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Abstract 

Nuclear fuel devices of Pressurised Water Reactors are composed of uranium oxide pellets which are enclosed in 

zircaloy cylinders. During reactor operation different processes occur. In the contact with the fuel the zircaloy 

oxidises nonuniformely in depths of order of some micrometers. Further on, energy deposition of fission recoils 

leads to sputtering of uranium onto the inner surface of the cladding material. Thus, sputtered uranium ions start 

to migrate outwards. This paper presents first the results of experiments performed on the Lohengrin 

spectrometer in order to simulate the alteration of cladding tubes in contact with the nuclear fuel during 

irradiation. The energy loss of selected fission products is correlated to an oxygen mass gain. From these 

experiments, we deduce the oxidation kinetics constant under irradiation at a mean temperature of 400°C. These 

results are compared with those of a thermal oxidation. Following oxidation the fission product kinetic energy is 

stabilised, but still a broadening of the energy distribution is observed, which is characteristic of actinide 

diffusion inside the zirconia target. Using the Fick model, an actinide diffusion coefficient into zirconia under 

irradiation is deduced. 
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1. Introduction 

Fuel cladding tubes of Pressurised Water Reactors have been subject to numerous investigations to understand 

their behaviour. The oxidation process on both sides of the zircaloy tubes has been in particular thoroughly 

characterised [1, 2]. The cladding tube inner surface is known to be oxidised by reduction of the UO2 pellets 

which are in slight contact with the Zr cladding [3]. The oxidation kinetics during nuclear operation is subject to 

discussion as it depends on several conditions: temperature, residual oxygen pressure and irradiation conditions. 

In addition, fission products are implanted by recoil in this inner oxide layer and energy deposition of fission 

recoils leads to sputtering of uranium onto the inner surface of the cladding material. The as-sputtered uranium 

can then migrate outwards. It is of primary importance to determine the diffusion parameters of the fission 

products and actinides in the cladding. Consequently, this work will be presented into two parts. The first part is 

devoted to zirconium oxidation measurements in reactor conditions performed on the ILL (Institut Laue 

Langevin) neutron experimental reactor in Grenoble. The oxidation kinetics constant deduced from these 

experiments are compared to thermal oxidation measurements obtained in the same temperature and pressure 

conditions. The second part presents the study of uranium diffusion in the oxidised zirconium. 

 

2. Experimental set up 

2.1 The ILL Lohengrin mass spectrometer 

Zirconium oxidation and uranium diffusion in reactor conditions have been performed at the Lohengrin mass 

spectrometer. In the spectrometer beam tube, an uranium-oxide target stacked onto a Zr foil is placed in a high 

neutron flux of 5x1014 n cm-2 s-1. Uranium is enriched in 235U to about 99%. Fission rates of standard targets (50 



to 100 µg. cm-2) reach about 1011 particles s-1. The high energetic fission products leaving the UO2 target 

transverse a Zr foil of 2µm thickness and 3.5 cm2 surface which is to be investigated and placed in front of the 

target. The fission fragments are analysed in mass and kinetic energy in two successive magnetic and electric 

fields respectively. The separated fragments are detected in a high resolution ionisation chamber [4]. The process 

of oxidation and diffusion can be detected by scanning over the kinetic energy distribution of a selected fission 

product mass at successive times. The kinetic energy evolution of A=90 and Q=18 selected fission fragments is 

presented in figure 1. In experimental configuration, the Zr foil is heated by the γ radiation from the ILL reactor 

and by the fission fragments from the UO2 target which are slowed down in the foil. Taking into account the γ 

heating in the in-pile position (about 0.6 W g-1) and the heating by the fission product (45 MeV energy loss per 

fragment), the temperature of the Zr foil is of the order of 400°C with an error of about 25% [5]. The estimated 

partial oxygen pressure inside the beam tube is around 10-5 mbar.  

 

2.2 Coupling of thermal annealing and RBS analysis 

The zirconium thermal oxidation has been investigated at an oxygen partial pressure of 10-5 mbar and at a 400°C 

temperature. Samples are placed inside a stainless steel tube. Vacuum is obtained thanks to a turbomolecular 

pumping and adjusted by using a dry air variable leak valve. The furnace temperature is regulated at ±3°C and 

controlled by a thermocouple. For each annealing time, zirconium oxidation is measured by Rutherford 

Backscattering experiments performed using 1 MeV α particles. At this incident α energy the sensitivity is about 

5x1016 oxygen atoms cm-2. In figure 2 the RBS α yield on a non oxidised sample is compared to those of 

oxidised ones respectively after 2 and 18 hours annealing.  

 

3. Results 

3.1 Comparison between oxidation under irradiation and thermal oxidation 

At ILL, we have performed systematic energy measurements as shown in figure 1. After an irradiation of 62 

hours the complete oxidation of the zirconium foil has occurred which corresponds to an energy shift of 19.7 

MeV of the selected A=90 fission product. From the experimental mean kinetics energy loss, the oxygen mass 

gain in the Zr foil was calculated by using the stopping tables for heavy ions in solids from Ziegler [6]. In the 

considered energy range corresponding to the oxidation process, the mean oxygen stopping power value is equal 

to 1195 eV/1015 at cm-2. After the oxidation phase no more shift of the mean energy value is observed as shown 

in figure 3. At this stage, the whole foil is oxidised and the stoichiometry corresponds to ZrO2. 

The oxidation kinetics of zirconium under irradiation at 400°C is presented in figure 4. No parabolic 

evolution is noted which means that oxidation is not limited by the oxygen diffusion. This can be interpreted by 

the presence of numerous defects created by fission products. The slope of the straight line gives the kinetics 

constant to be equal to 1.5x1017 oxygen at cm-2 h-1. This result needs to be compared to the kinetics constant of 

thermal zirconium oxidation in the same conditions of temperature and pressure (400°C and 10-5 mbar).  

 In thermal oxidation experiments the oxidised thickness is deduced for each annealing time from the fits 

of the RBS distributions. The results are presented in figure 4 (dotted line). It appears that the oxidation kinetics 

is much smaller compared to that under irradiation. The slope of this curve leads to a kinetics constant of 

0.7x1017 oxygen at cm-2 h-1. This factor 2 can be attributed to the defects induced by the fission product energy 

loss in the zirconium foil. 



 

3.2 Uranium diffusion  

After the oxidation phase, the fission product energy is stabilised but a broadening of the energy distributions is 

observed. Such an evolution is presented in figure 5. It is characteristic of the actinide diffusion inside the 

zirconia target. Within 240 hours, the half width of the almost gaussian energy distributions increases from 12.73 

MeV to 17.27 MeV. An analysis of these data has been performed assuming a gaussian shape of the energetic 

distributions. The initial distribution is assumed to be the one after 62 hours of irradiation when the whole 

zirconium foil is oxidised and the final distribution is the last measurement (after 240 hours). We have simulated 

the uranium distribution evolution by subtracting the two distributions mentioned above. The resulting curve is 

then deconvoluted into 5 gaussian distributions dividing the surface region into 5 slices, the first one 

corresponding to the initial uranium distribution. The amplitude of each gaussian is considered as proportional to 

the uranium concentration whereas the energy is converted into depth of zirconia. An analytical solution of the 

Fick law is given by an erf function distribution of uranium. It is thus possible to reproduce the experimental 

data with a diffusion coefficient of uranium in zirconia equal to 2x10-16 cm2 s-1. 

 

Conclusion 
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Figure Captions 

Figure 1 : Evolution of the energy distribution of fission products (A=90, Q=18) during 62 hours 
 
Figure 2: RBS spectra obtained on a Zr foil (t=0) and after 2 thermal annealing (t=2h and t=18h) 
 
Figure 3: Evolution of the maximum energy of fission products (A=90, Q=18) as function of time 
 
Figure 4: Oxidation kinetics under irradiation (full line) or thermal oxidation (dashed line) 
 
Figure 5: Evolution of the energy distribution of fission products (A=90, Q=18) during the uranium diffusion 
phase 
 



 

Figure 1 
 
 

 
Figure 2 
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Figure 3 

 

 
 

Figure 4 
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Figure 5 
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