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Abstract

Making use of the nonrelativistic potential model for the description of mesons, and working in the Shifman–Voloshin limit,
we compare the integrated rateΓ (B → Xclν) calculated as a sum of the individual decay rates to the quantum-mechanical
analog of the OPE. In the case of a potential regular at the origin, we find a well-defined duality violation, which is, however,
exponentially small. It corresponds to the charm resonances kinematically forbidden in the decay process, but apparently picked
up by the OPE. For singular potentials, we do not obtain a full OPE series, but only a limited Taylor expansion, since the
coefficients become infinite beyond some order. In this case, we do not find an indication of duality violation: the difference is
smaller than the last term of the limited expansion. This emphasizes that the case of singular potentials, which may be relevant
for QCD, deserves further study. 2001 Published by Elsevier Science B.V.

PACS:13.20.He; 12.39.Jh; 12.39.Pn

The theoretical framework based on the Operator
Product Expansion (OPE) determines in QCD the
heavy meson inclusive decay rate as series in inverse
powers of the heavy quark mass, with the coefficients
proportional to the meson matrix elements of the
local operators of increasing dimensions [1,2]. The
calculation is based on representing the decay rate as
the contour integral in the complexq0-plane. The OPE
makes the contour integrals easily calculable term by
term and provides the decay rate as a 1/mQ series.

There are, however, potentially dangerous points in
this calculation:

E-mail address:melikhov@thphys.uni-heidelberg.de
(D. Melikhov).

(i) the OPE series is at best asymptotically conver-
gent even for large absolute values of the complexq0;

(ii) the integration contour for the decay rate con-
tains a segment near the physical region, where the
OPE cannot be justified [1].

This might lead to the violation of duality for the
decay rate, i.e., to the difference between the OPE-
calculated decay rate and the result of summing the
individual decay rates of the opened channels. This
issue was also discussed by N. Isgur [3].

In this Letter we discuss the semileptonic decay rate
in the small velocity limit and use the nonrelativistic
potential model for the description of mesons. We per-
form a short-time expansion in operators of increas-
ing dimensions which we call OPE and which has in-
deed some common features (but also important dif-
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ferences) with the OPE expansion in the field theory.
We consider the two cases: regular confining poten-
tials1 and singular potentials. Note that, in the past, the
nonrelativistic potential model has been widely used
in the discussion of QCD sum rules [4,5]. The ques-
tion of the distinction between regular (harmonic) and
singular (Coulomb) potentials has been emphasised by
Novikov et al. [4] (in the context of heavy quark QCD
sum rules).

We work in the Shifman–Voloshin (SV) limitΛ≪
δm = mb − mc ≪ mc,mb. In this limit both the
amplitude and the decay rate can be formally obtained
as adouble expansionin 1/mc and 1/δm. We consider
lowest orders in 1/mc, up to 1/m2

c , andall orders in
1/δm. Note that this involves terms of much higher
order than usually done when one expands in 1/mQ
with mb/mc, or as wellδm/mQ, fixed. Our double
expansion allows on the contrary to go much further
in 1/δm, and this might allow to display subtle duality
violations.

For the regular potential we obtain the full 1/δm
expansion, which is only asymptotic to the physical
width expanded to the same order in 1/mc. The
difference2 is of order δm/m2

c exp(−δm/Λ), which
means exponentially small duality violation.

For the singular potential we do not obtain the full
1/δm expansion: following the same procedure as
for the regular potential leads to infinite coefficients
beyond some order in 1/δm. In this case, we find
that the truncated expansion satisfies duality up to this
order.

We consider the inclusive semileptonic decayB →
Xclν in the SV limit and treat mesons as nonrela-
tivistic bound states of spinless quarks in a confin-
ing potential (a detailed calculation is given in [6]).
This model maximally simplifies both constructing the
OPE series and calculating the sum of the exclusive
channels. For the sake of argument we consider the
case of leptons coupled to hadrons through the scalar
current. In this case the leptonic tensor is reduced to
a scalar functionL(q2). The amplitudeT depends on
the two variables, and we choose them asq0 and�q 2 in

1 A regular potential is a potential which is an analytic function
of �r at r = 0. For example, the potentialV (r)≃ |�r| falls out of this
class.

2 As we shall see this expansion contains only a finite number of
nonzero terms.

Fig. 1. Singularities of the amplitudeT (q0, �q
2) in the complex

q0-plane. Circles are poles, corresponding to low-lying charm
states, and the cross marks the location of the pole in the freeb→ c

quark transition.

theB-rest frame:

T
(
q0, �q

2) =
1

i

∫
dx e−iqx〈B|T

(
J (x), J+(0)

)
|B〉

(1)=
∑

X

|〈B|J |X(−�q)〉|2

MB −EX(−�q)− q0
.

The sum in (1) runs over all hadron states with
the appropriate quantum numbers. The states are
normalized as follows〈 �p| �p′〉 = (2π)3δ( �p − �p′), and
EX(−�q) is the energy of the stateX with the total
3-momentum−�q.

At fixed �q 2, T (q0, �q
2) has a cut in the complex

q0-plane along the real axis forq0 < MB − MD −
�q 2/2(mc +md), see Fig. 1.

A part of this cut for |�q| < q0 < MB − MD −
�q 2/2(mc+md) corresponds to the decay process. The
decay rate can be represented as the contour integral in
the complexq0-plane over the contourC(�q 2) (Fig. 1)

(2)

Γ (B →Xclν)=

∫
d �q 2|�q|

∫

C(�q 2)

dq0

2πi
L

(
q2)T

(
q0, �q

2).

The contourC(�q 2) selects at any given�q 2 only states
kinematically allowed in the decayB → Xclν. It is
tightly attached to the pointsP± with the coordinates
(|�q|,±i0), otherwise it can be freely deformed in the
region where the functionT0(q0, �q

2) is analytic.
The amplitude can be expanded in a series

(3)T
(
q0, �q

2) =
∑

i

ci
(
q0, �q

2)〈B|Ôi |B〉,

whereÔi are operators of increasing dimensions and
ci(q0, �q

2) are thec-number coefficients. Introducing
the expansion (3) into (2) gives the integrated rate as
an OPE series.3

3 The OPE series in the potential model has an important
distinctions from the Wilsonian scheme in the field theory where
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1. The model

Let us proceed along the lines of Ref. [6]. We
treat the leptonic part relativistically, but for the
description of mesons as bound states of spinless
quarks use the nonrelativistic potential model with
a confining potential. We consider the decay in the
B-rest frame. The Hamiltonian of thebq̄ system at rest
has the form

Ĥbd =mb +md + ĥbd ,

ĥbd = �k 2/2mb + �k 2/2md + Vbd(r),

such that

(ĥbd − ǫB)|B〉 = 0,

(Ĥbd −MB)|B〉 = 0,

MB =mb +md + ǫB .

The Hamiltonian of thecq̄ system produced in the
semileptonicb→ clν decay reads

Ĥcd(�q)=mc +md + (�k + �q)2/2mc

+ �k 2/2md + Vcd(r).

The eigenstates of this Hamiltonian are|Dn(�q)〉 such
that

(
Ĥcd (�q)−EDn(�q)

)∣∣Dn(�q)
〉
= 0,

where

EDn(�q)=MDn + �q 2/2(mc +md),

MDn =mc +md + ǫDn .

TheQq̄ potential can be expanded as follows:

VQq = V0 + V1/2mQ + V2/2m2
Q + · · · .

contributions of distances below the scale 1/µ are referred to the
Wilson coefficients, while contributions of distances above this scale
are referred to the matrix elements. As a result, both the Wilson
coefficients and the matrix elements acquire theµ-dependence.
In the potential model, theT -product of the two currents is also
expanded in a series of operators of increasing dimensions, but the
resultingc-number coefficients and the matrix elements in Eq. (3)
are scale independent.

2. Sum rules

The relationship between the sum over the individ-
ual channels and the meson matrix elements of the op-
erators is established by the sum rules. Let us intro-
duceδn(�q) through the relation (δn(�q) = ǫDn − ǫB −
�q 2md/2mc(mc +md))

(4)

MB − q0 −EDn(�q)= δm− q0 − �q 2/2mc − δn(�q).

Theδn(�q) is the eigenvalue of the operatorδH(�q)

(5)MB − Ĥcd(�q)= δm− �q 2/2mc − δH(�q)

with |Dn(�q)〉 the corresponding eigenstates. The sum
rules are obtained by inserting the full system of the
eigenstates|Dn(�q)〉 into 〈B| (δH(�q))i |B〉:

(6)〈B|
(
δH(�q)

)i
|B〉 =

∞∑

n=0

∣∣Fn(�q)
∣∣2(δn(�q)

)i
,

whereFn(�q) = 〈B|Dn(�q)〉 is theB → Dn transition
form factor. This relation represents the sum over all
cd̄ resonances in terms of theB-meson matrix element
of the operators(δH(�q))i . For the potential regular at
the originr = 0 the sum overn is convergent for anyi,
whereas for the singular potential both sides of Eq. (6)
are convergent for smalli and diverge for largei.
At the moment we proceed formally and discuss this
problem in more detail in Section 5.

3. Duality relation for the amplitude

Making use of the sum rules (6), we represent the
amplitude as a sum of the operators:

T (q0, �q)

(7)=

∞∑

n=0

|Fn(�q)|
2

MB − q0 −En(�q)

(8)=
1

δm− �q 2

2mc
− q0

∑

n=0

∑

i=0

|Fn(�q)|
2(δn(�q))

i

(
δm− �q 2

2mc
− q0

)i

(9)=
1

δm− �q 2

2mc
− q0

∑

i=0

〈B|(δH(�q))i |〉B
(
δm− �q 2

2mc
− q0

)i .

This expression is the duality relation for the ampli-
tude: the sum (7) runs over the infinite number of the



138 A. Le Yaouanc et al. / Physics Letters B 517 (2001) 135–141

charm resonances, and the sum (8) runs over the infi-
nite number of the operators of the increasing dimen-
sions (the OPE series). In fact, the location of singu-
larities in the complexq0-plane in the series (7) and
(9) is quite different: in (7) it is an infinite set of single
poles at the different locations corresponding to differ-
ent charm resonances, and in (8) it is an infinite set of
poles of the increasing order at the same point.

However, this set of equations is only a formal one;
in fact, (7) is a summable series leading to a finite
result in all cases; on the other hand, the situation
of Eq. (9) is more subtle. In the singular case, the
coefficients are infinite beyond some order, and one
must accordingly truncate the series. In the regular
case, the Eq. (9) is only an asymptotic series: notice
that the geometric sum overi in Eq. (8) has a domain
of convergence which is repelled to infinity withn.

Let us illustrate it with a simple example: assume
that F 2

n ≃ e−n andEn ≃ n. Then the analog of the
above equations takes the form

(10)
∞∑

n=0

e−n

z− n
=

∑

n=0

e−n

z

∑

i=0

(
n

z

)i
≃

1

z

∑

i=0

i!

zi
.

The last step is obtained by changing the order of
summation and using the relation

∑∞
n=0 e

−nni ≃ i!
The series (10) ini is only asymptotic and not even
Borel summable.

Such a factorial divergence appears in the example
of M.A. Shifman [7]. In this example, the residues
are constant with the excitation number. This would
imply that the direct method of our Letter will give
formally infinite coefficients for the expansion, which
means that it fails completely. In our example, on the
contrary, the residues are rapidly decreasing, and all
the coefficients are finite. The interest of our example
is to show that nevertheless a factorial divergence is
also appearing.

From the amplitudeT under the form Eq. (7) or
Eq. (9), respectively, by integration over the same
contourC, we can obtain either the width as a sum
over the exclusive final states, or as the OPE series.
The expression (9) is an accurate approximation to
(7) only when q0 is far from the singularities of
T (q0, �q). The contourC can be deformed away from
the singularities except near its fixed end points.
When integrating overq0 this is a possible source of
discrepancy, i.e., of duality violation. Consequently,

we are now going to estimate the integral of expression
(7), i.e. the sum over the exclusive channels, and the
integral of expression (9), i.e., the OPE prediction, and
compare both results.

4. The OPE calculation of the decay rate

Let us first proceed with the amplitude in the
form (9) and obtain the OPE expression for the decay
rate. We consider the leptonic tensor of the general
form L(q2) = (q2)N . For technical reasons, it is
convenient to isolatehbd in the expression forδH(�q)
as follows

(11)

δH(�q)= hbd − ǫB +
�k�q

mc
+

(
1

mc
−

1

mb

)
�k2 + V1

2
.

Substituting (11) in (9) and performing the necessary
integrations gives a series in 1/mc [6]

Γ OPE(B →Xclν)

Γ (b→ clν)

= 1+
〈B|�k 2|B〉

2m2
c

− (2N + 3)
〈B|V1|B〉

2m2
c

(12)

+

2N+3∑

i=1

(−1)i
Ci+2

2N+5

2N + 5

〈B|Ôi |B〉

m2
cδm

i
+O

(
Λ2δm

m3
c

)
,

with Cin = n!
i!(n−i)! and Ôi = �k(hbd − ǫB)

i �k. An
important feature of the OPE series (12) is that the
leading-order term reproduces the free-quark decay
rate, and the first correction emerges only in the 1/m2

c

order (cf. [1,2]).

5. Summation of the exclusive channels

Now let us sum the rates of the exclusive channels.
TheB →Dn transition form factors have the form [6]

F 2
0 (�q)= 1− ρ2

0 �q 2/m2
c +O

(
�q4/m4

c

)

+O
(
δm2β2/m4

c

)
,

F 2
n (�q)= ρ2

n �q 2/m2
c +O

(
�q4/m4

c

)
+O

(
δm2β2/m4

c

)
.

Since |�q| � δm in the decay region, these expres-
sions allow calculating the decay rate to the accuracy
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δm2/m2
c . Explicitly, we obtain [6]:

Γ (B →D0lν)

Γ (b→ clν)

= 1−
3ρ2

0

2N + 5

δm2

m2
c

+
3

2

md

1+md/mc

δm

m2
c

− (2N + 3)
〈B|�k2 + V1|B〉

2m2
c

,

Γ (B →Dnlν)

Γ (b→ clν)

=
3ρ2
n

2N + 5

δm2

m2
c

− 3
(
ρ2
n∆n

)δm
m2
c

(13)+
1

m2
c

2N+5∑

i=2

(−1)iCi2N+5

2N + 5

(3ρ2
n∆

i
n)

δmi−2 ,

where∆n = ǫDn − ǫD0 .
The main contribution is given by theB → D0

transition. Excited states contribute only starting from
the (δm)2/m2

c order in the SV limit. Notice thateach
of the exclusive rates contains terms of the order
δm2/m2

c andΛδm/m2
c which are absent in the OPE

series.
Summing over all opened exclusive channels gives

Γ (B →Xclν)

Γ (b→ clν)

= 1−
δm2

m2
c

3

2N + 5

(
ρ2

0 −

nmax∑

n=1

ρ2
n

)

+ 3
δm

m2
c

(
md/2

1+md/mc
−

nmax∑

n=1

ρ2
n∆n

)
− (2N + 3)

×
〈B|�k2 + V1|B〉

2m2
c

(14)+

2N+5∑

i=2

(−1)iCi2N+5

2N + 5

3
(∑nmax

n=1 ρ
2
n∆

i
n

)

m2
cδm

i−2
.

The sum over the charm resonances is truncated at
nmax, which is the total number of the resonance levels
opened atq2 = 0. For the confining potential and in
the SV limit nmax is found from the relation∆nmax ≃
δm.

6. Check of duality for regular potentials

The transition radii in the expression (14) are not
independent and related to each other through the
sum rules. These sum rules can be obtained from (6).
Expanding both sides of (6) in powers of 1/mQ and
taking the linear�q2 term gives the set of the sum rules
[6]: for i = 0 one finds the Bjorken sum rule [8], for
i = 1 — the Voloshin sum rule [9], fori � 2 — higher
moment sum rules:

i = 0:
∞∑

n=1

ρ2
n = ρ2

0,

i = 1:
∞∑

n=1

ρ2
n∆n =

md/2

1+md/mc
,

(15)i � 2:
∞∑

n=1

ρ2
n∆

i
n =

1

3
〈B|�k(hbd − ǫB)

i−2�k|B〉.

Using these relations to rewrite the OPE result (12)
as the sum over hadronic resonances, the difference
between the OPE and the exclusive sum (the duality-
violating contribution) explicitly reads

δΓ ≡
Γ OPE(B →Xclν)− Γ (B →Xclν)

Γ (b→ clν)

= 3
δm2

m2
c

2N+5∑

i=0

(−1)iCi2N+5

(2N + 5)δmi
∑

n>nmax

ρ2
n(∆n)

i

+O

(
Λ2δm

m3
c

)

=
δm2

m2
c

3

2N + 5

∑

n>nmax

ρ2
n

(
1−

∆n

δm

)2N+5

(16)+O

(
Λ2δm

m3
c

)
.

Quite remarkably,δΓ happens to be equal to the sum
of the extrapolated widths for charm states beyond
the kinematical limit. A similar expression is found
in QCD2 [12]. Clearly, the duality-violating effect is
connected with the charm states forbidden kinemat-
ically in the decay process. Notice thatΓ OPE(B →
Xclν) − Γ (B → Xclν) < 0, because∆n > δm for
n > nmax, and 2N + 5 is odd.

To estimate the size of the duality-violation effects,
the behavior of thetransition radii and the relation
between∆n and nmax, which will be given by the
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behaviour of theexcitation energiesalso at largen,
are needed. For quite a general form of the confin-
ing potential we can write the following relations for
∆n at largen ∆n �ΛCna for n > nmax and∆nmax =
ΛC(nmax)

a ≃ δm, with C anda some positive num-
bers. In particular, this estimate is valid for the confin-
ing potentials with a power behavior at larger. This
estimate for∆n is only depending on the behaviour of
the potential at large distances.

The behavior of the radiiρ2
n at largen are then

connected with the finiteness of the r.h.s. of the sum
rules (15): for a potential regular atr = 0, the matrix
elements in the r.h.s. of the sum rules are finite for any
i, which means that the radiiρ2

n are decreasing with
n faster than any power. Essentially this means that
ρ2
n ≃ exp(−n), and, therefore, the duality-violating

effect in the decay rate in (16) is of orderδΓ ≃
δm2/m2

c exp(−δm/Λ). One of such examples, the
harmonic oscillator potential, is discussed in [10].

7. Singular potentials

However, if the potential is singular atr = 0, the
situation changes dramatically. First, only a few first
number of the matrix elements〈B|Ôi |B〉 are finite.4

We can try to proceed along the same lines but then
have to truncate the series in 1/δm at the last finite
term. We want to estimate the difference between this
truncated series and the exclusive sum.

Let us illustrate this considering a potential with
a Coulomb behavior at smallr, V ≃ −α/r, and
confining at larger. Then 〈B|�k(hbd − ǫB)

i �k|B〉 are
finite for i � 1, but diverge starting fromi = 2. We
then find that

4 The appearance of infinite coefficients in the OPE series is
probably due to a breakdown of the power series expansion, for
instance by fractional powers or logarithms ofmQ as seems to be
the case in the pure Coulomb case [11]. For similar phenomena in a
perturbation expansion, see [13].

In particular, it has been noted by Novikov et al. [4] that, in the
case of the Coulomb potential, half integral powers of the expansion
parameter occur in the calculation of the moments of the ratioR.
However, in our case, preliminary work shows that there are not only
half integer powers ofΛ/δm, but also logarithms of this quantity.
In fact, we note in this respect that the full Schwinger formula
for the ratioR contains also logarithms in addition to half integer
powers [14].

(17)ρ2
n �

1

n1+ε

(
1

na

)3

.

Suchρ2
n lead to the estimate

(18)δΓ ≃
Λ2

m2
c

(
Λ

δm

)(1+ε/a)

.

More generally, if the above matrix element begins
to diverge for some valuei =K + 1, the formulas are
to be replaced by:

(19)ρ2
n �

1

n1+ε

(
1

na

)K+2

,

(20)δΓ ≃
Λ2

m2
c

(
Λ

δm

)(K+ε/a)

.

Notice that thisδΓ is smaller than the last retained
term in the OPE series which is of orderΛ

2

m2
c

(
Λ
δm

)K
.

Therefore, the ‘duality violation’ is just smaller than
the last retained term as for the asymptotic series. This
means in fact that there isno indication of duality
violation at this computable order. This is independent
of a, therefore of thelarge distance behavior of the
potential.

8. Conclusion

Summarizing our results, the amplitudeT (q0, �q
2)

(the T -product, Eq. (1)) can be expanded in inverse
powers of δm − �q2/2mc − q0, the so-called OPE
expansion. Exact duality would mean that the OPE
series was convergent and equal toT . Actually, this
is not exactly the case. Even in the favourable case of
theregular potentials(at �r = 0), the OPE series is not
convergent, it is only asymptotic to the actualT . For
singular potentials, the coefficients are simply infinite
beyond a certain order.

Besides these problems concerning the amplitude,
additional problems appear for the expansion of the
width, which is given by a contour integral ofT in
theq0 complex plane: the OPE expansion is accurate
far from the singularities inq0, while the contour has
fixed end points in the complex plane close to the
singularities (Fig. 1). In view of this situation, we have
computed explicitly the difference between the OPE
and the actual width. For singular potentials, the series
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must be truncated, and the difference is found smaller
than the last retained term.

As to the perspectives opened by this work, we must
first emphasize that singular potentials seem more in-
teresting than regular ones. Indeed, in QCD the effec-
tive quark potential is singular, a smoothed Coulomb
singularity. Moreover, in QCD2, one can suspect some
similarity with a linear potential|�r|, which is also sin-
gular at the origin in the sense of this Letter. For a
singular potential, we have seen that the entire series
must be truncated at some order, because the coeffi-
cients become eventually infinite. We think that such
infinite coefficients in an entire series expansion cor-
respond to the fact that the correct expansion is not
entire but must include fractional powers and/or loga-
rithms in the expansion parameter, i.e.,δm. In QCD,
one can argue that the operator matrix elements are
finite due to renormalisation, but nevertheless the co-
efficients still contain logarithms of heavy masses. In
the nonrelativistic case, the object of the present Let-
ter, the method which has been followed does not lead
to definite conclusions as regards duality for singular
potentials: namely, to the order we are able to calculate
in this Letter, we find that there is no duality violation,
but this leaves open the question of duality violation
at some higher order.5 To proceed further, one would

5 In the context of QCD2, one has demonstrated duality up
to the order 1/m4

Q
and it may be believed that duality has been

fully demonstrated in higher orders [12]. However, a comment is
in order here. In [12], it was shown that the matrix element of
the leading operator〈B|�QQ|B〉 is dual to the sum of the widths
of the full tower of resonances. Therefore, one can suspect that
there is a difference between the actual width and the OPE, that
is of higher order 1/m5

Q, corresponding to the extrapolated width
of the kinematically forbidden states. This difference, however,
has the same order 1/m5

Q as the matrix elements of the higher
dimension operators [12]. It was thenassumedthat both quantities
are dual to each other, but the corresponding OPE coefficients were
not calculated and we have not found where this assumption was
demonstrated.

have to devise new methods to obtain the above con-
jectured generalized expansions.
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