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Abstract

The full understanding of the kinetics of a subcritical assembly is a key issue
for its online reactivity control. Point kinetics is not sufficient to determine the
prompt reactivity of a subcritical assembly through the response to a dirac pulse, in

particular in the cases of a large reflector, a small reactor, or a large subcriticality.

Taking into account the distribution of intergeneration times, which appears as

a robust characteristic of each type of reactor, helps to understand this behaviour.

Eventually, a method is proposed for the determination of the prompt reactivity. It
provides a decrease rate function depending on the prompt multiplication coefficient

kgﬁ. Fitting a measured decrease rate with this function, calculated once for the
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reactor, gives the true value of ki;. The robustness of the method is tested.

Key words: reactor, kinetics, subcriticality, neutron pulse, prompt jump, reflector

PACS: 28.41.Ak

1 Introduction

In the context of ADS studies and MUSE 4 experiments, where very short
pulses of neutrons are delivered in the middle of the core of a small experi-
mental fast neutron reactor (MASURCA), various methods for determining
the parameters of a subcritical assembly submitted to a pulsed source are

discussed.

While the delayed neutron proportion Se.g can be extracted from the slow evo-
lution of the reaction rate between the pulses [5], the reactivity determination

is still a major concern.

There are two main definitions of the multiplication coefficient k. The source
multiplication coefficient, kg, is linked to the multiplication of a particular
source, and can be deduced from the total power of the reactor at equilib-
rium. [7][8]. Its definition depends on the definition of a source neutron, which
can be very difficult when the initial particles are protons, for example in an
ADS[10]. The effective multiplication coefficient, kg, is, on the contrary, an
intrinsic characteristic of the reactor. It corresponds to the multiplication of
the stabilized fission distribution, many generations after the source has been
turned off. That is why this coefficient is considered to govern the safety of
the reactor. During the operation of a power ADS reactor, one could imagine

a case where kqg rises while the source is progressively poisoned, in such a way



that ks and the total power do not change. In that case, a small reactivity
insertion may become sufficient to cause an accident, while no warning signal
can be seen from the power of the reactor. That is why a safety requirement
for operating any subcritical reactor will probably be to keep it below a maxi-
mum keg. The ability to monitor this quantity continuously in order to detect

any abnormal evolution is thus a central issue.

Unfortunately, the presence of the source hides the characteristics related to
the effective (late) fission distribution. There are two ways of getting rid of the
influence of the source. The first one is to turn it off and deduce k. from the
fluctuations at zero power. In this case, keg is not known in the real conditions

of operation.

The second one, which is chosen here, is to study the decrease following a
source pulse. The usual method which consists in measuring the decrease rate
at long time scales (typical of delayed neutrons) is only precise for reactivities
smaller than B¢, which is not compatible with ADS reactivities. Moreover, it
requires the knowledge of B¢ and a very low intrinsic source. That is why we
chose here to deal rather with the prompt decrease following the pulse, which
is today accessible to experiment. This choice leads to the measurement of
prompt kg rather than total k.g. But this information is sufficient as we can
measure [eg by other means. What is more, the subcriticality will in general

be far greater than Seg, and the precise knowledge of S.¢ will not be essential.

We used only Dirac pulses in the present studies. However, this method can
be applied for all other types of source pulses, simply by convolving every

quantity measured with the actual pulse shape.

The purpose of this work is to determine the relevant quantity that should



be measured, and possibly simulated, in order to get a robust evaluation of
prompt keg. In the following kb; will always be the prompt effective multipli-

cation coefficient.

2 The one group point kinetics and its failure

In the one group point kinetics calculations, the spatial and spectral distribu-
tion of neutrons is assumed to be a constant in time, which implies that every

cross section averaged over the flux is constant [3][4][5][6].

2.1 The prediction

Without a source, the number of neutrons N(t) satisfies

dN
= (4(Z0) = (S1) + (%) + DBY) N(v)
where v, is the average number of prompt neutrons produced by fission, (X¢)

and (X.) the average macroscopic fission and capture cross sections, (v) the

average speed of a neutron and DB? the leakage term [2].

Let us define the average intergeneration time [ as the average time between
a fission and the previous one in the chain reaction. In the case of one group
point kinetics, it is precisely the lifetime of a neutron (because the fission

probability is independent of the age of the neutron). It is given by

1

= Y 5+ DB )

A discussion on different definitions of the lifetime can be found in [9].



The multiplication coefficient is

P __
keff_

The one group point kinetics leads to an exponential decrease of the population

with a constant decrease rate 2 defined as follows :

1 dN
=) =9
Nar - 20

1 -k
o

Of course the flux, and any reaction rate will follow the same decrease.

Thus, if we are able to determine [ by simulation (it cannot be measured
directly), the one group point kinetics allows us to deduce kY from a mea-

surement of the decrease rate {2 supposed to be constant in time.
2.2 The real decrease

Let us compare this conclusion with a “real decrease”, simulated with the
Monte-Carlo code MCNP4B[1], for a spherical fast reactor with kb = 0.972,
composed of a 90 cm diameter core made of 27 % Pu MOX, surrounded by a

20 cm thick sodium/stainless steel reflector. It will be our reference reactor.

In the simulations Q(t) is defined as the decrease rate of the total fission rate

N¢(t) rather than the neutron population N(t) :

1 dN¢

We will see in section 3 the reasons why N¢(t) is chosen instead of N (¢).According
to point kinetics, N(t) is proportional to N¢(t) as Ni(t) = N(t)(Z¢)(v), so the

definition of () is not affected by the use of either N(¢) or N¢(t).



The result is shown in figure 1. £2(¢) appears not to be a constant, but goes
towards an asymptotic value Q0 after a very long time (~ 200 us whereas
I = 0.3 us), when very few neutrons remain in the reactor. Therefore this
asymptotic decrease rate (), is not accessible to experiment. Moreover, {2,
is different from (1 — k%) /1, and we will see in section 3.2.3 that there is no

simple relation between them.

2.8 Role of the reflector

Let us try to understand in which circumstances such an unpleasant behaviour
arises. The only way to account for such long times is to consider the role
of the reflector. While the one group point kinetics implies an exponential
distribution for intergeneration times, in an actual reactor neutrons may spend
a lot of time in the reflector, where absorption cross sections are low, before
coming back into the fuel. These few long-life neutrons appear to have a major
impact on the kinetics of the system, in the same way as the delayed neutrons,

but with an intermediate time scale.

It is possible to check this effect by considering another reactor with the same
size and the same reactivity, comprising only the fuel. A greater proportion of
plutonium in the MOX is used to compensate for the loss of reactivity. The
result shown in figure 2 confirms our assumption : point kinetics results are
not far from the asymptotic decrease rate, which is reached within only a few

microseconds, while [ = 0.1 us.

Figure 3 shows the case of a larger reactor (170 cm diameter spherical core

surrounded by the same reflector as the reference reactor), again at kly =



0.972. The impact of the reflector on the kinetics decreases with the size of
the reactor. This means that a large power reactor would be easier to describe

than a small experimental reactor.

2.4 Role of the subcriticality

It is easy to understand that the presence of the reflector introduces long time
scales for one generation. But how does this induce long time scales for the

whole decrease ?

As a matter of fact, long-life neutrons constitute a very small fraction of the
total number of neutrons. If all generations are present at the same time, few
old neutrons of first generations will be mixed with many young neutrons of
later generations and will not have a noticeable impact on the whole decrease.
On the contrary, if only few first generations of neutrons are present after a
while, these long-life neutrons will represent a significant proportion of the

population.

Now, the competition between different generations is controlled by the level of
subcriticality, since the n'! generation is weighted by k%". This effect is shown
figure 4 for our reference reactor at kby = 1.0 and kb = 0.9, after 30 us = 100 /.
For k% = 1.0, generations follow a gaussian distribution centered on 100. For
kY = 0.9, nearly all neutrons belong to generations less than 50. This shows
that the influence of the long-life neutrons increases dramatically with the
level of subcriticality. The greater the subcriticality, the older the neutrons
present at a given time. In the same way, a growing human population will be

mainly young, while a small birth rate will lead to an older population.



Figure 5 shows the decrease rate €(t) for a slightly subcritical (—600 pcm)
version of the reference reactor, obtained by increasing the Pu proportion in
the MOX, confirming the above conclusion: in that case point kinetics gives a

reasonably good result.

3 The intergeneration time distribution P(r)

It appears that in the case of a small reactor with a reflector and a large

subcriticality, long life neutrons have to be taken into account.

We introduce the intergeneration time distribution P(7), defined as the dis-
tribution of times between the birth of a neutron by fission and the previous

one in the chain reaction.

It satisfies

7OP(’T)dT = kb (1)
7TP(T)dT =kby 1 (2)

0

where (1) expresses that each fission induces kY; other fissions at the next

generation.

(2) expresses that the mean intergeneration time is [. [ is merely the first
moment of the distribution P(7), and does not contain any information on

the shape of P(T).

We will work under the assumption that all the fissions are equivalent. In

particular this distribution P(7) is the same for every fission occuring in the



reactor fuel.

This is a less restrictive assumption than the assumption of equivalent neu-
trons that underlies the one group point kinetics : here the neutrons can have
different properties depending on the time 7 elapsed since their birth by fis-
sion (or their emission by the source). At a given time, every neutron is thus

characterized by this variable 7.

For these reasons we consider that the right parameter to monitor is Ng(t)

rather than N(t), and we will use it to define Q(t).

3.1 Kinetic equations using P(T)

Under this assumption, P(7) entirely determines the reactor kinetics. If N¢(¢)
is the fission rate at time ¢, N¢(¢) can be deduced from N; at earlier times

through the equation :

o0

Ni(t) = [ Nilt = 7)P(r)dr 3)

Which leads for a dirac pulse to :

Ny=P+P«xP+PxPxP+... (4)

where the star denotes convolution.

Assuming that the decrease rate tends to an asymptotic value €2, that value

can be deduced from (3) by replacing N¢(t) by et Tt satisfies :

7OeQ°°TP(T)d7' =1 (5)



Since the above integral is an increasing function of €2, €1, can be easily

calculated by dichotomy, as it has been done in figure 1.
3.2 Some results for

3.2.1 Two simple cases

The point kinetics leads to an exponential distribution for intergeneration

times :

1 — ki

P(T)_&(E_T/l = Q=
o © ]

An even simpler case is the one where all the neutrons have precisely the same

life time :

p
P(r) = kopd(r — 1) = Q= — 2Uen)

3.2.2  Upper limit of Qo
If we define

Ip(Q2) = 7eQTP(7')dT

(5) can be rewritten as

Let us now define

Ip(@) = [ e™(Q(r ~ 1) + DP(r)dr

10



As e(Q(7 — 1) + 1) < e with a common tangent at 7 = [, we have :

Ip(Q) < Ip(9)

(1) and (2) imply

Ip(S2) = kEpe™

So

Ip(Q) > klze™

Let us take Q = —In(kY;)/l. We obtain

Ip (—@) >1=Ip(Qu)

As Ip(Q) is an increasing function of 2, we can give an upper limit for Q :

The decrease is always slower than in the case where all the neutrons have the

same lifetime. Usually, it is even slower than the point kinetics prediction.

3.2.3 Developing Qo near kg =

If in (5), we develop €™ around 7 = 0, it is easy to prove that :



which can be divided on both sides by kb :

T+ (1 =k + (1= k)2 + (1 — k2 + ...

:1+Qw(7>+%<72>+%<73>+...

This leads to

Qoo = (1 — kB) — + (1 — k%)? M

3 6(n)" —6(r)* (") +3 ()" — (%) (1)

+ (1 — kegr) 6 (7)°

+...

Let us now introduce the moments of the distribution P(7), mean (1) = [,

variance (12) — (1)* = 02 and skewness (1 —[)3) /o =y :

1=Ky (—K)? (. o
o eff eff 1 - —
* l * 21

(1—k%)? o3 o? o?

The point kinetics prediction is only the first order in 1 — kb of the exact
value of Q. The terms in (1 — k%)" involve up to the n'® moment of the

distribution P(7).

The above formula shows that the knowledge of [ is not sufficient and that
there is no simple link between £z and 2. Therefore Q4 is not the relevant

quantity to measure in order to determine k.

4 The proposed method

It appears that the decrease, in the general case, cannot be characterized by

a single decrease rate. Besides, even if we had experimental access to the

12



asymptotic decrease rate, it would not give us much information concerning

P
kog-

We will then choose to measure the decrease €2(t) as a function of time, and

compare it with simulations for different k.

Simulating many decreases for many similar reactors with slightly different k%
is awfully time consuming and introduces arbitrary modifications of the reactor
to make kb vary. Instead, we propose here to simulate only the intergeneration
time distribution P(7) and deduce from it the decrease rate for any value of

kY, by convolving P(7) with itself, as many times as necessary, according to

(4).
4.1 Application to the reference reactor

The first step is to normalize P(7) to kb =1 by computing :

P(0) = T pa )

Then, for any given value of k%, we can compute the fission rate
Nie (t) = kEg P’ + k%°P' « P' + k> P' « P'x P' + .. (8)

And finally, the decrease rate, function of time

_ L dNug,
B kasz dt

Qe (¢)

Knowing the real decrease rate (t) from the experimental data, it is possible

to fit it by Qyp (t), which provides us with the parameter kb;. Of course, the

13



better Q» (¢) fits 2(¢), the more reliable the result is.

As we do not have experimental data yet, the “real” decreases have also been
simulated for four different proportions of plutonium in our reference reactor,
giving kb = 0.963, kb = 0.972, kb = 0.984, kb = 0.994, with a central

source of 2.5 MeV neutrons.

The fit has been performed from 5 us (to let the system forget the character-
istics of the source) to 40 us (to avoid dealing with the delayed neutrons), far

before reaching the asymptotic value .

Figure 6 shows these decreases, with their error bars, together with the results
of the fits (smooth lines). (> (¢) are also shown for 100 pcm more and 100
pcm less than the value of kY given by the fit, in order to show the sensitivity

of the method.

The agreement is quite good but not perfect. The values of kY; provided by
the fits lead to a knowledge of 1 — kY; with a precision of around 15% in each
case. This can be seen on figure 8. The fact that the error is proportional to
1 — k% rather than k% is not surprising, in view of equation (6) for example,
but it is a very important point for safety issues : the more critical the reactor

becomes, the more reliable the measure of kl; becomes.

4.2 Improving the method
In order to improve the agreement, we now have to reconsider the only as-
sumption we made, which was the equivalence of every fission.

More precisely, we will consider different P distributions for fissions occuring

14



after different times 7. Let P,,(72) be the distribution of intergeneration times
Ty, if the first of the two fissions considered occured itself a time 7, after the

previous one.
The distribution P, (72) varies with 7; both in shape and in integral value.

To understand this change, we can consider what happens to the neutrons of a
single generation. Some neutrons are quickly captured in the fuel, while others
spend some time in the reflector, where they are progressively slowed down.
The longer they stay in the reflector, the slower they are, the larger the capture
cross sections become, and the more the corresponding fissions occur at the
peripheral part of the fuel. These late superficial fissions produce neutrons

that have a higher probability to escape, and a slightly longer lifetime.

We cannot afford to take into account the variations in the shape of the P
distribution, which would imply very heavy simulations and calculus. More-
over, making the assumption that this shape is constant is a quite reasonable

approximation, as we will see below. Therefore we define

_ foo Pn (TQ)dT2
1= b

and we assume that we can write P, (7o) = I(71)P(72). I(71) is proportional
to the total number of fissions induced by the first one. It can be understood

as the relative importance of this fission.

Our new model is the following : the only characteristic that differs from fission
to fission is the importance, depending only on the time between the fission

and the previous one in the chain.

Now, the terms we have to compute are convolutions of the form :

15



P(m) Py, (12) Pry(73) ... Pr,_, (13)dT1dTodTs3 . . . dTy 4
Doy T=T
P(1)I(7m1)P(12)I(19)P(73) ... I(Th_1)P(7n)dTidredrs . . .d7H_1

i=1Ti=T

Then if we define P" like P’ in (7) but weighted by the importance :

. PEI)
P = 1= Py (u)du

Equation (8) becomes

Nip (t) = k%P’ + k% P" % P' + k> P" « P" % P' + .

The other steps are left unchanged. The new fits are shown figure 7.

The new fits seem more reliable, especially for small values of £%;. The results
are summarized in figure 8, which shows, for the different levels of subcrit-
icality, the error in the determination of kY; as given by the two methods.
It appears that the improved method using the importance gives very good

results, almost within the statistical error.

5 Robustness of the method

We have to evaluate the robustness of the method through its different stages,

simulation and experiment:

e The simulated P(7) must be independent of small errors in the description
of the reactor, while computing k% directly would not.
e The measured €2(¢) must be independent of the neutron source and of the

detecting device.

16



5.1 Robustness of P(T)

The P(7) distribution has been calculated for various reactors derived from
the reference reactor by changing either the proportion of plutonium in the
core, or the diameter of the core, keeping always the same reflector. The klg;
varies in a range from 0.957 to 1.000. In order to compare them, each P(7)

distribution has been normalized to kl; = 1. The result is shown in figure 9.

The perfect superposition of the distributions confirms our assumption that

it is independent of small errors in the description of the core.

Even the small correction applied by weighting P(7) by the importance I(7)

presents the same characteristics of robustness.

The oscillations in the distributions previously plotted can be explained by the
variations of the spectrum of neutrons coming back from the reflector into the
core, already mentioned in subsection 4.2. As the mean energy of neutrons
coming back decreases, the fission/capture cross section ratio changes and

reproduces precisely the observed oscillations.

If we now study the effect of the reflector on the shape of P(7), for example
by varying the thickness of the reflector, as in figure 10, we observe that
the proportion of long-life neutrons is slightly increased, as well as the mean

intergeneration time /.

We have in the system two different characteristic times. In the fuel, the neu-
trons have a very short lifetime, of several hundreds of nanoseconds. In the
reflector, they can live several tens of microseconds. As we are interested in

time scales of tens of microseconds, the neutron lives in the fuel can be treated

17



as instantaneous. It is the reason why the precise size and composition of the
core have a very small impact on the shape of P(7), even if they have a great
impact on kb;. On the other hand, a reasonably precise description of the
reflector appears to be necessary in order to get the correct P(7) distribu-
tion. Other parts of the reactor with long time scales such as a lead target, a

moderator,... would also be of importance.

This comment is of particular importance because along the life of a reactor,
the variations of kb are likely to come only from variations of the composition
of the fuel due to burn-up and poisoning, but we don’t expect variations of the
reflector characteristics. In that case, even if kY varies a lot, the distribution
P(r) will stay as constant as in figure 9, and a method based on P(7) to

determine kX will prove very reliable.

5.2  Robustness of )(t)

Calculations of the decrease rates of the total fission rate have been performed
for four different sources, central, peripheral or distributed, of various energies,
and for four different reactors, each one with a different value of kl;. The
results are shown figure 11. It appears that €2(¢), after few microseconds, is

independent of the source and characterizes each reactor well.

But we cannot have experimental access to the total fission rate, since a neu-
tron does not produce a signal in the detector just after its birth by fission. It
is necessary here to introduce the distribution of times between the last fission
and the signal in the detector. Let D(7) be this new distribution. The mea-

sured quantity is IV, therefore the result of a last convolution : N, = N¢ * D.

18



For some detectors, the D(7) distribution will have a very small characteristic
time in comparison with N;. In that case, it is possible to make the approx-
imation that Ny () = Ne¢(t) J3° D(7)dr, and therefore the measured decrease
rate is equal to the decrease rate of the total fission rate : the above method

applies as is.

Typically, such detectors will either use a threshold-dependent reaction, or
will lie well inside the core. In the first case, only fast neutrons will induce
a signal, and fast neutrons are always “young” ones. In the second case, the
detector is protected from slow neutrons coming back from the reflector by
absorption in the external parts of the fuel. In both cases, the important point
is that the detector can see only fast neutrons, either because of its intrinsic

characteristics, or because of its location in the core.

The case of a threshold-dependent detector is particularly interesting for ap-
plication to a power reactor, because it allows to place the detector inside the

reflector, or anywhere where the neutron flux is not too high.

Figure 12 illustrates the two cases discussed above. It shows the simulation of
such experimental data obtained by two central detectors and two threshold-
dependent detectors in the reflector. The corresponding decrease rates fit with

the total fission rate decrease rate within the limits of the statistical error.

On the contrary, a detector with a wide energy range placed in the reflector
(or near to it) will show a very different decrease rate, as can be seen on figure

13.

But even in that case, it is still possible to apply our method. Nevertheless, the

D(r) distribution has to be simulated in addition to P(7). It has been done
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for a matter of demonstration for the U?*> and He® detectors in the reflector,

and the resulting fits are displayed on figure 13.

Once again, the fits are very good, and the obtained values kb = 0.9713 and
kY = 0.9711 remain perfectly compatible with the one obtained directly from

the total fission rate.

Like P(7), the D(7) distribution is very robust against small errors in the
description of the core, and depends above all on the description of the detector
itself (for the detecting cross sections) and of the reflector (introducing the long

time scales).

Of course, avoiding this new distribution by using a threshold-dependent de-
tector simplifies both the simulations and the calculations, and removes possi-
ble sources of errors. If it is not threshold-dependent, it is advisable to protect
the detector from slow neutrons, for example by means of an absorbing shell.
Nevertheless it is worth knowing that we can deal with many types of detec-

tors, keeping a very good estimation of kL.

6 Conclusion

We propose a method for the experimental determination of kY; that is inde-
pendent of the assumptions made in one group point kinetics calculations. It is
built on the intergeneration time distribution, P (7). This distribution is a rel-
evant quantity to describe the prompt kinetics of the reactor. It is independent
of small variations in the composition of the fuel, and is largely determined by
the characteristics of the reflector. It can be easily and precisely computed by

a Monte-Carlo simulation, provided the geometry and the composition of the
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reflector are precisely known, and the cross section databases (in particular

elastic scattering) are reliable.

The determination of k&g is achieved by fitting a measured decrease rate by
a function calculated from P(7). Better results can be obtained by weighting
P(7) by the importance of the corresponding fissions. The measured decrease
rate is independent of the neutron source and of the detecting device after a
very short time, as long as the detector is threshold-dependent or protected

from slow neutrons.

We still have to validate this method with the experimental data of the up-
coming MUSE 4 experiment. The major difference with the cases studied here
lies in the complexity of the core. But no major change is expected in its ki-
netic behaviour. It would be also of interest to try and apply this method to

thermal reactors, where the time scales are quite different.

As the decrease rates discussed here allow us to determine kl; in a never-
critical assembly, and to check the description of the reactor and of the mate-
rials used in the simulation, through the accuracy of the fit, it suggests that
subcritical assemblies could be powerful platforms for studying future reactor

concepts, in a very safe and straightforward way.
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subcriticalities considered. The error bars show the statistical error
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Fig. 9. Normalized P(7) distribution for several variants of the reactor, with different

kle but the same reflector. One cannot distinguish the plots from one another.
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Fig. 11. Decrease rate of the total fission rate for 4 different sources and 4 different

reactivities
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Fig. 12. Decrease rate of the signal given by a He3 detector and a U?3% fission

chamber in the middle of the fuel, and by U?® and Np?37 threshold-dependent

fission chambers in the reflector
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Fig. 13. Fits of the decrease rates of the signals given by U?3> and He? detectors
in the reflector, together with the decrease rate of the total fission rate, for the

reference reactor
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