable region.

Among the models some are related to statistical approaches [6, 7] whereas
other, more ambitious, try to describe the dynamical evolution of systems re-
sulting from collisions between two nuclei taking into account the dynamics
of the phase transition. Thus theoretical dynamical scenarios to be compared
with experimental data are simulated via molecular dynamics [8, 9] or stochas-
tic mean field approaches {10, 11, 12]. In this last dynamical approach, spin-
odal decomposition is simulated using a powerful tool, the Brownian One-Body
(BOB) dynamics [13, 14], which consists in employing a Brownian force in the



kinetic equations.

2 Experimental evidence for bulk effect in multifrag-
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Figure 1: Wilczynski diagram for complete events: correlation between total
measured c.m. kinetic energy and flow angle 8.,

Multifragmenting fused systems have been carefully selected for two reac-
tions leading to the same available excitation energy per nucleon {(~ 7TMeV) :
129 X' e 479t Sn at 32 MeV/u and °Gd +"** U at 36 MeV/u. The selection was
performed by requiring the detection of a significant fraction (= 80%) of the
total charge; these selected events are called complete events. Then reaction
products with charge Z > 5 were defined as fragments. Finally the preferred
direction of emission of matter in the center of mass of the reaction (flow an-
gle) was determined from the calculation of the energy tensor of fragments,
and the requirement was made that this angle be larger than 60° [15, 16]. The
main argument underlying the chosen selection is that while a fused system
should be present at all flow angles, binary dissipative collisions should vanish
when this angle is large, giving way to an almost pure phenomenon. Figure 1
exhibits, for the reaction 2% Xe 4" Sn, how complete events populate the flow
angle domain as a function of their measured total kinetic energies (emitted
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Figure 2: Experimental fragment multiplicity distributions and differential
charge multiplicity distributions for the 32 MeV/u Xe+Sn (black histogram
and triangles) and 36 MeV /u Gd+U (grey histogram and circles).

fragments + light charged particles). The same picture is observed for the
heavier system. Fig 2 shows that, for the two fused systems, we observe the
same Z distribution for fragments while the fragment multiplicities scale as the
size of the total systems. This independence of the Z distribution, experimen-
tally observed for the first time [17}, can be considered as a strong evidence of
a bulk effect for producing fragments. It can be related to bulk instabilities in
the liquid-gas coexistence region of nuclear matter (spinodal region) or perhaps
simply taken as a signature of a full exploration of phase space for such heavy
systems. Indeed multiplicities, charge distributions and average kinetic ener-
gies of fragments compared with values for both the dynamical (BNV/BOB)
and the statistical (SMM) approaches including secondary decays well match
the experimental ones [18, 19, 20, 21]. In SMM the dynamical phase of the
reaction is ignored and parameters such as the mass and charge of the mul-
tifragmenting system, its excitation energy, its volume (or density) and the
added radial expansion have to be backtraced to the experimental data.




3 Charge correlation of fragments and spinodal decom-
position
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Figure 3: Fragment charge correlations for the reaction ?°Xe+4"**Sn at 32
MeV /u: comparison between isolated fused events (81, => 60°-left) and most
dissipative events (see text-right) for fragment multiplicities equal to 3 (up)
and 4 (down) (from [22]).

To put ultimate constraints on models, we can and should also compare



fragment correlations in events, which are fully meaningful experimentally be-
cause of the completeness of the detection and of the quality of Z identification.

Experiment BoB

&

Illll

Illll

Coirelalion
[ *Y
T,

N
Tllll

-~

Pl

Conelation
Correlation

Figure 4: Fragment charge correlations for the reaction '?°Xe+"*!Sn at 32
MeV /u: Comparison between experiment (left) and BOB calculations (right)
for fragment multiplicities equal to 4 and 6 (from [22]).

If spinodal instabilities occur the most unstable modes present in the spin-
odal region are predicted to favor “primitive” partitions of nearly equal-sized
fragments (Z:10-15) [23]. But this simple picture is expected to be blurred
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Figure 5: Fragment charge correlations for the reaction ?2°Xe4"**Sn at 32
MeV/u: Comparison between experiment (left) and SMM calculations (right)
for fragment multiplicities equal to 5 and 6 (from [22]).

by several effects: the beating of different modes, eventual coalescence of the
“primitive “ fragments and the finite size of the system, and indeed experimen-
tal Z distributions (see fig 2) do not present any visible enhancement around
Z=10-15. Then how to search for a possible very weak “fossil” signature of
spinodal decomposition? A few years ago a new method called higher order
charge correlations was proposed in [24]. To search for very weak signals, all



fragments in one event (average fragment charge Z and the standard devia-
tion per event AZ) are used to build the charge correlation for each fragment
multiplicity. Due to statistics in experiments this method was only applied
on the Xe+Sn system [22]. A signal is observed for the different multiplicities
from 3 to 6. Examples of the observed experimental correlations are shown in
figure 3 (left part). Note that if we enlarge our data sample to all very dissipa-
tive collisions (total c.m. kinetic energy lower than 1170 MeV whatever 8.,
see figure 1), which are dominated by binary collisions, the signal is no more
present (right part). It clearly shows the importance of a thorough selection
to observe this signal which concerns 0.1% of the considered events.

Concerning the models we again observe an impressive agreement of the
BNV/BOB simulation (simulated events are filtered to take into account the
experimental set-up} with the data (see figure 4). We learn also from these sim-
ulations that secondary deexcitations (deexcitation part of the SIMON code)
modify very slightly the signals. The bin in AZ used in all this work was
fixed by studying secondary deexcitations for primary fragments with Z=15
produced in BNV/BOB simulations. From excitation energy and mass distri-
butions of these primary fragments a secondary Z distribution was deduced :
it is centered at Z=14 with a standard deviation of 0.6. Thus to take into ac-
count secondary decays, AZ was fixed to one atomic number unit. In figure 5
correlations built with SMM events are presented and compared to experi-
mental data: they do not show any signal for an enhancement of events with
equal-sized fragments.

4 Conclusions

A “fossil” signature of spinodal decomposition as the mechanism responsi-
ble for multifragmentation of heavy systems in the Fermi energy domain is
observed for the first time. It consists in an enhancement of events with
equal-sized fragments. A full dynamical model including also the dynamics
of spinodal instabilities which was found to well reproduce all the experimen-
tal observables also reproduces the observed signal. A statistical model, when
adding a radial expansion, reproduces also very well the experimental observ-
ables but the weak “fossil” signal. This fact indicates that dynamical instabili-
ties are responsible for mutifragmentation and that they lead to an exploration
of practically all phase space.
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