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Production efficiencies of radioactive oxygen and nitrogen beams for the SPIRAL target-

source system, measured at GANIL on the SIRa test bench, are presented. From the overall

efficiency of oxygen, the product between the efficiency of transformation of O into CO and the

effusion of CO from the target to the ion source, was deduced. The production yield

measurements of oxygen and nitrogen isotopes performed on the SIRa test bench and those of

fluorine directly measured on the SPIRAL facility are presented.
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1. INTRODUCTION

Based on isotope separation on-line (ISOL) [1], the SPIRAL facility [2] at GANIL

delivers beams of radioactive isotopes. These isotopes are produced by fragmentation of a stable

primary beam in the SPIRAL target, diffuse out of it and effuse up to an electron cyclotron

resonance ion source (ECRIS), where they are ionised. After their extraction from the source, the

radioactive isotopes are selected by a separator magnet before being injected into the cyclotron

CIME [3] to get medium energy ions. The first radioactive beam (
18

Ne
4+

), corresponding to the

commissioning of the SPIRAL facility, was sent to the experimental area at the end of

September in 2001 [4]. The present target-source [5] system can supply radioactive beams of

noble gases, with a dedicated target for He and another one for Ne, Ar and Kr. Furthermore,

gaseous isotopes or molecules produced in the target could also be efficiently transported to the

ion source, which would allow ionising and post-accelerating alternative radioactive beams.

In particular, oxygen and nitrogen radioactive beams are presently of great interest,

mostly for astrophysics, e.g. 
15

O(α,γ)
19

Ne [6] and direct reactions studies, e.g. 
13

N(p,t)
11

N [7].

The SPIRAL carbon target produces important amounts of oxygen and nitrogen molecules (CO,

CO2, CN, etc.) allowing a fast transfer from the target to the ion source. This phenomenon is well

known and was already used to produce radioactive beams at LISOL [8] and more recently at

CRC, Louvain-la-Neuve [9]. For a more detailed review of ISOL oxygen beams, see reference

[10]. Finally, the oxygen and nitrogen molecules are efficiently ionised in the ECRIS, which is

the SPIRAL ion source [11]. Therefore, all ingredients necessary for an efficient production of

these elements are present in the SPIRAL target-ion source system.



In this paper, we present the results of production efficiency and production yield

measurements of radioactive O and N beams measured at the SIRa [12] test bench, and the

production yield of radioactive F directly measured in the SPIRAL production cave. The

expected production rates on the SPIRAL facility are also given.

2. EXPERIMENTAL SET-UP

The production efficiencies and production yields of radioactive oxygen and nitrogen

beams have been measured on the SIRa [12] test bench at GANIL with the target-source system

already developed for the production of radioactive neon, argon and krypton. The target, shown

in Fig. 1, is made of a 1 µm graphite microstructure (POCO Graphite industries) in a conic shape

with slices of 0.5 mm spaced by 0.8 mm, linked by an axis. It can be heated up to 2450 K by

sending a current through its axis (the evaporation rate of carbon becomes important for the

target above this temperature) to get a fast diffusion of the produced radioactive isotopes. The

target is connected to a compact full permanent magnet ECR ion source (NANOGAN3 [13]).

The connection between the target container and the ion source is at room temperature.

Therefore, for very reactive elements like oxygen, nitrogen and fluorine, the transport of the

radioactive species is possible only if volatile molecules would be synthesized. The chemical

nature of the target (carbon) plays an important role in this case.

The overall efficiency ξ of the production processes can be described, for example, for

the reactive element O and for this target-source system, as follows :

ξO = ξO-CO . ξdiff(CO) . ξeff(CO) . ξ ion(O/CO) . ξ trans(O) (1)



The right hand terms of equation (1) respectively represent the transformation efficiency of O

into CO, the diffusion efficiency of CO, the effusion efficiency of CO, the ionisation efficiency

of O coming from CO and the transport efficiency of O. The product ξdiff(CO) . ξeff(CO) is life-

time and temperature dependant, but this is not the case of the product ξ ion(O/CO) . ξ trans(O).

For the overall efficiency measurements, we simultaneously implanted secondary 
14

O and

13
N beams, produced by projectile fragmentation using the SISSI device [14,15], in the target of

SIRa. The implanted 
14

O and 
13

N were identified and quantified by Time-Of-Flight with a plastic

detector placed just before the target. Non-ambiguous identification of 
14

O and 
13

N were

provided at the end of the test bench, by the detection of the 2312.6 keV gamma ray for the first

element and the 511 keV rays from β+
 annihilation for the second one, by using a germanium

detector. The overall efficiency for each isotope is given by the ratio between their measured

quantities at the end of the test bench and those implanted in the production target.

For the production yield measurements, we directly bombarded the SIRa production

target with a 
16

O beam of 95 A.MeV. The quantities of 
14

O, 
15

O and 
13

N were measured, after

selection by the separator magnet, at the end of the test bench.

3. EXPERIMENTAL RESULTS

3.1 Efficiency measurements

The different contributions to the overall efficiency of 
14

O beam production for a target

temperature of 2000 K was investigated by measuring the intensities of each molecular

compound, as represented in Fig. 2. We assume that the 
14

O implanted in the target was released



under the molecular form CO (due to the enormous quantity of carbon atoms compared with

others impurities). The other molecules were presumably created in the plasma of the ion source

by a chemical reaction with mainly hydrogen, nitrogen, water, etc. The overall efficiency of 
14

O

found in all charge states and any molecular compounds was equal to 6.5(4) %.

The overall efficiency of 
14

O beam production, as a function of the target temperature,

was also investigated. These measurements are shown in Fig. 3. We can observe that around

2000 K a production plateau is reached. Therefore, one may conclude that for 
14

O (T1/2 = 70.6 s)

the diffusion efficiency reached 100 % at this temperature. Concerning effusion, this is not the

case, mainly because the transfer between target and ion source is cooled.

Moreover, we performed complementary off-line measurements on the ionisation

efficiency of O coming from CO. In this study, a known quantity of stable 
13

C
16

O was injected

through a calibrated valve. The quantity of ionised 
16

O (including molecular forms) was

measured at the end of the separator magnet. The ratio between these two quantities represents

the ionisation efficiency of 
16

O coming from 
13

C
16

O, so-called ξion(
16

O/
13

C
16

O). The ionisation

efficiency of 
13

C coming from 
13

C
16

O, so-called ξion(
13

C/
13

C
16

O), was also measured and found

approximately similar. Therefore, we assumed that both ionisation efficiencies are equivalent,

i.e.

ξion(
13

C/
13

C
16

O) = ξ ion(
16

O/
13

C
16

O) = ξ ion(
14

O/
12

C
14

O) (2)

Considering a total beam transport efficiency of 53(5) % - also measured off-line using a

40
Ar calibrated leak - we obtained ξion(

13
C/

13
C

16
O) = ξion(

14
O/

12
C

14
O) equal to 29(9) %. Finally,



one can conclude that for 
14

O (T1/2 = 70.6s) at 2000 K, the product between the transformation

efficiency of O into CO and the effusion efficiency of CO between target and ion source is:

ξ14O-12C14O .ξeff(CO)   = 42 (13) %    (3)

Similarly, the overall efficiency for ionisation of 
13

N was also measured at 2000 K. We

obtained 0.67(5) % for 
13

N
1+

, 0.047(8) % for 
13

N
3+

, 0.048(5) % for 
12

C
13

N
+
 and 0.032(11) % for

13
N

16
O

+
. In the case of nitrogen, the CN molecule is not an inert molecule at room temperature

like CO. Therefore, the transport of radioactive nitrogen is less efficient.

3.2 Expected production rates on SPIRAL

The production yields of 
14

O, 
15

O and 
13

N were measured at the SIRa test bench

impinging a limited intensity of 0.25 pµA of a 95 A.MeV 
16

O primary beam (corresponding to

380 W) directly on the carbon target, heated at about 2000 K. The average production rates

obtained during 2 days of irradiation are presented in Table 1. From these results, we

extrapolated the production rates for SPIRAL supposing a maximum beam power of 1500 W of

a suitable primary beam (cf. Table 1). A 50 % transmission factor of the SPIRAL separator was

assumed, provided that the correct adaptation of the beam to the injection of CIME imposes

beam losses. It should be noted that the intensities obtained on-line are in perfect agreement with

the estimations using the EPAX [16] model and the efficiencies measured in the preceding

session.

18
F production yields were also directly measured on the SPIRAL facility by impinging

0.2 pµA of a 95 A.MeV 
20

Ne primary beam on the SPIRAL target. We obtained 2 x 10
5
 p/s at



the exit of the CIME cyclotron, corresponding to around 8 x 10
5
 p/s just after the ion source. It is

expected that with a 1500 W primary beam of 
19

F, the final production rate of 
18

F will be around

1 x 10
6
 p/s.

4. CONCLUSION

In the framework of SPIRAL developments, the production efficiencies and production

yields of radioactive O and N beams have been studied on the SIRa test bench. The overall

efficiency measurements of oxygen and nitrogen have been presented, indicating that many

molecules are created not only in the target zone but also in the plasma of the ion source. The

efficiency of 
14

O beam production as a function of the target temperature has been determined

and its saturation was observed at 2000 K. Finally, the product between the efficiency of

transformation of O into CO and the effusion of CO from the target to the ion source has been

deduced. This mechanism is responsible for an efficient transport of oxygen from the target to

the ion source plasma.

Production yield measurements of oxygen, nitrogen and fluorine isotopes have been

presented. The expected production yields for SPIRAL have been extrapolated. The yield

measurements are in perfect agreement with theoretical calculations using EPAX model folded

by the efficiencies measured in this paper.
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Figure captions:

(1) Technical drawing of the Target-Part of the SPIRAL Target-Source production system. The

target used for the production of radioactive Ne, Ar and Kr beams is shown.

(2) Different contributions to the overall efficiency of 
14

O measured on the SIRa test bench, for a

target temperature of 2000 K. The intensity of the 
12

C
14

O
16

O
+
 molecule is not represented

because its quantity is negligible compared with 
12

C
14

O
+
.

(3) Overall efficiency of 
14

O
1+

, 
14

O
3+

 and 
12

C
14

O
1+

 on the SIRa test bench as a function of the

target temperature. A line is drawn to guide the eye.

Table caption:

(1) Production yield measurements on the SIRa test bench and production yields extrapolated for

SPIRAL when choosing the best primary beam. The 
15

O
5-6+

 production yield on SIRa has been

extrapolated by using the efficiency measurement of 
14

O
5-6+

.
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ion

primary
beam used
on SIRa

mean
production rate
measured on

SIRa and
normalised by

380W of
primary beam

primary
beam on
SPIRAL

expected
production

yields at the
entrance of

CIME

14O1+ 7.2 (1.4) 106 p/s 1.4 (0.3) 107 p/s

14O2+ 2.2 (0.4) 106 p/s 4.3 (0.9) 106 p/s

14O3-4+ 8.4 (1.7) 105 p/s 1.7 (0.3) 106 p/s

14O5-6+ 2.2 (0.4) 105 p/s 4.4 (0.9) 105 p/s

15O1+ 2.3 (0.5) 108 p/s 4.6 (0.9) 108 p/s

15O2+ 7.0 (1.4) 107 p/s 1.4 (0.3) 108 p/s

15O3-4+ 2.7 (0.5) 107 p/s 5.4 (1.1) 107 p/s

15O5-6+ 7.2 (1.4) 106 p/s

16O8+

95 A.MeV

1.4 (0.3) 107 p/s

13N1+ 1.4 (0.3) 107 p/s 5.0 (1.0) 107 p/s

13N2+ 2.5 (0.5) 106 p/s 9.0 (1.8) 106 p/s

13N3+ 4.0 (0.8) 105 p/s 1.5 (0.3) 106 p/s

13N4-5+

16O8+

95 A.MeV

5 (2) 104 p/s

14N7+

95 A.MeV

2 (1) 105 p/s


