*. P. Fayet, . Phys, and . Lett, See also, J. Wess and B. Zumino, Phys. Lett, vol.64, issue.49, p.52, 1974.

*. A. Metz, J. Jolie, G. Graw, R. Hertenberger, J. Gröger et al., Evidence for the Existence of Supersymmetry in Atomic Nuclei, Physical Review Letters, vol.83, issue.8, pp.1542-1554, 1999.
DOI : 10.1103/PhysRevLett.83.1542

. Lett, OPAL Collaboration, Phys. Lett, vol.18, issue.499, p.38, 2000.

*. G. Goldin, R. Menikoff, and D. H. Sharp, Particle statistics from induced representations of a local current group, Journal of Mathematical Physics, vol.21, issue.4, p.650, 1980.
DOI : 10.1063/1.524510

*. O. Greenberg and A. M. Messiah, Selection Rules for Parafields and the Absence of Para Particles in Nature, Physical Review, vol.138, issue.5B, p.1155, 1965.
DOI : 10.1103/PhysRev.138.B1155

*. Y. Ohnuki and S. Kamefuchi, Quantum Field Theory and Parastatistics, 1982.
DOI : 10.1007/978-3-642-68622-1

*. M. Arik and D. D. Coon, Hilbert spaces of analytic functions and generalized coherent states, Journal of Mathematical Physics, vol.17, issue.4, p.524, 1976.
DOI : 10.1063/1.522937

*. A. Filippov, A. P. Isaev, and A. B. Kurdikov, PARAGRASSMANN ANALYSIS AND QUANTUM GROUPS, Modern Physics Letters A, vol.07, issue.23, p.2129, 1992.
DOI : 10.1142/S0217732392001877

*. C. Ahn, D. Bernard, A. Leclair, . Nucl, and . Phys, Fractional supersymmetries in perturbed coset CFTs and integrable soliton theory, Nuclear Physics B, vol.346, issue.2-3, pp.409-413, 1990.
DOI : 10.1016/0550-3213(90)90287-N

URL : http://doi.org/10.1016/0550-3213(90)90287-n

*. R. Kerner, ???graded algebras and the cubic root of the supersymmetry translations, Journal of Mathematical Physics, vol.33, issue.1, p.403, 1992.
DOI : 10.1063/1.529922

*. J. Matheus-valle and M. A. , QUANTUM GROUP GENERALIZATION OF THE CLASSICAL SUPERSYMMETRIC POINT PARTICLE, Modern Physics Letters A, vol.07, issue.32, p.3023, 1992.
DOI : 10.1142/S0217732392002408

*. J. De-azcárraga and A. J. Macfarlane, Group theoretical foundations of fractional supersymmetry, Journal of Mathematical Physics, vol.37, issue.3, p.1115, 1996.
DOI : 10.1063/1.531451

*. A. Perez, M. Rausch-de-traubenberg, and P. Simon, 2D fractional supersymmetry for rational conformal field theory: Application for third-integer spin states, Nuclear Physics B, vol.482, issue.1-2, p.325
DOI : 10.1016/S0550-3213(96)00522-6

N. Fleury and M. Rausch-de-traubenberg, LOCAL FRACTIONAL SUPERSYMMETRY FOR ALTERNATIVE STATISTICS, Modern Physics Letters A, vol.11, issue.11, p.899
DOI : 10.1142/S0217732396000916

URL : https://hal.archives-ouvertes.fr/in2p3-00015167

M. Rausch-de-traubenberg and M. J. Slupinski, Fractional supersymmetry and Fth-roots of representations, Journal of Mathematical Physics, vol.41, issue.7, p.4556, 2000.
DOI : 10.1063/1.533362

*. A. Mostafazadeh, K, Int. J. Mod. Phys. A11, p.2957, 1057.

*. J. Katriel and C. Quesne, Recursively minimally???deformed oscillators, Journal of Mathematical Physics, vol.37, issue.4, p.1650, 1996.
DOI : 10.1063/1.531475

URL : http://arxiv.org/abs/q-alg/9512032

*. M. Chaichian, D. Ellinas, and P. P. Kulish, Quantum algebra as the dynamical symmetry of the deformed Jaynes-Cummings model, Physical Review Letters, vol.65, issue.8, p.980, 1990.
DOI : 10.1103/PhysRevLett.65.980

*. S. Majid and M. J. Rodríguez-plaza, Random walk and the heat equation on superspace and anyspace, Journal of Mathematical Physics, vol.35, issue.7, p.3753, 1994.
DOI : 10.1063/1.530868

*. A. Vourdas, SU(2) and SU(1,1) phase states, Physical Review A, vol.41, issue.3, p.1653, 1990.
DOI : 10.1103/PhysRevA.41.1653

L. Bers, Riemann surfaces, B39 (Courant Institute of Mathematical Sciences, 1958.

R. C. Gunning, Lectures on Riemann surfaces, 1966.

S. Lazzarini and R. Stora, Stochastics, Algebra and Analysis in Classical and Quantum Dynamics Knots, Topology and Quantum Field Theories, World Scientific Gieres, Class. Quantum Grav. Nucl.Phys.B, vol.7, issue.271, p.93, 1907.

B. Gustafsson, J. Peetre, and N. Math, 63; in " Function spaces, operators and non-linear analysis, Pitman Research Notes in Math. Series (Longman, 1989.

D. Ph, C. Francesco, J. Itzykson, and C. Zuber, A8 (1993) 1; in " Supersymmetries and Quantum Symmetries, ) 515. [8] F. Gieres, 1205.

D. Friedan, Unified String Theories, World Scientific Commun .Math.Phys, vol.111, 1986.

S. J. Gates, J. , F. Gieres, R. Grimm, N. L. Baulieu et al., 5B (1988) 137, Nucl.Phys.BPhys.B (Proc. Nucl.Phys.B Ann.Phys. Phys.Lett.B Rev.Mod.Phys. Lett.Math.Phys. Int.J.Mod.Phys. Nucl.Phys.B Nucl.Phys.B J.Math.Phys. Int.J.Mod.Phys. J.Math.Phys. Int.J.Mod.Phys. Phys.Lett.B Nucl.Phys.B, vol.320, issue.268, p.14, 1986.