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Abstract 
We propose a data acquisition scheme for the OPERA 

long-baseline neutrino experiment based exclusively on 
Ethernet. The  expected data rate allows the use of an Ethernet 
capable device  close to the sensor. The basic idea is to build a 
distributed acquisition system on Ethernet, made of about 
1000 nodes of 64 channel front-end modules. Each node will 
be controlled and readout by an embedded Ethernet chip and 
will be therefore transparently visible on the network. These 
modules will be directly controlled by the event building 
computers and will be able to execute a set of embedded 
functions for slow control monitoring and data readout. We 
present a first prototype of Ethernet capable front-end module 
with high speed ADC and TDC capabilities. A custom ASIC 
from Agilent Laboratories has been used. This device includes 
an embedded web server and implements the IEEE 1451.2 
standard. This paper presents a full hardware implementation 
of a Smart Interface Transducer Module (STIM) defined by 
the IEEE 1451.2 standard. We describe a STIM architecture 
dedicated to the front-end control and readout, designed in 
VHDL and synthesized in a FPGA. We present preliminary 
results and functional validation of the control and readout 
functions through Ethernet and simple web browser tools.  

I.  INTRODUCTION 
The OPERA long baseline neutrino experiment has been 

approved in September 2000 and aims to test the hypothesis of 
neutrino oscillations  by detecting  the appearance of neutrino-
tau events in a pure neutrino-mu beam [1]. The neutrino beam 
will be produced at CERN by mid-2005 and will be targeted 
on the OPERA detector located 720 km away in the Gran-
Sasso underground laboratory (Italy).  

The detector (Figure 1) will be composed of 3 identical 
super-modules. Each super-module will include 2x24 (X, Y) 
scintillator planes interleaved with walls of emulsion bricks. 
Each projection plane,  will consist  of 256 scintillator strips 
readout by  a Wave Length Shifting (WLS) fiber. The emitted 
light will be collected by a multi-pixel device, a 64 Multi-
anode Photo-Multiplier Tube (MaPMT) or by a multipixel    
Hybrid Photo-Diode (HPD) with the same number of pixels. 
An auto-triggerable 64 channels front-end chip will be used 
for charge pre-amplification and signal shaping. Each channel 
contains a slow shaper (peak time 1 µs) for the charge 
measurement and a fast shaper (peaking time 75 ns) for the 
trigger generation. The logic OR of the 64 trigger outputs is 
used to form a common trigger signal to all channels. Each X-
Y plane will be thus readout by 16 front-end chips. The event 

time stamping requires a synchronization mechanism between 
each module with an accuracy of about  10 ns. The aim of the 
tracker is to locate the emulsion bricks likely to contain an 
interesting event in order to retrieve these bricks for a post-
processing. Of the order of 20.000 beam related Charge 
Current events are expected  in 5 years. The event trigger rate 
is therefore dominated by the electronic noise and the photo-
detector dark current. The peak rate does not change 
substantially this estimation. An expected trigger rate of few 
10 Hz/channel is a reasonable estimate of this dark current and 
it is currently under evaluation. This relatively low data rate 
allows to use Ethernet to directly connect the front-end 
detectors to the event building CPU’s. 

 
Figure 1:  OPERA detector overview. 
 

Nowadays, Ethernet is widely used in most Data 
Acquisition System of High Energy Physic experiment. High 
speed products such as Gigabits switches are available at low 
cost and 10 Gigabits products are now emerging. Full duplex 
capability allows to build very high speed and reliable point to 
point links at a reasonable cost. In general, for high data rate 
experiments, Ethernet is still limited to the higher levels of the 
DAQ. The use of specific links bus and protocols is still 
preferred for the front-end electronic readout. However, for 
lower bandwidth experiments the use of Ethernet down to the 
sensors as a unique network for data collection and slow 
control is now conceivable at a reasonable cost.  

We propose such a distributed data acquisition system for 
the OPERA experiment. It will be based exclusively on smart 
sensors directly connected to Ethernet. The main idea is to 
design a 64 channel Ethernet Capable Front End Module. Each 
module is autonomous and possesses its own Internet Protocol 
(IP) address and embeds all the necessary functions for slow 
control, monitoring, and readout of the front-end analog chip. 



 Page 2    (Do NOT include page numbers!) 

II. ETHERNET BASED ACQUISITION SCHEME FOR 
THE OPERA EXPERIMENT 

The overall acquisition scheme is shown in figure 2. The 
global architecture is based on three levels. The first level 
contains 1152 nodes of 64 channels Ethernet capable front-end 
module directly connected to Ethernet and close to the 
detector. The second level is made of 10/100 Mbps switches 
that concentrate the front-end module outputs of each X-Y 
plane (72 in total). The last level is a gigabit switch that allows 
the connection to the event building PCs and storage devices. 
Note that an additional PC could be easily connected to each 
X-Y plane if a local processing is needed such as for instance 
X,Y coincidences. 
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Figure 2: Network based acquisition system architecture. 
 

The advantage of such an approach is the possibility to use 
standard, reliable and low cost products (i.e. Ethernet cables, 
PC, switches). The system can be easily upgraded and scaled 
up if more processing power is needed.  

Table 1 gives the expected load at different levels of the 
network assuming a very conservative trigger rate of 100 Hz 
per channel and a digitized hit size of 64 bits (charge, address 
and time-stamp).  

Table 1 
Expected network loads at different level 

 

 Nominal Load / link Maximum 
Capacitance/ level 

1er level 500 Kbps 10 Mbps 
2nd level 8 Mbps 100 Mbps 
3thrd level 192 Mbps 1 Gbps 

 
A single Gigabits switch for each super-modules provides a 

sufficient security factor. The processor loads and the network 
modelization are currently further evaluated. In the following 
sections of this paper we will focus on the network aspects at 
the front-end side and principally on the Ethernet capable 
front-end module design.  

III. NETWORK CAPABLE FRONT-END MODULE 
The final goal of this work is to build a complete and 

compact Ethernet capable front-end module integrating the 
detector, the analog front-end chip, and the digital control part 

including an Ethernet controller. The proposed fully integrated 
micro-system is shown in figure 3. From left to right the HPD, 
the Front-end integrated circuit, and the digital part with the 
Ethernet controller. 

Fast shaper channelsSlow shaper channels
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FPGA

ETHERNET
CONTROLLER

 
Figure 3: Complete Ethernet Capable Front-end module. 
 

We have designed a first prototype of an Ethernet Capable 
Front-end Module using an Ethernet device from Agilent 
Laboratories [2] (Webplug or BFOOT 11501). This device is 
a custom ASIC based on a 68000 microprocessor and the 
VxWorks real time kernel. It contains an embedded Ethernet 
controller, including a Web server and expects to receive the 
front end data through a 5 Mbps link obeying the  IEEE 
1451.2 standard [3]. In addition, the BFOOT 11501 provides 
some very interesting features for physic experiments, such as 
an UTC time stamping with a synchronization mechanism 
which allows an accuracy of +/-200 ns through Ethernet and a 
GPS receiver. 

A. Overview of the IEEE 1451.2 standard 
The IEEE 1451.2 standard provides the ability to produce 

network-capable smart sensors and actuators. The aim of this 
standard is to build smart sensors fully independent of any 
field network. It defines a standard digital interface with 
hardware lines, protocols and timing, a standard set of 
functionality for triggering, interrupts, status and control, a 
calibration model and a representation of physical units. The 
IEEE 1451.2 standard partitions a smart device into a Network 
Capable Application Processor (NCAP) and a Smart 
Transducer Interface Module (STIM). This functional 
partitioning is shown in figure 3. The NCAP (i.e. the BFOOT 
11501) is a processor which interfaces the STIM (i.e. front-
end, ADC) with the Network and allows to control the STIM 
transparently through the network via the Transducer 
Independent Interface (TII).  
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Figure 4: NCAP and STIM. 
 

The TII defines the physical link between the STIM and 
the NCAP. The TII is built around a synchronous serial 
communication based on the Serial Peripheral Interface (SPI) 
protocol and defines a set of triggering functions for 
reading/writing from/to a transducer. The STIM contains all 
the functions needed to transform a simple transducer to a 
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smart transducer. It includes a Transducer Electronic Data 
Sheet (TEDS). The TEDS is a data sheet written in electronic 
format. It defines the number of channels, the transducer 
functional type (sensor, actuator, buffered sensor, Data 
Sequence sensor, Event sequence sensor ), calibration model, 
timing restriction, and any other data needed to fully describe 
the functionality of the transducer channels implemented in the 
STIM. The TEDS allows a self identification of the 
transducers implemented in the STIM. STIM Devices 
connected to the IEEE 1451.2 interface are made available on 
the network through an Application Program Interface (API) 
defined by a set of Universal Resource Locator  (URL).  In the 
following we present how the BFOOT was used to design a 
first prototype of Ethernet Capable Front-end Module. 

B.  IEEE 1451.2 Network Capable Front-end 
Module   
A block diagram of the first prototype of the Network 

Capable Front End Module is shown in figure 5. This modules 
includes 2 high speed ADC (12 bits 25 MHz) for the charge 
digitization. The time stamping function can be realized in two 
ways. Either the BFOOT provides a local clock with a 
synchronization mechanism which allows to synchronize all 
the nodes through the network with an accuracy of +/- 200 ns, 
or a dedicated input from an externally distributed clock 
synchronized on a GPS receiver permits a time stamping with 
a 5 nanosecond accuracy.   
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Figure 5: Ethernet Capable Front-end Module. 
 

This first prototype also includes a Lecroy 8 channels mult-
hit TDC [4]. The BFOOT is mounted on a daughter board and 
plugged onto the module. A FPGA Altera APEX 20K200 is 
used to implement the STIM and interface the NCAP 
(BFOOT) with the front-end readout sequencer.  

C. STIM architecture. 
The STIM architecture is shown on figure 6 and includes 

two main blocs. The first bloc implements the minimal 
mandatory part of the IEEE 1451.2 standard and contains four 
sub-modules. The first sub-module includes the TEDS ROM. 
The second sub-module contains the mandatory status and 
interrupt mask registers attached to each channel. The third 
sub-module implements the low level TII interface.  The last 
sub-module is the STIM controller which polls for a BFOOT 
request and decodes the functional addresses sent by the 
BFOOT. It also manages the addresses for writing and reading 
the transducer channels.  

The second main bloc contains the transducer channels and 
the front-end sequencer. This bloc provides all the features 
needed to control the analog-front chip.  

For this first prototype we use two analog front-end chips 
(VA-TA32CG) from IDE-AS [5] to form a 64 channels front-
end device. Its architecture contains 32 slow shaping channels 
for the charge measurement and 32 fast shaping channels for 
the trigger generation. When a trigger is detected, an hold 
signal is applied with a delay corresponding to the peaking 
time of the slow shaper. The readout of the 64 channels is 
made through a multiplexer and it is controlled by a shift 
register. In calibration or test mode two shift registers allow 
the charge injection at the preamplifiers inputs. A shift register 
is also dedicated to the DAC codes for the threshold 
adjustment of each channel, and allows to disable the trigger 
of any channel. These functions are quite generic and concern 
any typical front-end device. 
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Figure 6:  FPGA implementation of STIM architecture.. 
 

In order to implement all the front-end functionalities and 
to make them available through the network, five IEEE 1451.2 
channels have been defined.  

The first channel is dedicated to the events (ADC, Time 
Stamp). This channel data format is defined as a burst of  512  
32-bit long words corresponding to half the FIFO depth . On a 
reading request the STIM polls the half full flag of the FIFO 
before asserting an acknowledge  signal and sending the 512 
events to the BFOOT.  

The second channel contains a general purpose status 
register for debugging.  

The third channel is a 64 x 16 bits RAM which contains 
the zero suppression thresholds for each channel. These 
constants are computed after each pedestal run.  

The fourth channel is the configuration register and allows 
to setup the operating mode of the front-end sequencer.  

Four modes have been implemented. In the auto-trigger 
mode, the sequencer polls the front-end trigger signal, enables 
the ADC, and fills the FIFO according to the zero suppression 
status flag. The 3 last modes are dedicated to calibration 
(pedestals, oscilloscope, or peak mode).  

The fifth channel is dedicated to the front-end 
configuration. This is a register which includes the DAC codes 
for the threshold adjustment of each channel and the bit 
selection for disabling some channels. 
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D. Read access method and timing 
A node can be accessed in a variety of ways. The primary 

method is through the web interface by typing a Universal 
Resource Locator (URL). The figure 7 shows an example of 
JAVA applet which can read continuously the ADC channel in 
an oscilloscope mode. 

 
Figure 7:  ADC data access via a web browser. 
 

The node can also be accessed by http commands. Here is 
an example of command for reading a channel defines with 2 
bytes of data. The host name of the node is lyotmp9. 

Http ://lyotmp9/bin/1451dot2/read ?startChan=2&stopCha
n=2&stim=1 

The corresponding timing at the TII (Transducer 
Independent Interface) level is shown in figure 8.  The NTRIG 
signal is send by the NCAP to request a sensor reading or 
writing to an actuator. The NACK signal is send by the STIM 
to the NCAP to acknowledge a trigger request or a byte 
transfer. The NIOE signal is send by the NCAP to the STIM to 
start a transaction frame. The DCLK signal is a clock send by 
the NCAP to synchronize the bit transfer. First when the 
BFOOT receives the above http command, it asserts the 
NTRIG signal (Active low). The STIM which is continuously 
polling NTRIG and NIOE, asserts NACK if the data are 
available. The BFOOT also use this signal to time stamp the 
data with the UTC time and a resolution of 25 ns. 

NTRIG

NACK

NIOE

DCLK

1

2

3

4

Function code Channel Number Channel data  
Figure 8: Read timing for a two bytes channel. 

 
In step 3, the BFOOT then asserts NIOE, start clocking 

DCLK (step 4) and places the data on DIN (Data input of the 
STIM), the first byte which is transfer is the function code and 
the second byte is the channel number for which the function 
must be apply. The next 2 bytes are the data of the channel 
send by the STIM. The NACK signal is toggled to 
acknowledge each byte and finally the NIOE signal is released 
at the end of transaction. The TEDS allows to specify the 
timing parameters for example the DCLK frequency which is 3 
MHz in our case. The BFOOT also provides a read burst 
command to manage the channels with data repetition. This is 
the case of our event channel. This channel is defined as 512 
events of 32 bits so each burst will contain 2048 bytes. The 
read burst timing is shown in figure 9.  

NTRIG

NACK

NIOE

DCLK

First burst 2048 bytes Second burst 2048 bytes  
Figure 9: Read burst timing, 2 bursts of 2048 bytes. 

 

The read burst function implements post-processing on 
each datum before sending it on Ethernet. This post processing 
includes data conversion and a correction engine, which is 
time consuming. In order to optimize the speed for the 
OPERA experiment, we have defined a data streaming 
application which allows to keep a network connection opened 
and  send the data continuously on Ethernet.  

E. Data streaming application 
This data streaming mode is a specific application (figure 

10) based on two threads, which share the same set of ring 
buffers. The writer thread setup an IEEE 1451.2 transaction at 
a period specified in parameter and fills one of the buffers.  
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 Figure 10:  Data streaming application. 
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When the ISR (Interrupt Service Request) is generated the 
write Thread switches to the next buffer.  The reader  thread 
ships the buffer down to the Ethernet socket. 

The writer  thread should be run at high priority.  In case of 
TCP/IP congestion the reader thread can slow down and data 
can be lost if the writer thread fills the entire buffer. Having a 
large number of buffer elements in principle reduces or 
eliminates any gaps in the data. 

The PC application will need a similar multi-threaded 
architecture. A reader thread will be attached to each node. 
Each reader thread will grab an empty buffer from the free 
buffer list, will read from the socket and will place the buffer 
on full list. The database thread will grab a buffer from the full 
list, will write it to disk and will place it back to the empty list. 

We have made a first test with a sampling period of 20 ms 
and a burst size of 2048 byte, each burst containing 512 events 
of 32 bits. The BFOOT sends the data continuously to the 
client host. The data rate is about 800 Kbits/s which 
corresponds to 400 events per second and per channel at the 
front-end inputs. This is largely sufficient for our data rate, the 
final data rate per channel is expected to be at least an order of 
magnitude  less.  

IV. CONCLUSIONS 
The standardization of Ethernet, its industrial availability 

and the continuous upgrade of its performances, make the use 
of Ethernet as unique network for data transmission and slow 
control conceivable. While the concept of the Ethernet 
Capable Front-end Module is widely used in the case of slow-
control type sensors (e.g. pressure and temperature gauges), 
we have extended the concept to include the data-acquisition 
requirements of a high-energy physics experiment.  

We have designed and built a first prototype in order to 
prove the feasibility and evaluate the real performances of 
such a system.  It communicates with the sensor through  the 
IEEE 1451.2 standard. The STIM has been implemented in 
VHDL and synthesized in a FPGA. It includes all the 
necessary functions for a multi-channel photo-multiplier 
sensor interface. Embedded slow control, monitoring and 
readout functions are directly accessible from the network by 
TCP/IP or a simple WEB browser.  

It allows to validate the front-end readout through Ethernet, 
using an embedded Ethernet controller (BFOOT 11501). Data 
rates close to 1 Mbps have been achieved.  

Unfortunately, Agilent has decided to discontinue this chip 
due to insufficient demand.  We luckily have a sufficient 
quantity to test the above ideas in a network composed of  at 
least 16 nodes, that is a typical X-Y plane .  

Furthermore, this STIM can be used with any other NCAP 
which implements the IEEE 1451.2 standard. Therefore, 
another interesting perspective, possibly extending the data 
rate bandwidth,  is the use of  new real-time JAVA processors 
[6].  The idea of building a full JAVA data acquisition system 
from the front-end electronics to the event building data base 
is very attractive [7],[8].  
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