
HAL Id: in2p3-00014576
https://hal.in2p3.fr/in2p3-00014576

Submitted on 17 Dec 2003

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Correlator mixing and mass reduction as signals of
chiral symmetry restoration

J. Delorme, M. Ericson, P.A.M. Guichon, a W. Thomas

To cite this version:
J. Delorme, M. Ericson, P.A.M. Guichon, a W. Thomas. Correlator mixing and mass reduction
as signals of chiral symmetry restoration. Physical Review C, 2000, 61, pp.02202-. �10.1103/Phys-
RevC.61.025202�. �in2p3-00014576�

https://hal.in2p3.fr/in2p3-00014576
https://hal.archives-ouvertes.fr


Correlator mixing and mass reduction
as signals of chiral symmetry restoration

April 28, 1999

J. Delorme1, M. Ericson1,2,4 , P.A.M. Guichon3, A.W. Thomas4

1IPNLyon, IN2P3-CNRS et UCB Lyon I, 43 Bvd du 11 Novembre 1918, F69622
Villeurbanne Cedex
2Theory division, CERN, CH12111 Geneva
3SPhN/DAPNIA, CEA-Saclay, F91191 Gif sur Yvette Cedex
4 Department of Physics and Mathematical Physics and Special Research Center for the
Subatomic Structure of Matter, University of Adelaide, SA 5005, Australia

Abstract

Chiral symmetry restoration in a dense medium is to some extent a
consequence of the nuclear pion cloud. These pions induce a mixing of
the axial and vector current contributions in the axial and vector cor-
relators. We discuss their influence on hadron masses and investigate
the signal produced by the remaining contribution associated with chi-
ral symmetry restoration. Using the quark-meson coupling model we
find that the latter is associated with the reduction of hadron masses.
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Chiral symmetry is partially restored in a heat bath or in dense matter.
For instance, at normal nuclear matter density the quark condensate, which
is the order parameter of the spontaneous breaking of the symmetry, has
decreased by about 35%. It is therefore legitimate to investigate whether this
large reduction is accompanied by precursor effects which signal the approach
to full restoration. These effects should be linked to the symmetry itself. The
realization of chiral symmetry in the Wigner rather than in the Goldstone
mode implies either a vanishing of all hadron masses or the existence of
parity doublets, each state being degenerate with its chiral partner. The fact
that neither of these situations occurs for free hadrons was the motivation to
favour the Goldstone realization. The signatures of the Wigner realizations
make it natural to look for precursor effects of the full restoration in the
form of a decrease of the hadron masses or in some effects which involve
parity. The first road was taken by Brown and Rho [1] on the basis of scale
invariance arguments. They suggested a reduction of hadron masses linked
to the condensate evolution. For tests of these ideas attention has focussed
on the ρ and ω masses. On the other hand, Dey et al. [2] have shown that in
a heat bath there will be some mixing of axial and vector correlators. This
mixing is induced by the emission or absorption of an s-wave thermal pion
which produces a change in the parity. For soft pions, i.e. in the chiral limit
and at low temperatures, the amount of axial (vector) correlator introduced
in the vector (axial) one is governed by the condensate evolution. At the
same time the original correlator is depleted by the same amount.

A similar concept was introduced by Chanfray et al. [3] in dense matter.
The pions in this case are the virtual ones of the nuclear pion cloud. Since
they constitute an integral part of the nucleus there is no true correlator
mixing. Nevertheless Chanfray et al. extended the notion of mixing to the
currents in such a way that they could build a coherent picture from the
nuclear pions. Similar to the case of the heat bath, there occurs a depletion
phenomenon in the form of a quenching of certain coupling constants from the
nuclear pion loops. The quenching factor is related to the pion scalar density.
One difference from the case of a heat bath is that the relation between
this quantity and the condensate is not straightforward. The condensate
evolution in a dense medium is governed by the nucleon sigma commutator
ΣN . For a uniform medium with nucleon scalar density ρs, the condensate
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evolves, to first order in ρs, according to the relation:

< ψψ(ρs) >

< ψψ(ρs = 0) >
= 1− ΣNρs

f 2
πm

2
π

. (1)

The question is then how much of the restoration arises from the pion cloud.
It turns out that our question concerning the role of the pion cloud in the

restoration of chiral symmetry in dense matter cannot be given in a model
independent way. For example, as we explain later, within the cloudy bag
model the nucleon sigma commutator separates into a pionic contribution
and a remaining piece [4], Σr

N :

ΣN =
m2

π

2

∫
d~x < N |φ2(~x)|N > +Σr

N . (2)

We introduce the (constant) average quantity, < φ2 >, related to the pion
scalar density ρs

π = mπ < φ2 > :

< φ2 >= ρs

∫
d~x < N |φ2(~x)|N > . (3)

The symmetry restoration is produced by both pionic and non-pionic terms
on the r.h.s. of Eq.(2) according to

< ψψ(ρs) >

< ψψ(ρs = 0) >
= 1− < φ2 >

2f 2
π

− ρsΣ
r
N

f 2
πm

2
π

. (4)

A similar expression holds for the evolution with temperature in the heat
bath. However, in that case only the term in < φ2 > is present in the r.h.s.
of Eq. (4) [5].

As a matter of fact the pions are responsible for the correlator mixing
which signals chiral symmetry restoration. The question is whether they
also affect the nucleon mass and what is the restoration signal due to Σr

N .
The evolution of the hadron masses at finite temperature has been discussed
by several authors (see e.g., Refs. [6, 7]). Here we concentrate on the modifi-
cation which is directly linked to the evolution of the condensate, that is to
the existence of a non zero expectation value for < φ2 > . This expectation
value can arise in either nuclear matter or a heat bath. In the latter case
< φ2 > goes like T 2 in the chiral limit. Using the effective Lagrangian of
Lynn, in the tree approximation [8, 9], it is straightforward to derive the
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following expression for the change in the nucleon mass (consistent with the
results of Ref. [7]):

∆Ms

M
= −ΣN

M

< φ2 >

2f 2
π

. (5)

We have to specify the meaning of the index s, in Eq.(5), which stands for
soft. The pions which build the quantity < φ2 > need not be soft, and
indeed the virtual nuclear pions are not, with their typical momentum being
a few hundred MeV/c. However, the term in < φ2 > of Eq. (4) is the
only one to survive in the soft limit. Practically, in the N-N interaction,
the two-pion exchange with a contact s-wave ππNN coupling which leads
to the mass modification of Eq.(5) represents a minor contribution [9]. On
the other hand, for non-soft pions the derivative couplings introduce other
terms in the mass modification. The extra terms will be lumped into an
effective σ meson exchange as explained below. An expression similar to
Eq. (5) holds for the other hadrons. By comparison with the evolution of the
condensate of pionic origin, Eq. (4), the mass evolution is thus attenuated by
the factor ΣN/M which vanishes in the chiral limit as imposed by the soft
pion theorems. Thus in this limit there is no mass shift of order T 2, as we
know on general grounds [6, 10], and in the nuclear case no term of order mπ

appears in the mass change [11].
Coming now to the restoration signal due to Σr

N , in order to be definite,
we use the quark-meson coupling model (QMC) of Guichon [12, 13] where
the quarks interact locally with σ and ω fields. This phenomenological σ
exchange, when taken between two-nucleon states, incorporates among other
things the excitation via p-wave pions of one or both nucleons into ∆ reso-
nances. Therefore it also includes, in a very phenomenological fashion, the
influence of non-soft pions on the nucleon mass beyond the modification de-
scribed in Eq. (5). This is sufficient for our purpose. Our aim here is not
a detailed quantitative description of the total mass change. We want in-
stead to understand what are the signatures of chiral symmetry restoration
induced by its different components displayed in Eq. (4).

Originally the QMC model was devised without any reference to chiral
symmetry. The reason was that in the mean field approximation the pion
field vanishes in nuclear matter. But in order to study chiral symmetry
restoration one clearly needs a model in which the explicit breaking of chiral
symmetry vanishes with the current quark mass mq. For this we start from
the cloudy bag model [14] which is the MIT bag model where the confining
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surface term 1/2δ(S)qq is made chirally symmetric by a coupling to a pion

field ~φ. We note q the quark field of the model so as to avoid any confusion
with the QCD quark field ψ. In the following we never need to identify q
with ψ , which would be unjustified. Our only hypothesis is that we can use
this model to evaluate ΣN . The Lagrangian density is:

L = Θ(V )
[
i

2
qγµ.(

−→
∂ µ −←−∂ µ)q −mqqq −B

]
− 1

2
δ(S)qU2(φ)q + L(φ) (6)

with
U(φ) = exp(i~τ .~φγ5/2fπ) (7)

and L(φ) the Lagrangian density for the pion field

L(φ) =
1

2
Dµ

~φDµ~φ+
1

2
m2

πφ
2 . (8)

The covariant derivative on the pion field is defined as

Dµ
~φ = φ̂∂µφ+ fπ sin(φ/fπ)∂µφ̂ . (9)

Under infinitesimal SU(2)×SU(2) transformations, with parameters (~ε,~ε5),
the quark field q transforms as

q → (1 +
i~ε.~τ

2
)q, (10)

q → (1 + iγ5
~ε5.~τ

2
)q , (11)

while the corresponding transformations for the pion field are

~φ→ ~φ−~ε× ~φ, (12)

and

cos(φ/fπ) → cos(φ/fπ) + ~ε5.φ̂ sin(φ/fπ) , (13)

φ̂ sin(φ/fπ) → φ̂ sin(φ/fπ)−~ε5 cos(φ/fπ), (14)

where Eqs. (13, 14) are for the axial transformations. It is straightforward
to establish that the Lagrangian density of Eq.(6) is chirally invariant under
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these transformations, except for the term mqqqΘ(V )−m2
πφ

2/2 , which van-
ishes in the chiral limit. Using the equations of motion it is straightforward
to derive the expression for the double commutator

[Q5,
d

dt
Q5] =

∫
d~x

[
mqqqΘ(V ) +

1

2
m2

πφ
2
]
, (15)

which shows again that chiral symmetry is correctly implemented in the
model. By taking the expectation value of Eq.(15) we identify the non-pionic
contribution to the nucleon sigma commutator:

Σr
N = mq

∫
d~x < N |Θ(V )qq(~x)|N > , (16)

Despite successful phenomenological application of the model defined by
Eq.(6), it was soon realised that this formulation was not convenient. The
reason is that the γ5 coupling of the pion at the surface produces a strong cou-
pling to the negative energy quark states. Ignoring this coupling is allowed
in some cases but in order to recover the low energy theorems one has actu-
ally to sum over all those states. This admixture of negative energy quark
states obscures the simple interpretation of the nucleon as a three valence
quarks (in first approximation) . To remedy this problem one introduces a
new quark field Q according to [15]

Q = U(φ)q . (17)

With this new field the surface coupling of the pion is shifted to a volume
coupling and the Lagrangian density becomes

L = Θ(V )
[
i

2
Qγµ.(

−→
∂ µ −←−∂ µ)Q−mqQU(φ)†2Q− B

]
−1

2
δ(S)QQ+LπN+L(φ),

(18)
where the interaction term

LπN = Θ(V )iQγµ
[
U(φ)∂µU

†(φ)
]
Q (19)

generates all the soft pion theorems if one takes its expectation value be-
tween pion-nucleon states [15]. One then can check that the coupling to the
negative energy states is suppressed by powers of the pion field energy, which
supports the interpretation that the nucleon is approximately described by
three valence quarks in the lowest energy mode of the field Q. In other words,
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as long as we consider nucleon matrix elements, the field Q is approximately
independent of φ. More precisely Q is not affected by the soft content of φ.

We are now in a position to introduce the coupling to the σ and ω in a
way consistent with chiral symmetry. Since the combinations QQ and QγµQ
are obviously invariant under a chiral transformation, we can add to L the
term

Lσω = Θ(V )
[
−gQ

σ σQQ+ gQ
ω ωµQγ

µQ
]
+ L0

σω (20)

where L0
σω is the usual Lagrangian density for free scalar and vector fields.

The ω field, which plays no role in the following discussion, is mentioned here
only for completeness. We stress that the σ field just introduced has nothing
to do with the chiral partner of the pion field in the linear sigma model, it
is a chiral singlet and the interaction in Eq.(20) is chirally invariant. From
Eq. (20) we get the following equation for the sigma field:

(
∂2

∂t2
−∇2 +m2

σ)σ(x) = gQ
σ QQ(x) Θ(V ) (21)

where the r.h.s of Eq.(21) is the scalar source for a single bag located inside
the volume V . In a uniform nuclear medium, and in the absence of a response
of the bag, the σ field has the constant value

σ =
gQ

σ ρs

m2
σ

∫
d~x < N |Θ(V )QQ(~x)|N >=

gN
σ ρs

m2
σ

, (22)

where the second equation defines the σ-nucleon coupling constant gN
σ . To

leading order, which is enough for our considerations, the sigma field governs
the change in the nucleon mass according to

∆M = −gN
σ σ . (23)

Notice that, contrary to the σ field of the non-linear sigma model which is
constrained by the chiral circle, σ (which as already mentioned is not related
to the chiral partner of the pion), can develop large values. For instance,
in the QMC model the favoured values of the coupling constants lead to a
mass change for the nucleon, ∆M ∼ −200MeV , at normal nuclear matter
density [13]. The corresponding number for the vector mesons is of order
-140 MeV [16].

We now wish to relate the change of the nucleon mass to the condensate
evolution governed by Σr

N as defined by Eqs. (4, 16). From Eqs. (7, 17), and
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for a homogeneous medium, in which < φ2 > is constant, we have to lowest
order in < φ2 > /f 2

π :

∫
d~x < N |Θ(V )qq(~x)|N >= (1− < φ2 >

2f 2
π

)
∫
d~x < N |Θ(V )QQ(~x)|N > .

(24)
Here we emphasise that it is Q which is independent of φ. The modification
of the nucleon mass is thus

∆M = −g
N
σ g

Q
σ

m2
σ

ρs

∫
d~x < N |qq(~x)|N >

1− < φ2 > /(2f 2
π)

. (25)

Using Eqs. (4,16) and the Gell-Mann-Oakes-Renner relation, this can be
written in terms of the condensate evolution, leading to

∆M = −g
N
σ g

Q
σ

m2
σ

[
< ψψ(ρs) >

1− < φ2 > /(2f 2
π)
− < ψψ(ρs = 0) >

]
, (26)

valid up to lowest order in < φ2 >. In comparison with the condensate
evolution we have the additional term in denominator involving < φ2 > .
Its presence guarantees that the modification of the mass of the nucleon is
independent of the quantity < φ2 > . It is quite remarkable that the mass
evolution, in spite of the chiral invariant coupling of the sigma field, follows
the condensate evolution, but only that piece of it which is of non-pionic
origin. We have derived this result within the QMC model where the sigma
field is coupled in a chiral invariant way to the quarks. It is likely to be more
general. The general arguments based on scale invariance [1] do not seem to
distinguish between the different origins of the symmetry restoration as we
do.

Note that in the QMC model the proportionality constant between the
mass and the condensate is purely phenomenological. On the other hand,
within the Nambu-Jona-Lasinio (NJL) model in its simplest version, the
nucleon mass is taken as three times the effective quark mass. In the standard
treatment of the model, which amounts to the Hartree approximation, the
quark mass is obtained from a gap equation which does not incorporate
meson loops and thus follows the condensate in the chiral limit. The question
is how to extend the model in such a way that the pion density influences
the mass in a negligible way while keeping a large role in the condensate –
which amounts to preserving the soft pion theorems. The understanding of
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this point, following, for example, the extension of the NJL model to meson
loops developed in Ref. [17], would provide in a QCD inspired theory, the
link between the mass and the condensate which respects the constraints of
chiral perturbation theory.

In conclusion, with the results obtained here we have achieved a satisfac-
tory description of the signatures of the partial restoration of chiral symmetry
in a dense medium. Part of the restoration arises from the finite value of the
average squared pion field (equivalently the scalar pion density). The signa-
ture for that part is the depletion of the axial and vector correlators and the
generalized mixing of these correlators in the sense defined in Ref. [3]. The
mass reduction associated with the pion density is very small, being damped
by factors of order m2

π as required by low energy theorems. On the other
hand, another part of the restoration is not linked to the pion density and
does not induce any mixing. We have shown, within the QMC model, that it
is instead signalled by a decrease of the hadron masses proportional to this
part of the condensate evolution. In the nuclear medium the two signatures
are simultaneously present.
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fray, C. Shakin and H. Toki. P.A.M. Guichon gratefully thanks the CSSM
Adelaide for its support while part of this work was done. This work was
supported in part by the Australian Research Council.
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