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Abstract

Any pair measurement is accompanied by a combinatorial background of
uncorrelated elements. This background increases with the average number of
single elements per event.

In ultrarelativistic heavy ion collisions the subtraction of this background is
crucial for the study of the muon pair production. After a short description of
the principles of an estimate of this background, one of these methods, based
on the recombinations of single muons extracted from the measured muon
pairs, is extensively studied and the error associated to these recombinations
is determined both from analytical calculations and from studies of simulated
and experimental samples. The optimization of the number of combinations is
also considered.

1

E
X

T
-2

00
2-

04
7

04
/

06
/

20
02



1 Introduction

In ultrarelativistic heavy ions collisions, extreme conditions of temperature and density are
reached and a new phase of matter could be accessed: the plasma of quarks and gluons [1].
It is a challenging experimental task to isolate in the �nal products of the expansion system

signi�cant traces of this transient state.

One of the most promising way is the measurements of muon pairs, which give access to the

study of onia production. Thanks to their high masses, their rarity and their short live time,
the onia could be the speci�c probes of the decon�ned nature of the medium [2]. An anomalous
suppression of the J/ has been recently observed by NA50 [3] at the CERN-SPS with 158
GeV/u Pb beams. Beside the resonances, the dimuon mass spectrum [4] displays a continuum

due to various sources which can also present interest as a reference or as another potential

signal of the plasma formation [5].

Experimentally the true muon pair production is naturally associated to a background of
random combinations, which at CERN-SPS energies are mainly due to uncorrelated decays of
� and K mesons into muons.

This combinatorial background, increasing with the square of the multiplicity of the pro-
duced mesons, increases dramatically with the energy deposited in the collision, and is thus an

important experimental problem for dimuon measurements in heavy ion collisions.

Several methods have been proposed in the past years in the NA38 [6] experiment. This work

deals mainly with the non trivial estimation of the error associated with the "recombinatorial
method", but the framework which have been developed through the years (see [7, 9]) in the
NA38 collaboration is also described.

Experiments involved in pair measurements have also to deal with this combinatorial prob-
lem [10, 11], but each speci�c property of the production process can introduce some di�erences

in the background estimation and as a consequence in the associated error. For instance in
contrast to pairs of identical particles, the dimuon contains two di�erent particles �+ and ��,
and thus pairs of identical muons �+�+ and ���� which are produced only by combinatorial
processes, will provide both a natural normalization and samples of uncorrelated particles. This

is also true for the measurement of opposite-sign pion pairs, for which recombinatorial method
has also been used in the past [12]. But in contrast with dimuons, for which the region of high
mass presents a special interest due to the dimuon production by Drell-Yan hard processes, for

opposite-sign pion pairs the high mass part of the spectra can serve as a reference for normal-
ization since no signi�cant correlated production is expected in that region.

2 Estimations of the combinatorial background

The measured muon pairs have several origins and one can try to classify them according to the
level of their correlations.

They can be

a) true muon pairs - the muons are produced simultaneously through the decay of a virtual
photon

b) true-like muon pairs - they originate from the uncorrelated decay of a correlated heavy
quark pair

c) fake muon pairs - from accidental combinations of muons coming from uncorrelated pro-
cesses.
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If the muon multiplicity per event M� obeys a Poisson law with average < M� >, the yield
of measured combinatorial pairs of all signs is simply < M� >

2 =2. It is noteworthy that M�,
can contain also muons from other collisions, when the fortuitous coincidences between collisions
become non negligible.

For a given event, the number of di�erent pairs of positive mesons that can be made with

N+ positive mesons is simply

N++ = N+(N+ � 1)=2 (1)

and the combinations with the N� negative mesons cause

N+� = N+N� (2)

opposite-sign pairs.

From these simple relations applying to a single event, we need to deduce the connections
between averaged or di�erential numbers of like-sign and opposite-sign pairs.

The above relations remains valid for averaged quantities, but already for the averaged global
quantities the way to deduce < N+� > , < N++ > and < N�� > is not straightforward in the

general case since

< N++ >= (< N+ >2 +V ar(N+)� < N+ >)=2

and

< N+� >=< N+ >< N� > +cov(N+; N�)

This can be simpli�ed in the case of a Poissonian distribution for N+ and N� and assum-
ing complete uncorrelation between them, since one have then Var(N+)� < N+ >= 0 and
cov(N+; N�) = 0 and one can write the relation:

< N+� >= 2
p
< N++ >< N�� > (3)

For small backgrounds, this formula can be approximated by

< N+� >=< N++ > + < N�� >.
We will see in the following that applying the formula (3) to di�erential distributions assumes

a factorization in integrals, and we will then sometimes refer to this method of determining the
background as the "integrated" method.

Another simple case happens when < N� > (or < N+ >) is large, in such a way that
< N� > = < N� >2 can be neglected, whereas < N� > is proportional to < N+ >. In

that case one can again write the relation (3), but the relation (1) does not necessarily hold,
depending on the ratio < N > =V ar(N). This situation is close to the physical situation of
meson production where positively and negatively charged particles are fundamentally linked
by total charge conservation.

In [5], a study based on simulations with Venus generator evaluates the impact of the small
multiplicities < N� > and < N+ > on the relation (3), for p-A ( A=Al, Cu, Ag, W), S-U and

Pb-Pb collisions in the NA38/NA50 experiments at CERN-SPS. A factor R has been introduced
and thus instead of relation (3), the following relation has been used:
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< N+� >= 2R
p
< N++ >< N�� > (20)

for S-U and Pb-Pb interactions the factor R introduced in the relation ( 20) was found [5] to
have values showing a clear departure from R=1 only for peripheral collisions.

The relation (3), eventually corrected by R, allows to deduce the total number of combina-
torial opposite-sign pairs from the total numbers of positive and negative like-sign pairs and is
the very root of the background subtraction method in muon pairs studies.

It is of the uttermost importance to perform also for di�erential quantities - as the dimuon
mass distribution - a similar combinatorial background determination. But in contrast to what
happens for total average numbers, the factorization of the quantities depending on the single
muons is generally not possible in the integrals expressing the numbers of pairs, preventing to

get a direct relationship between opposite and like-sign pairs numbers.
Indeed, the numbers of muon pairs at a given mass is:

dN+�=dM0 = N�
+�
Z
f+(x+)f�(x�)�(M0 �M(x+; x�))dx+dx� (4)

dN++=dM0 = N�
++

Z
(f+(x1)f+(x2)�(M0 �M(x1; x2))dx1dx2

dN��=dM0 = N
�
��
Z
(f�(x1)f�(x2)�(M0 �M(x1; x2))dx1dx2

where f+(x) and f�(x) are the probability distributions for the positive and negative accepted

muons with respect to the 3-momentum x. Except when f+ and f� are proportional, the

relation between the above three quantities is not straightforward. Indeed it is generally not
possible to factorize the formula (4) with two independent integrals of f+ and f�, due to the �
function, and the relation (3) is thus not generally valid for di�erential quantities.

In the experiment NA38 the shapes of positive and negative single muon distributions are
very di�erent, which mainly comes from the existing di�erences in acceptances (see Fig. 1). This
e�ect, due to the magnetic �eld, has been reduced by imposing a selection on data ( "image cut")

to equalize the acceptances of the like-sign and opposite-sign pairs of muons. This allows in the
NA38 analysis, on the expense of a strong reduction of the acceptance for low mass and low
transverse momentum dimuons, to use the following formula between the di�erential quantities:

dN+�
dM0

= 2

s
dN++

dM0
� dN��

dM0
(5)

From the previous formulas one can see that another way to estimate the background (4)
is to use directly the f(x) distributions. If these distributions are known one can calculate
the integral, for instance by Monte Carlo method. A similar procedure can be used with the
experimental single muon samples instead of distributions, but then, given their �niteness, it is

insigni�cant to try to build new +- pairs when all possible couples have been already done once.
The two di�erent methods - from pairs (formula (5) and using single muons (formula (4)) -

derive strictly from the same formula (4), and are then generally subject to the same limitations
concerning their validity. Only the additional integration needed to establish the formula (5)

causes an additional restriction on this method. Determination of the background using random
combinations of the single muon distributions has then the advantage of a larger domain of
validity, avoiding to restrict the acceptance by cut, and it also leads to a better precision thanks
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Figure 1: Experimental distribution of longitudinal and transverse momenta of single muons
extracted from like-sign pairs measured, for one direction of the current (positive under NA38

conventions). Left: from positive pairs, right: from negative pairs

to a much larger number of di�erent pairs, but to the expense of using several times the same
muons. The estimation of the associated error is nevertheless not obvious, and this is the main
drawback of the method, together with a longer computing time. These are the two questions

that we will address in the following.

3 Combinatorial method

As seen in the previous section, similarly to the combinatorial process itself one can randomly

combine muons of both signs in order to build the background and this is indeed strictly equiva-
lent to the real combinatorial background, provided the single muon kinematic distributions are
available and that the detector and analysis rejections are reproducible. The relation between

N++, N�� and N+� total numbers is not subject to some possible restrictions that could apply
to the same di�erential quantities. Then, in order to normalize the recombined spectrum to the
opposite-sign dimuon sample, it is possible to use the relation (3), whatever the positive and
negative single muon distributions could be.

The determination of the single muon distributions is then a central point of this method.
Since the like-sign pairs originate from random combinations of muons, one can extract from
them the single muon experimental distribution. The information contained in these samples
has been not completely used in the original direct pair spectrum. Breaking these N pairs,

getting all the possible N2 combinations gives a better estimation of the ideal spectrum.
Practically one stores the single muon momentum for separated sub-classes of the data,

each sub-class corresponding to physical or experimental parameters such as deposited energy,
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magnetic �eld, position of target, which are the relevant parameters for the analysis or are
possibly linked to a change in the shape of the single muon distributions.

In order to get the true single muon distributions, it is also required that there would be no
selection on pair quantities such as transverse momentum, mass or rapidity of the pair.

Starting from these single muon samples, the basic method combines the positive and nega-
tive muons making all the pairs allowed by the (single muon) trigger, and the resulting spectra
are normalized thanks to the total quantities N++ and N��.

The Fig. 2 shows that the background determined by this combinatorial method and the one

determined by the formula (5) are in agreement. The "image cut" has been applied in order to
use the formula (5).

In order to verify both the result of the calculations and the assumption of non correlation
made for the like-sign pair formation, another comparison has been made between the like-sign
experimental mass spectrum and the one obtained by recombinations of the corresponding single

muons, normalized by their integrals.

No restrictions on the acceptances have been imposed ( no use of "image cut" ).

Fig. 3 shows that the recombined spectra reproduce the visible di�erences in shapes due to

the di�erent acceptances (see Fig. 1). There is a very good agreement between the original and
recombined spectra in the 0-2 GeV=c2 region where the statistics is meaningful.

4 Study of the error

The main subject and the purpose of this work is the estimate of the error. This is non trivial in

the case of a multiple use of the same muons, as have been done in the combinatorial method. In
the following, we will aim at estimating the error associated to the number of pairs made in this
non independent way, and also look for possible reductions of the number of this recombined
pairs in order to reduce the computing time.

This will trigger phenomenological studies using Monte Carlo method as well as analytical

calculations. The latter are based on ideal (gaussian) distributions, but also the former uses
simple distributions or simpli�ed experimental-like distributions. These simpli�ed distributions
are useful to get rid of statistical uncertainties and systematic 
uctuations in the experimental
sample.

5 Direct estimate of the error

In this section and the following one , we determine the variance on the content of each bin of
distributions made by combination of singles element coming from di�erent samples of pairs.

These studies are made for di�erent situations of increasing complexity, from the addition of
variables distributed according to 1 or 2 dimensional Gaussian, to dimuon mass spectra obtained

from di�erent experimental single muons samples.

5.1 Gaussian distributions

In order to characterize the error for a very simple case, we consider N values xi and yi obtained

randomly from two Gaussian distributions. The number N is not �xed but has a Gaussian
distribution with a root mean square

p
N . Then we consider the distribution obtained by

simply adding xi and yj. The resulting distribution is also a Gaussian.
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Figure 2: Background estimated by integrated formula (2rac) and by complete recombina-
tion (comb) and their ratio (with image cut)

.
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Figure 3: Experimental mass spectra for like-sign pairs (and recombinations) with transverse
momentum in the domain 0.6-1.3 GeV/c, and their ratio, for the highest Et bin and target

number 1 in the S-U system
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To study the error, we make several samples in which we consider all the possible pairs
(xi; yj) (i=1,N ; j=1,N). This leads to the distribution of xi + yj. Each spectrum is normalized
to the initial number of pairs, statistically distributed as previously described.

Fig. 4 displays two examples of the resulting root mean square �K of the number of counts

in each bin, determined using the known true mean value of NK. One can see that �K behaves
as (NK)

� and the same behavior has also been found for two-dimensional distributions [13]. It is
noteworthy that this simple dependence is only obtained when the spread of the normalization

has been taken into account, otherwise the distribution tends to saturate at the highest NK

values.

Figure 4: Increase of error as a function of the number of counts in a bin of the recombined
distribution, for di�erent numbers of initial pairs. Left: 400 initial pairs, 50 bins ; right: 1000

initial pairs, 100 bins

The � parameter if found to be about 0.64, and not to depend on the number of initial pairs
(Fig. 4)or on the bin size (Fig. 5). We then need only to determine completely the value of one

of the �K, the one corresponding for instance to the channel with the highest number of counts

Nmax, to be able to predict the values of all the �K. It is also appearing in picture 5(line) that
�max and N

max
K keep a simple dependence when the bin size varies.

Fig. 6 displays the evolution of the ratio �max=N
max
K with respect to the number of initial

pairs N, and for various numbers of bins. For the limiting case of a unique bin, the ratio
�max=N

max
K is equal to

p
N=N = 1=

p
N . When the number of bins is increased, �max=N

max
K

increases too, but only by 40% for the already pessimistic situation of 1000 bins for only 1000
initial pairs. An upper limit for �max=N

max
K , when the spectrum considered has reasonably

populated bins, should then be 1:4=
p
N

Finally we obtain a phenomenological parameterization of the error value, slightly overesti-
mated, which takes automatically into account the bin size and the eventual normalisation, and
uses explicitely the initial number of pairs:

�K = 1:4(
Nmaxp
N

)(
NK

Nmax

)0:64 (6)

where N is total initial number of \true" pairs, NK is the number of pairs in the bin K, either
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Figure 5: Error as a function of the number of counts in the bin for di�erent bin sizes
(canaux=channels)

renormalized combined pairs or \true" pairs which are close numbers by construction, and Nmax

is the maximal value of NK.

As pointed out in [7] the errors for grouped channels are simply the sum of the corresponding

errors, not the usual quadratic sum. This property is also veri�ed in this formula, where grouping
of channels correspond to a change of binning, that is to a proportial change of Nmax and indeed
of �K. This formula has also the correct behaviour, but overestimated by 40%, in the limiting
case of a unique bin (�K =

p
N).

5.2 NA38 distributions

In order to determine the 
uctuations for experimental NA38 S-U distributions, subsamples

have been extracted in the experimental available data set. The considered data set is also
restricted to a transverse energy domain and only one target. Two cases have been considered:
10 subsample corresponding to 800 opposite sign muon pairs, or 17 subsample corresponding to
400 opposite sign pairs. This selection on a �xed number of opposite sign pairs allows statistical


uctuations on the number of positive and negative like sign pairs, without the trouble of the
normalisation to the number of collisions and the associated error. But it introduces nevertheless
an additionnal 
uctuation on the total number of pairs.

For each subsample the opposite sign background is estimated by recombining the muons

originating from the like sign pairs, and normalizing the resulting distribution to 2
p
N++N��.

The root mean square of the number of count obtained in this di�erent sample for the same
channel are presented in Figure 7, as a function of the number of counts. A good agreement

with the previous formula (6), established for Gaussian distributions, can be seen.

Higher statistic results have also be obtained using simple experimental-like distributions,
which will be described in the prescaling section. They are also into a good agreement with the
values plotted in the Fig. 7.
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Figure 6: Relative error at the maximal value of the distribution with respect to the number of
initial pairs and for di�erent bin sizes

Figure 7: Observed root mean squares of the number of counts Nk, when using the recombinatorial
method (black square) on di�erent subsamples, compared to the parameterization of the error

(open points) and to the result of the recombinatorial method applied to a simpli�ed experimental-
like distribution (stars). The triangle shows the error associated with the usual "integral" method.
Two statistics for the total number of opposite-sign pairs ( 400 and 800 ) have been considered.
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5.3 Analytical calculation of the error

Our goal is the estimation of the error on the number of combinatorial pairs pI in a certain cell

I de�ned by some relevant parameters as: mass, rapidity or transverse momentum for instance.

The distribution pI is obtained by the recombination of the single muons extracted from like-
sign pairs, normalized thanks to the numbers of these initial pairs. There are thus essentially

two sources of errors: one related to the 
uctuations on the number of combined pairs in one
bin, which is not straightforward to estimate due to repeated use of the same muons, and the
other one related to the statistical 
uctuations on the general normalization. The latter cannot
always be neglected. For example, in the limit case of a distribution having only one bin, the

error would be unrealistically zero.

In this section we present the analytical calculations of the error made by [7, 8], restricted
to an equal number of positive and negative muons for the sake of simplicity. Fluctuations on

the normalization have been furthermore taken into account.

The calculation of the error is based on the notion of indicative function U I(xi; yj), which is
equal to 1 when the value of the function C(xi; yj) (mass, momentum,..) belongs to the interval

I. x and y are the kinematic variable of the positive and negative muons.

the estimator �pI of pI , is obtained making all the possible combinations in the available
sample :

�pI = 1=N
PN;N

i=1;j=1U
I(xi; yj)

The expectation value can be obtained integrating this estimator on the probability distri-
butions fA(x) and fB(y) of positive and negative muons and including through the weight pN
the spread of the overall normalization N:

E(�pI) =
1X

N=1

pN 1=N
N;NX

i=1;j=1

Z
U I(xi; yj)fA(x1)dx1 � � � fA(xN)dxNfB(y1)dy1 � � � fB(yN)dyN(7)

which can also be written

E(�pI) =< N > � (8)

where

� =

Z
UI(x; y)fA(x)dxfB(y)dy (9)

and < N >=
P1

N=1N pN is the average value of the total number of pairs N.

A similar calculation is used for the variance V ar(�pI) = E(�p2I)� p2I , with:

E(�p2I) =
P1

N=1 pN
R
1=N2PN;N

i=1;j=1U
I(xi; yj)

PN;N
i0=1;j0=1U

I(xi0; yj0)fA(x1)dx1

� � � fA(xN)dxNfB(y1)dy1 � � � fB(yN)dyN
(10)

using U2 = U , one can separate this sum in terms of di�erent complexity corresponding to
i0 = i or j0 = j or both. For i = i0 and j = j0 the expectation is �. For i = i0 one has a term

< N � 1 > �A, with

�A =

Z
U I(x; y)U I(x; z)fA(x)dxfB(y)dyfB(z)dz (11)
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�A =

Z
G2
B(x)fA(x)dx (12)

where GB(x) =
R
U I(x; y)fB(y)dy.

There is also a similar term < N � 1 > �B for j = j0. the terms with i 6= i0 and j 6= j0 give
< N2 � 2N + 1 > p2I=N

2 �nally one can write, similarly1 to the result obtained by [7] in the
case �A = �B:

E(�p2I) = �+ (�A + �B)(< N > �1) + �2 < (N � 1)2 > (13)

and

V ar(�pI) = �2V ar(N) + (�A + �B � 2�2) < N > +�2 + �� �A � �B (14)

Assuming large N and V ar(N) =< N >:

V ar(�pI) '< N > (�A + �B � �2) (15)

one can also consider the root mean square:

�(�pI)p
< N >

'
q
�A + �B � �2 (16)

It is possible to verify that if the bin I contains everything, � = �A = �B = 1, and

one e�ectively retrieves the usual statistical 
uctuation �(�pI) =
p
< N >, or

p
V ar(N) if the

distribution of N is not Poissonian.
The estimation of the error values requires the knowledge of the single muons distributions

through �, �A and �B . In the next section we will apply the previous formulas to a simple
analytic case and compare to the simple phenomenological formula 6 of the error obtained in
the previous section.

5.4 Test with a Gaussian distribution

We consider the simple case of gaussian distributions fA and fB, with the same root mean square
� and means �A and �B respectively.

x and y are randomly extracted in these distribution, and their sum leads to a new distri-
bution with average �S = �A + �B

In the appendix, the detail of the calculation of the error is given, replacing fA and fB in
the expressions [11] and U by Dirac distributions U I(x; y) = �(x+ y � I), leading �nally to:

�(�pI) '
phNip�A + �B � �2

�(�pI) '
r
hNi

s
1p
3�

1
�S

[fS]
4

3 � 1
4 [fS]

2

with

fS = 1p
2��S

exp

�
� (�S�I)2

2�2
S

�
1here the 
uctuation on the normalization introduces an additional term due to < N

2
>=< N >

2 +V ar(N)
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Figure 8: The estimated error of the background used in our analysis (the average over the NS

evaluations given by sub-samples) obtained by combinatorial method as a function of the number
of counts for di�erent values of the prescaling factor NS. Also shown are the errors corresponding
to the integrated method (sqrt). The experimental data set is central S-U collisions, sub-target 1
and positive �eld in the magnet

�(�pI) is foundmainly proportional to f
2=3
S , which is a similar behavior to �K /

p
N(NK=Nmax)

0:64,
the phenomenological formula (6) that has been established in the previous section (NK = pI).

6 Prescaling

The processing of a too large number of combinations could induce problems related to the

requirements of an excessively high computing time and/or memory. Furthermore the generation
of all possible combinations is probably not necessary since part of these pairs brings negligible
additional information. It is then interesting, both from a practical and from a aesthetic point

of view to try to precise the minimal fraction of combinations that will be meaningful.

We introduce a prescaling factor (NS), which is the number of independent sub-samples

extracted from the relevant (transverse energy, target) experimental like-sign sample. These sub-
samples, containing each a number of NLS/NS like-sign muon pairs, are considered separately
in the pair generation process.

The construction of these sub-samples is improved by taking one like-sign muon pair and

by-passing the NS-1 following ones. This procedure, not necessary for background calculation, is
useful for comparing independent experimental samples which could otherwise be too sensitive
to some possible changes occurring in the experimental conditions.
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After processing all the possible combinations inside each sub-sample and introducing the
normalization to the total data sample, NS independent background distributions are obtained.
They can be used for studying the 
uctuations but they can also be summed to calculate the
average background that we want to compare to the one obtained after complete recombinations

in the maximal data sample.

Finally all the available like-sign muon pairs are involved into the analysis but the total
number of generated combinations has been reduced by the factor NS when the prescaling has
been used.

Figure 8 presents the resulting 
uctuations, for di�erent prescaling factors and as a function
of the number of counts NK. In this example �K remains on the level of the error calculated by
formula (6), even for a prescaling factor of 20.

In order to get rid of the statistical limitations imposed by the experimental single muon

distributions, a Monte Carlo method using the experimental (Pt � Pl) distribution (Fig. 1) of

single positive (negative) muons belonging to N++ (N��) pairs has been considered as input,
together with a simpli�ed NA10 azimuthal distribution: a 18 degree dead zone every 60 degrees.

One can see in Fig. 9 that these very simple distributions reproduce the details of the mass
spectra of the like-sign pairs, although their shape is very di�erent. These simpli�ed NA38

single muons distributions are then valid tools to determine the 
uctuations associated to the
recombination method in the NA38 experiment.

For di�erent values of the prescaling, left hand side of Figure 10 presents the 
uctuations
observed when the estimate is based on a sub-sample. The increase of �SK with the prescaling,

reaching the level of the precision obtained without recombination for NS = 40, is consistent
with the increase with

p
NS predicted by formula (6).

The use of all the available sub-samples increases the precision. In the right hand side of
Fig. 10 the resulting �K remains on the same level even for the highest value of the prescaling
considered. From formula (6) one indeed expect to get the same value when considering NS sub-

samples - which multiply the error by
p
NS - and making the average of the result - which divide

the error by
p
NS. This implies inversely that the error will not be sensitive to the prescaling

as long as the formula (6) remains valid. The validity "limit" of the approximated formula (6)

appears already in Fig. 6, for about one hundred pairs in the sub-sample and one hundred bins
in the distribution. This gives the order of magnitude of the acceptable prescaling, leading for
instance to subsamples of at least 100 pairs before mixing.

Fig. 11 presents a check performed for the S-U system showing that the di�erences induced
by a prescaling factor equal to 150 are still below the expected error.

7 E�ects on the experimental dimuon mass spectrum

Finally, in Fig. 12 the signal spectra obtained using the di�erent methods for background estima-
tion are compared. the formula 6 can be used to predict the e�ect of recombinations compared

to the usual "integrated" formula. For the most populated bin this corresponds to
p
Nmax=N ,

i.e. to a gain of about 5 if 4% of the N pairs are in this bin. This is not observed when looking
at the two top pictures of �gure 12, for two reasons:

� the combinatorial method is applied separately to the di�erent sub-targets whose errors
combine independently
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Figure 9: Comparison of recombinations from simpli�ed (tir) and from experimental (comb)
distributions
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Figure 10: Estimates of �SK ( for a sub-sample ) and �K for the background ( averaged over all

the sub-samples ) normalized to the same number of events as a function of NK obtained using
recombinations of simulated events and di�erent values for NS,

17



Figure 11: Comparison of the 
uctuations induced by prescaling to the estimated error, in S-U

experiment. a) mass distribution of the background obtained for all targets and �rst transverse
energy bin c) di�erence between the spectra with prescaling 30 and without prescaling, and the
calculated error e) ratio of the previous di�erence and the calculated error and b), d), f): idem
with prescaling 50, 100, 150.
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Figure 12: Comparison of the two estimates of the NA38 experimental S-U signal, for 0:6 <

Pt < 1:2 GeV/c with ( FOS ) or without ( 2*RAC ) the recombinatorial method and with image
cut. Also shown is the same experimental result without image cut and using the recombinatorial
method
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� about 70% of the signal errors are due to statistical 
uctuations on the opposite-sign muon
pair spectra, which do not depend on the background determination.

Nevertheless when the "image cut" is not used one observes (Fig. 12) a clear improvement

in the relative precision of the low masses signal spectrum, due to the increase of statistic.

The background determination by recombination could then be e�cient for improving the
measurement thanks to decrease of the error, but also thanks to the possibility of removing

completely the "image cut" (which actually remains partially in the data through a online cut
performed at trigger level). Such increase of the acceptance should allow to diminish the minimal

transverse momentum threshold considered in the low masses analysis [15].

Another interest of the method lies in the low statistic situations, either for the signal as for
instance the continuum [5], or for multi-dimensional studies [16].

8 Conclusion

The use of the recombinatorial method to determine the opposite-sign combinatorial background
in the dimuon spectra has been presented, and the error has been evaluated by several ways,
leading to consistent results.

When di�erent subclasses of events, for instance corresponding to di�erent targets, introduce
di�erences in the single muons distributions, it can be necessary for the validity of the model
supporting the various background determination methods, to deal separately with the various
subsamples. Compared to the usual, and easier to use, "integrated" method, the recombinatorial

method has the advantage of allowing to treat separately di�erent sub-classes of events, not being

sensitive to the statistic of the sample. For the same reason this method is also the only practical
one for multidimensional studies, where the number of empty cells in pair distributions becomes

important.

Furthermore recombinations of single muons do not require restrictions on the kinematical
domain, and then permits using of the complete statistics available and maximal acceptance of

the detection system.

The non trivial problem of the associated error has been extensively studied and tested in
various scenarii and by using various tools, including analytical calculations. An easy-to-use and

exible approximate formula has been derived. The important computing time can be reduced

by the introduction of an optimized prescaling factor.

This study deals mainly with the error associated to the recombination process. Some

questions can be adressed on possible systematic biases in the estimate of continuum signal

[17], in particular when the signal is the origin of a combinatorial background as for the D�D
component at LHC energy. This is outside of the scope of this study.

These works have been partly supported by an IFA-IN2P3/CNRS French Romanian agree-

ment 92-12 and 99-26. NA38 and NA50 collaborations are thanked by the authors of this pre-
publication for the possibility to use the experimental distributions for the test of the procedure,
and for support of the grant.
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9 Appendix.

Starting from the general expressions 16, one must evaluate:

�A =
R
G2
B(x)fA(x)dx =

R
G2
A(y)fB(y)dy

� =
Z
GA(y)fB(y)dy =

Z
GB(x)fA(x)dx

where GB(x) =
R
U I(x; y)fB(y)dy

We consider the case of gaussian distributions for fA and fb with similar width � and
means �A and �B:

fA(x) =
1p
2�

1

�
exp

(
�(�A � x)2

2(�)2

)

and a simple indicative function U I(x; y) = �(x+ y � I)
Inserting these formulas for �A and �B and performing the integrations using the � Dirac
distribution one gets:

� � R
dx exp

n
� 1

2�2

h
[(I � �B)� x]2 + (�A � x)2

io
�A � R

dx exp
n
� 1

2�2

h
2 [(I � �B) � x]2 + (�A � x)2

io
�B �

R
dy exp

n
� 1

2�2

h
2 [(I � �A)� y]2 + (�B � y)2

io
By using the following formulas:

(a � x)2 + (b� x)2 = 2
h
x� a+b

2

i2
+ (a�b)2

2

2(a� x)2 + (b� x)2 = 3
h
x� 2a+b

3

i2
+ 4

3
(a�b)2

2

one gets, introducing �S =
p
2�:

� � R
dx exp

�
� 1

�2

h
x� a+b

2

i2 � (a�b)2
4�2

�

= exp
n
� (a�b)2

4�2

o R
dx exp

�
� 1

�2

h
x� a+b

2

i2�

= exp
�
� (a�b)2

2�2
S

� R
dx exp

�
� 1

�2

h
x� a+b

2

i2�

and

�A � R
dx exp

�
� 3

2�2

h
x� 2a+b

3

i2 � 2
3
(a�b)2
2�2

�
=

= exp
n
�2

3
(a�b)2
2�2

o R
dx exp

�
� 3

2�2

h
x� 2a+b

3

i2�
=

= exp
�
�4

3
(a�b)2
2�2

S

� R
dx exp

�
� 3

2�2

h
x� 2a+b

3

i2�

using
1R
0
dx exp

n
�a (x� b)2

o
=

p
�p
a , and

a = �A; b = I � �B; a� b = �A + �B � I = �S � I

22



it comes:

� � �
p
� exp

(
�(a� b)2

2�2S

)
=
�S
p
2�

2
exp

(
�(�S � I)2

2�2S

)

and

�A = �B � �
p
2�p
3

exp
�
� (a�b)2

2�2
S

�4

3

= �S
p
�p

3
exp

�
� (�S�I)2

2�2
S

�4

3

If we identify

fS = 1p
2��S

exp
�
� (a�b)2

2�2
S

�
= 1p

2��S
exp

�
� (�S�I)2

2�2
S

�

and take into account the proportional factors we obtain:

�A + �B = 2 1

(
p
2�)

3

�3
S

�S
p
�p

3
exp

�
� (�S�I)2

2�2
S

� 4

3

=

= 1
��2

S

p
6

p
2��Sp
2��S

exp
�
� (�S�I)2

2�2
S

� 4

3

�A + �B = 1
�S
p
3�

[NS]
4

3

and

� = 1

(
p
2�)

2

�2
S

�S
p
2�

2
exp

�
� (�S�I)2

2�2
S

�
=

= 1
2
p
2��S

exp
�
� (�S�I)2

2�2
S

�
=

� = 1
2
fS

�nally:

�(�pI)p
hNi '

p
�A + �B � �2

�(�pI)p
hNi '

s
1p
3�

1
�S

[fS]
4

3 � 1
4 [fS]

2

The highest power of fS inside �(�pI)p
hNi is 1 coming from �2 and the next one is 0.66 coming

from �A + �B , which is consistent with the result of the phenomenological evaluation of
the 
uctuations.
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