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Abstract. Faddeev equations in configuration space are employed to study
low energy scattering of heavy positively charged particles on hydrogen atoms.
Special interest is devoted to pH system, which was found to have a resonant
value of scattering length, indicating the existence of a neartreshold H+

2 bound
state. Its binding energy B=1.13×10−9 a.u. below H ground state, the smallest
bound ever predicted.

The system of three charges constitutes a genuine 3-body problem studied
from the birth of quantum mechanics. Since, much progress was done in solv-
ing bound state problem with explicit studies of molecular structures as H+

2 ,
p+µ−p+, etc. On the other hand the rigorous solutions of three-body Coulomb
scattering problem are still limited to the simplest cinematical cases as e−-H
and e+-H, where one particle is much heavier than others.

This contribution is devoted to extend these studies by considering elastic
scattering of heavy positively charged particles, with mass m in the range
me ≤ m ≤ mp, on atomic hydrogen at energies bellow inelastic thresholds. We
will use all along the paper electronic atomic units (me = e2 = � = 1).

The main difficulty of solving three-body Coulomb problem is related to
long-range character of the potential. The primary equations of three body
problem, the Faddeev equations, suppose free asymptotic behavior of the par-
ticles, in case of long range interaction become ill behaved due to noncom-
pactness of their kernel. Anyway, they can still provide satisfactory solution
for bound state problem when asymptotic conditions are implemented by van-
ishing the total wave function. They are however completely unapplicable for
scattering states. The technical reason is that their right hand sides do not
decrease fast enough to ensure the decoupling of Faddeev amplitudes in the
asymptotic region and to allow unambiguous implementation of boundary con-
ditions. In order to circumvent this problem, Merkuriev [1] proposed to split
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the Coulomb potential V into two parts (short and long range), V = V s + V l,
by means of some arbitrary cut-off function χ:

V s(x, y) = V (x)χ(x, y) V l(x, y) = V (x)[1 − χ(x, y)] (1)

One is then left with a system of equivalent equations

(E − H0 − Wα − V s
α )Ψα = V s

α

∑

α�=β

Ψβ Wα = V l
α + V l

β + V l
γ (2)

with r.h.s. containing only short range contributions (Vs) and with some 3-
body potential (Wα) which incorporates the long range parts. This approach
was found very efficient in calculating the e+Ps and e+H cross sections [3, 4].

Figure 1. Convergence of Merkuriev and

Faddeev equations in µ+H ground state

calculations.

Figure 2. Low energy pH scattering in

the pp triplet state, compared to the re-

sults of effective 2-body Landau poten-

tial.

Equations (2) were solved by expanding Ψi in the bipolar harmonics ba-
sis and their components ϕiαi

in terms of two-dimensional splines. Its worth
mentioning that the Merkuriev equations when applied to bound state problem
are advantageous with respect to standard ones, because corresponding com-
ponents are smoother functions and needs smaller bipolar harmonic basis to be
described Fig.1. In this figure, two different convergence schemes of Faddeev
equations are presented: Faddeev1 indicates a scheme where the number of the
partial amplitudes is equal in all three components, whereas in Faddeev2 the
number of the partial amplitudes in repulsive components is by 1 smaller than
in attractive ones.

When dealing with a three-body Coulomb scattering problem some addi-
tional care should be taken when introducing boundary conditions – 2-body
state is never free due to long range interaction – as well as when extracting
the scattering observables from the asymptotic solution at finite distance. The
long range polarization force makes the convergence of the phase shifts as a
function of the X+-H distance very slow and requires an additional analysis [2].
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Some interesting features of the 3-body Coulomb system can be learned
from Fig.3, where the zero energy X+H cross section as a function of the pro-
jectile mass mX is displayed. Each peak corresponds to the appearance of a new
S-wave bound state. The critical mass values mi at which they occur, enable to
generalize the ground state stability triangle [5] to higher excitations. The cal-
culated scattering lengths for physical projectiles µ+ and π+ are aµ+H = 69.1
and aπ+H = 24.4 respectively. Other interesting feature about the X+−H sys-
tem can be learned from studying the zero energy scattering wave functions.
All the nodal structure of wave function is situated along the line connecting
X+ and H atoms center of mass. This corresponds to the ”vibrational” bound
states and contains information about their number.

Scattering of protons on H atoms presents special interest. The pH 3-body
wave function is antisymmetric with respect to the protons exchange. This can
be realized in two different ways following the proton spin coupling. When two
protons spins are antiparallel (singlet) the spatial part of the wave function
is symmetric, while for the parallel case (triplet) it is antisymmetric. In Born-
Oppenheimer approach, these two cases give rise to completely different 2-body
effective potentials. The singlet case has a broad attractive well which supports
a great number of bound states. They have been calculated since the first days
of Quantum Mechanics and presently are known with a very high precision
(see e.g. [6, 7] and reference therein). Our 3-body calculations cannot reach
this kind of accuracy for bound states but are in 5-6 digits agreement for the
lower excitations. Our calculations provide the first result for the pH scattering
length as = −29.3. We notice that the zero energy scattering wave function
shows 20 nodes in X+H-direction, indicating the existence of 20 L=0 σg energy
levels for H+

2 .

Figure 3. 3-body zero energy X+H cross section as a function of the projectile mass.

The triplet case – for which the 2-body potential was successfully mod-
elled by Landau [9] – is dominated by the Pauli repulsion between the two
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protons, overbalanced at r ∼10 by the attractive polarization forces. Our 3-
body calculations give a scattering length of at = 750± 5. The nodal structure
of the Faddeev amplitudes indicates that such a big value is due to the ex-
istence of a first excited L=0 state with extremely small binding energy. By
using the modified effective range theory [10] we are able to determine its value
B=(1.135±0.035)×10−9 below the H ground state. This result was recently
confirmed by direct bound state calculation [11]. To our knowledge, this is the
weakest bond ever predicted, three times smaller than 4He atomic dimer [8].

Figure 4. pH elastic cross section for

L=3 in the pp spin triplet state.

Figure 5. pH elastic cross section for

L=4 in the pp spin triplet state.

The pH cross sections for higher partial waves have also been calculated.
They exhibit narrow resonances in several partial waves. Figs. 4-5 show the
elastic cross sections for the L=3 and L=4 states. The position and width
of these resonances were estimated to be E=(5.13-1.61i)×10−6 for L=3 and
E=(1.56-0.94i)×10−5 for L=4.
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