

The AME2003 atomic mass evaluation (I) - Evaluation of input data, adjustment procedures

A.H. Wapstra, G. Audi, C. Thibault

▶ To cite this version:

A.H. Wapstra, G. Audi, C. Thibault. The AME2003 atomic mass evaluation (I) - Evaluation of input data, adjustment procedures. 2003, pp.1-208. in2p3-00020242

HAL Id: in2p3-00020242 https://hal.in2p3.fr/in2p3-00020242

Submitted on 15 Jan 2004 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The AME2003 atomic mass evaluation * (I). Evaluation of input data, adjustment procedures

A.H. Wapstra^a, G. Audi^{b,§} and C. Thibault^b

 ^a National Institute of Nuclear Physics and High-Energy Physics, NIKHEF, PO Box 41882, 1009DB Amsterdam, The Netherlands
 ^b Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CSNSM, IN2P3-CNRS&UPS, Bâtiment 108,

Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CSNSM, IN2P3-CNRS&UPS, Batiment 108, F-91405 Orsay Campus, France

Abstract

This paper is the first of two parts presenting the result of a new evaluation of atomic masses (AME2003). In this first part we give full information on the used and rejected input data and on the procedures used in deriving the tables in the second part. We first describe the philosophy and procedures used in selecting nuclear-reaction, decay, and mass spectrometric results as input values in a least-squares evaluation of best values for atomic masses. The calculation procedures and particularities of the AME are then described. All accepted data, and rejected ones with a reported precision still of interest, are presented in a table and compared there with the adjusted values. The differences with the earlier evaluation are briefly discussed and information is given of interest for the users of this AME. The second paper for the AME2003, last in this issue, gives a table of atomic masses, tables and graphs of derived quantities, and the list of references used in both this evaluation and the NUBASE2003 table (first paper in this issue).

AMDC: http://csnwww.in2p3.fr/AMDC/

1. Introduction

Our last full evaluation of experimental data AME'93 [1]–[4] was published in 1993. Since then an uncommonly large number of quite important new data has become

^{*} This work has been undertaken with the encouragement of the IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUN-AMCO).

[§] Corresponding author. E-mail address: audi@csnsm.in2p3.fr (G. Audi).

available. In fact, as much as 34% of the data used in the present calculation were not used in 1993.

An update AME'95 [5] appeared two years later. Lack of time to evaluate the stream of new quite important data, and also the necessity to create the NUBASE evaluation (see below), prevented the intended further updates of the AME. A certain stabilization, that seems to be reached now, encourages us to publish the present new full evaluation, together with the new version of NUBASE (first paper in this issue).

General aspects of this work will first be discussed. But in doing this, we will mention several local analyses intended, partly, to study points elaborated further below. Other local analyses may be found at the AMDC web site [6].

The main table of the evaluation is given in this Part I. In it (Table I), we present all accepted data, and rejected ones with a reported precision still of interest, and compares them with the adjusted values.

As in our previous evaluations, all the uncertainties in the present tables are one-standard deviation (1σ) errors.

There is no strict cut-off date for the data from literature used in the present AME2003 evaluation: all data available to us until the material is sent (November 19, 2003) to the publisher have been included. Those which could not be included for special reasons, like the need for a heavy revision of the evaluation at a too late stage, are added in remarks to the relevant data. The final calculation was performed on November 18, 2003.

The present publication updates and includes almost all the information given in the two previous AMEs, published in 1983 and 1993.

1.1. The isomers in the AME and the emergence of NUBASE

Already since long, we maintain a file (called *Mfile*) of approximate mass values for atoms in ground-states and in selected isomeric states as input in our computer programs. These programs essentially calculate the differences between input values and these approximate values in order to gain precision in the calculations. One reason was that, where isomers occur, one has to be careful to check which one is involved in reported experimental data, such as α - and β -decay energies. Cases have occurred where authors were not (yet) aware of isomeric complications. For that reason, our *Mfile* contained known data on such isomeric pairs (half-lives; excitation energies; spin-parities). The matter of isomerism became even more important, when mass spectrometric methods were developed to measure masses of exotic atoms far from β -stability and therefore having small half-lives. The resolution in the spectrometers is limited, and often insufficient to separate isomers. Then, one so obtains an average mass for the isomeric pair. A mass of the ground-state, our primary purpose, can then only be derived if one has information on the excitation energy and on the production rates of the isomers. And in cases where e.g. the excitation energy was not known, it may be estimated, see below. We therefore judged it necessary to make our *Mfile* more complete. This turned out to be a major job. And since it was judged possible, that the result might be useful for others, the resulting NUBASE97 evaluation [7] file was published.

1.2. Highlights

In our earlier work we distinguished a 'backbone' of nuclides along the line of stability in a diagram of atomic number A versus charge number Z [8]. For these nuclides the atomic mass values are known with exceptionally high precision. But a difficulty existed here already since 1980 (see ref. [9], especially Fig. 1) with respect to the atomic masses of stable Hg isotopes. As will be discussed below, new data solve this problem.

New precision measurements with Penning traps considerably improve the precision in our knowledge of atomic mass values along the backbone. Only one group at Winnipeg (see e.g. [2003Ba49]) is still making measurements of stable nuclei with a conventional mass spectrometer. The importance and impact of their results will be outlined below, in particular in solving the long-standing Hg-problem. It is somewhat ironical but not unexpected that the new results show that several older data are less good than thought earlier, but the reverse also occurs to be true. Below we will mention the most prominent examples. Strengthening the backbone, a large number of neutron capture γ -ray energies play an essential $r\hat{o}le$, and determine neutron separation energies with high precision. For comparison the number of couples of nuclides connected by (n, γ) reactions with an accuracy of 0.5 keV or better is now 243 against 199 in AME93, 128 in AME83 and 60 in the 1977 one. The number of cases known to better than 0.1 keV is presently 100 against 66 in AME93 and 33 in AME83. Also, several reaction energies of (p, γ) reactions are known about as precisely (25 and 8 cases with accuracies better than 0.5 keV and 0.1 keV respectively). In fact, the precisions in both cases is so high that one of us [6] has re-examined all calibrations. Several α -particle energies are also known with comparable precision; and here too it was found necessary to harmonize the calibrations. Another feature near the line of stability is the increased number of measurements of reaction energy differences, which can often be measured with a quite higher precision than the absolute reaction energies. Our computer program accepts this kind of inputs which are given as such in the present table of input data (Table I). This might be another incentive for giving *primary* results in publications: in later evaluations the results will be corrected automatically if calibration values change due to new work.

Penning traps, as well as storage rings and the MISTRAL on-line Smith-type spectrometer, are now also used for making mass measurements of many nuclides

further away from the line of stability. As a result, the number of nuclides for which experimental mass values are now known is substantially larger than in our preceding atomic mass tables. These measurements are sometimes made on deeply ionized particles, up to bare nuclei. The results, though, are reduced by their authors to masses of neutral (and un-excited) atoms. They derive the necessary electron binding energies from tables like those of Huang et al. [10] (see also the discussion in Part II, Section 2). These mass-spectrometric measurements are often made with resolutions, that do not allow separation of isomers. A further significant development is presented by the measurements on proton-disintegrations. They allow a very useful extension of the systematics of proton binding energies. But in addition they give in several cases information on excitation energies of isomers. The latter two developments are reasons why we have to give more attention to relative positions of isomers than was necessary in our earlier evaluations. The consequences are discussed below. Especially useful for long chains of α -decays, measured α -decay energies yield often quite precise information about differences in the masses of their members. It is therefore fortunate that new information on α -decay is still regularly reported, mainly by laboratories in Finland, Germany, Japan and the USA. A useful development was also the determination of limits on proton decay energies from measured limits on half-lives (see e.g. [1999Ja02]). The unexpected proton-stability of ⁸⁹Rh (see also [1995Le14]) forced us to reconsider the systematics of masses in this region.

Remark: in the following text we will mention several data of general interest. We will avoid mention of references when they can be found in Table I. If desirable to still give references, we will give them as key-numbers like [2002Aa15], listed at the end of Part II, under "References used in the AME2003 and the NUBASE2003 evaluations", p. 579.

2. Units; recalibration of α - and γ -ray energies

Generally a mass measurement can be obtained by establishing an energy relation between the mass we want to determine and a well known nuclidic mass. This energy relation is then expressed in electron-volts (eV). Mass measurements can also be obtained as an inertial mass from its movement characteristics in an electromagnetic field. The mass, thus derived from a ratio of masses, is then expressed in 'unified atomic mass' (u). Two units are thus used in the present work.

The mass unit is defined, since 1960, by $1 \text{ u} = M(^{12}\text{C})/12$, one twelfth of the mass of one free atom of carbon-12 in its atomic and nuclear ground-states. Before 1960, two mass units were defined: the physical one $^{16}\text{O}/16$, and the chemical one which considered one sixteenth of the average mass of a standard mixture of the three stable isotopes of oxygen. This difference was considered as being not at all

1 u	=	$M(^{12}C)/12$	=		atomic m	ass unit		
1 u	=	1 660 538.73	\pm	0.13	$ imes 10^{-33}$ kg	79	ppb	а
1 u	=	931 494.013	\pm	0.037	keV	40	ppb	a
1 u	=	931 494.0090	\pm	0.0071	keV ₉₀	7.6	ppb	b
1 eV ₉₀	=	1 000 000.004	\pm	0.039	μeV	39	ppb	а
1 MeV	=	1 073 544.206	\pm	0.043	nu	40	ppb	а
1 MeV ₉₀	=	1 073 544.2100	\pm	0.0082	nu	7.6	ppb	b
M_e	=	548 579.9110	\pm	0.0012	nu	2.1	ppb	а
	=	510 998.902	\pm	0.021	eV	40	ppb	а
	=	510 998.903	\pm	0.004	eV ₉₀	7.6	ppb	b
M_p	=	1 007 276 466.76	\pm	0.10	nu	0.10	ppb	С
$\dot{M_{lpha}}$	=	4 001 506 179.144	\pm	0.060	nu	0.015	ppb	С
$M_n - M_H$	=	839 883.67	\pm	0.59	nu	700	ppb	d
	=	782 346.60	\pm	0.55	eV ₉₀	700	ppb	d

Table A. Constants used in this work or resulting from the present evaluation.

a) derived from the work of Mohr and Taylor [11].

b) for the definition of V_{90} , see text.

c) derived from this work combined with M_e and total ionization energies for ¹H and ⁴He from [11]. *d*) this work.

negligible when taking into account the commercial value of all concerned chemical substances. Kohman, Mattauch and Wapstra [12] then calculated that, if ${}^{12}C/12$ was chosen, the change would be ten times smaller for chemists, and in the opposite direction ... That led to unification; 'u' stands therefore, officially, for 'unified mass unit'! Let us mention to be complete that the chemical mass spectrometry community (e.g. bio-chemistry, polymer chemistry) widely use the dalton (symbol Da, named after John Dalton [14]), which allows to express the number of nucleons in a molecule. It is thus not strictly the same as 'u'.

The energy unit is the electronvolt. Until recently, the relative precision of M - A expressed in keV was, for several nuclides, less good than the same quantity expressed in mass units. The choice of the volt for the energy unit (the electronvolt) is not evident. One might expect use of the *international* volt V, but one can also choose the volt V₉₀ as *maintained* in national laboratories for standards and defined by adopting an exact value for the constant (2e/h) in the relation between frequency and voltage in the Josephson effect. In the 1999 table of standards [11]: 2e/h = 483597.9 (exact) GHz/V₉₀ (see Table B). An analysis by Cohen and Wapstra [15] showed that all precision measurements of reaction and decay energies were calibrated in such a way that they can be more accurately expressed in V₉₀. Also, the precision of the conversion factor between mass units and *maintained* volts V₉₀ is more accurate than that between it and *international* volts (see Table A). Thus,

already in our previous mass evaluation we decided to use the V₉₀ maintained volt.

In the most recent evaluation of Mohr and Taylor [11], the difference has become so small that it is of interest only for very few items in our tables. This can be seen in Table A, where the ratio of mass units to electronvolts is given for the two Volt units, and also the ratio of the two Volts. Only for ¹H, ²D and ¹⁶O, the errors if given in international volts are larger, up to a factor of about 2, than if given in V₉₀. Yet, following the advice of B.N. Taylor we will give our final energy data expressed in eV_{90} .

In Table A we give the relation with the international volt, together with several constants of interest, obtained from the most recent evaluation of Mohr and Taylor [11]. In addition, we give values for the masses of the proton, the neutron and the α particle as derived from the present evaluation. Also a value is given for the mass difference between the neutron and the light hydrogen atom. Interestingly, the new value for $M_n - M_H$ is smaller than the earlier ones by slightly over 3 times the error mentioned then (2.3 eV_{90}) . The reason is that a new measurement [1999Ke05] of the wavelength of the γ -rays emitted by the capture of neutrons in hydrogen gave a result rather different from the earlier one by the same group.

In earlier tables, we also gave values for the binding energies, $ZM_H + NM_n - M$. A reason for this was, that the error (in keV₉₀) of this quantity used to be larger than in M - A. Due to the increased precision in the mass of the neutron, this is no longer important. We now give instead the binding energy per nucleon for educational reasons, connected to the Aston curve and the maximum stability around the 'Ironpeak' of importance in astrophysics.

Let us mention some historical points. It was in 1986 that Taylor and Cohen [16] showed that the empirical ratio between the two types of volts, which had of course been selected to be nearly equal to 1, had changed by as much as 7 ppm. For this reason, in 1990 the new value was chosen [17] to define the *maintained* volt V_{90} . In their most recent evaluation, Mohr and Taylor [11] had to revise the conversion constant to *international* eV. The result is a slightly higher (and 10 times more precise) value for V_{90} . The defining values, and the resulting mass-energy conversion factors are given in Table B.

Since older precision reaction energy measurements were essentially expressed in keV₈₆, we must take into account the difference in voltage definition which causes a systematic error of 8 ppm. We were therefore obliged to adjust the precise data to the new keV₉₀ standard. For α -particle energies, Rytz [18] has taken this change into account in updating his earlier evaluation of α -particle energies. We have used his values in our input data table (Table I) and indicated this by adding in the reference-field the symbol "Z".

Also, a considerable number of (n,γ) and (p,γ) reactions has a precision not much worse than the 8 ppm mentioned. One of us [19] has discussed the necessary

		2e/h			u	
1983	483594.21	(1.34)	GHz/V	931501.2	(2.6)	$keV \\ keV_{86} \\ keV \\ keV_{90} \\ keV_{90}$
1983	483594	(exact)	GHz/V ₈₆	931501.6	(0.3)	
1986	483597.67	(0.14)	GHz/V	931494.32	(0.28)	
1990	483597.9	(exact)	GHz/V ₉₀	931493.86	(0.07)	
1999	483597.9	(exact)	GHz/V ₉₀	931494.009	(0.007)	

Table B. Definition of used Volt units, and resulting mass-energy conversion constants.

recalibration for several γ -rays often used for calibration. This work has been updated to evaluate the influence of new calibrators and of the new Mohr and Taylor fundamental constants on γ -ray and particle energies entering in (n, γ) , (p, γ) and (p, n)reactions. In doing this, use was made of the calibration work of Helmer and van der Leun [20], based on the new fundamental constants. For each of the data concerned, the changes are relatively minor. We judge it necessary to make them, however, since otherwise they add up to systematic errors that are non-negligible. As an example, we mention that the energy value for the 411 γ -ray in ¹⁹⁸Au, often used for calibration, was changed from $411\,801.85\,(0.15)\,\mathrm{eV}_{90}$ [1990Wa22] to $411\,802.05\,(0.17)\,\mathrm{eV}_{90}$. As in the case of Rytz' recalibrations, they are marked by "Z" behind the reference key-number; or, if this was made impossible since this position was used to indicate that a remark was added, by the same symbol added to the error value mentioned in the remark. Our list of inputs (Table I) for our calculations mentions many excitation energies that are derived from γ -ray measurements, and that are generally evaluated in the Nuclear Data Sheets (NDS) [21]. Only in exceptional cases, it made sense to change them to recalibrated results.

For higher γ -ray energies, our previous adjustment used several data recalibrated with results of Penning trap measurements of the masses of initial and final atoms involved in (n, γ) reactions. The use of the new constants, and of more or revised Penning trap results, make it necessary to revise again the recalibrated results [6]. Thus, the energy coming free in the ¹⁴N(n, γ)¹⁵N reaction, playing a crucial role in these calibrations, was changed from 10 833 301.6 (2.3) eV₉₀ to 10 833 296.2 (0.9) eV₉₀.

Several old neutron binding energies can be improved in unexpected ways. Following case presents an illustration. A value with a somewhat large error (650 eV) was reported for the neutron binding energy in ⁵⁴Cr. Studying the paper taught that this value was essentially the sum of the energies of two capture γ -rays. For their small energy difference a smaller error was reported. Recent work yields a much improved value for the transition to the ground-state, allowing to derive a considerably improved neutron binding energy. Also, in some cases observed neutron resonance

Figure 1: (a)–(i). Diagram of connections for input data.

For *primary data* (those checked by other data):

 (\cdot)

absolute mass-doublet nuclide (i.e. connected to ¹²C, ³⁵Cl or ³⁷Cl); (or nuclide connected by a unique secondary relative mass-doublet to a remote reference nuclide);

other primary nuclide;

primary nuclide with relevant isomer;

mass-spectrometric connection;

other primary reaction connection.

Primary connections are drawn with two different thicknesses. Thicker lines represent data of the highest precision in the given mass region

(limits: 1 keV for A < 36,

2 keV for A = 36 to 165 and

3 keV for A > 165).

For secondary data (cases where masses are known from one type of data and are therefore not checked by a different connection):

secondary nuclide determined from only experimental data;

0

nuclide for which mass is estimated from systematical trends;

connection to a secondary nuclide. Note that an experimental connection may exist between two systematic nuclides when none of them is connected to the network of primaries.

Figure 1 (b). Diagram of connections for input data --- continued.

energies can be combined with later measurements of the excitation energies of the resonance states. Discussions can be found at the web site of the AMDC [6].

We also reconsidered the calibration for proton energies, especially those entering in resonance energies and thresholds. An unfortunate development here is that new data [1994Br37] for the 991 keV 27 Al+p resonance, (much used for calibration) reportedly more precise than old ones differs rather more than expected. The value most used in earlier work was 991.88 (0.04) keV of Roush *et al.* [22]. In 1990, Endt *et al.* [23] averaged it with a later result by Stoker *et al.* [24] to get a slightly modified value 991.858 (0.025) keV. In doing this, the changes in the values of natural constants used in the derivation of these values was not taken into account. Correcting for this omission, and critically evaluating earlier data, one of us [25] derived in 1993 a value 991.843 (0.033) keV for this standard, and, after revision, 991.830 (0.050) keV. The new measurement of [1994Br37] yields 991.724 (0.021) keV at two standard deviations from the above adopted value.

Figure 1 (c). Diagram of connections for input data —- continued.

3. Input data, representation in a connections diagram

The input data in this evaluation are results of measurements of mass spectra and of nuclear reaction A(a,b)B and decay A(b)B energies. The last two are concerned with an initial A and a final B nuclide and one or two reaction particles.

With the exception of some reactions between very light nuclides, the precision with which the masses of reaction particles a and b are known is much higher than that of the measured reaction and decay energies. Thus, these reactions and decays can each be represented as a link between two nuclides A and B. Reaction energy differences A(a,b)B - C(a,b)D are in principle represented by a combination of four masses.

Mass spectra, again with exception of a few cases between very light nuclides, can be separated in a class of connections between two or three nuclides, and a class essentially determining an absolute mass value, see Section 5. Penning trap measurements,

Figure 1 (d). Diagram of connections for input data —- continued.

almost always give ratios of masses between two nuclides (inversely proportional to their cyclotron frequencies in the trap). Sometimes these two nuclides can be very far apart. These Penning trap measurements are thus in most cases best represented as combinations of two masses. Other types of experimental set-up, like 'Smith-type', 'Schottky', 'Isochronous' and 'time-of-flight' mass-spectrometers, have their calibration determined in a more complex way, and are thus published by their authors as absolute mass doublets. They are then presented in Table I as a difference with ^{12}C .

For completeness we mention that early mass spectrometric measurements on unstable nuclides can best be represented as linear combinations of masses of three isotopes, with non-integer coefficients [26].

Figure 1 (e). Diagram of connections for input data --- continued.

This situation allows us to represent the input data graphically in a diagram of (N-Z) versus (N+Z) as done in Fig. 1. This is straightforward for the absolute mass-doublets and for the difference-for-two-nuclide data; but not for spectrometric triplets and for differences in reaction energies. The latter are in general more important for one of the two reaction energies than for the other one; in the graphs we therefore represent them simply by the former. (For computational reasons, these data are treated as primaries even though the diagrams then show only one connection.)

All input data are evaluated, i.e. calibrations are checked if necessary, and results are compared with other results and with systematics. As a consequence, several input data are changed or, even, rejected. All input data, including the rejected ones,

140

Figure 1 (f). Diagram of connections for input data --- continued.

are given in Table I. Rejected data are not presented in Fig. 1. As can be seen there, the accepted data allow calculation of the mass of many nuclides in several ways; we then speak of *primary* nuclides. The mass values in the table are then derived by least squares methods. In the other cases, the mass of a nuclide can be derived only in one way, from a connection with one other nuclide; they are called *secondary* nuclides. This classification is of importance for our calculation procedure (see Section 5).

The diagrams in Fig. 1 also show many cases where differences between atomic masses are accurately known, but not the masses themselves. Since we wish to include all available experimental material, we have in such cases produced additional estimated reaction energies by interpolation. In the resulting system of data representations, vacancies occur. These vacancies were filled using the same interpolation procedure. We will discuss further the estimates of unknown masses in the

Figure 1 (g). Diagram of connections for input data --- continued.

next section.

Some care should be taken in interpreting Fig. 1, since excited isomeric states and data relations involving such isomers are not completely represented on these drawings. This is not considered a serious defect; those readers who want to update such values should, anyhow, consult Table I which gives all the relevant information.

4. Regularity of the mass-surface and use of systematic trends

When nuclear masses are displayed as a function of N and Z, one obtains a *surface* in a 3-dimensional space. However, due to the pairing energy, this surface is divided into four *sheets*. The even-even sheet lies lowest, the odd-odd highest, the other two nearly halfway between as represented in Fig. 2. The vertical distances from

Figure 1 (h). Diagram of connections for input data —- continued.

Figure 1 (i). Diagram of connections for input data —- continued.

Figure 2: The surface of masses is split into four sheets. This scheme represents the pairing energies responsible for this splitting. The zero energy surface is a purely hypothetical one for no pairing at all among the last nucleons.

the even-even sheet to the odd-even and even-odd ones are the proton and neutron pairing energies Δ_{pp} and Δ_{nn} . They are nearly equal. The distances of the last two sheets to the odd-odd sheet are equal to $\Delta_{nn} - \Delta_{np}$ and $\Delta_{pp} - \Delta_{np}$, where Δ_{np} is the proton-neutron pairing energy due to the interaction between the two odd nucleons, which are generally not in the same shell. These energies are represented in Fig. 2, where a hypothetical energy zero represents a nuclide with no pairing among the last nucleons.

Experimentally, it has been observed that: the four sheets run nearly parallel in all directions, which means that the quantities Δ_{nn} , Δ_{pp} and Δ_{np} vary smoothly and slowly with N and Z; and that each of the mass sheets varies smoothly also, but rapidly [13] with N and Z. The smoothness is also observed for first order derivatives (slopes, e.g. the graphs in Part II) and all second order derivatives (curvatures of the mass surface). They are only interrupted in places by cusps or bumps associated with important changes in nuclear structure: shell or sub-shell closures, shape transitions (spherical-deformed, prolate-oblate), and the so-called 'Wigner' cusp along the N = Z line.

This observed regularity of the mass sheets in all places where no change in the physics of the nucleus are known to exist, can be considered as one of the BASIC PROPERTIES of the mass surface. Thus, dependable estimates of unknown, poorly known or questionable masses can be obtained by extrapolation from well-known mass values on the same sheet. In the evaluation of masses the property of regularity and the possibility to make estimates are used for several purposes:

1. Any coherent deviation from regularity, in a region (N,Z) of some extent, could be considered as an indication that some new physical property is being discovered. However, if one single mass violates the systematic trends, then

one may seriously question the correctness of the related datum. There might be, for example, some undetected systematic [27] contribution to the reported result of the experiment measuring this mass. We then reread the experimental paper with extra care for possible uncertainties, and often ask the authors for further information. This often leads to corrections.

- 2. There are cases where some experimental data on the mass of a particular nuclide disagree among each other and no particular reason for rejecting one or some of them could be found from studying the involved papers. In such cases, the measure of agreement with the just mentioned regularity can be used by the evaluators for selecting which of the conflicting data will be accepted and used in the evaluation, thus following the same policy as used in our earlier work.
- 3. There are cases where masses determined from ONLY ONE experiment (or from same experiments) deviate severely from the smooth surface. Such cases are examined closely and are discussed extensively below (Section 4.1).
- 4. Finally, drawing the mass surface allows to derive estimates for the still unknown masses, either from interpolations or from short extrapolations (see below, Section 4.2).

4.1. Scrutinizing and manipulating the surface of masses

Direct representation of the mass surface is not convenient since the binding energy varies very rapidly with N and Z. Splitting in four sheets, as mentioned above, complicates even more such a representation. There are two ways to still be able to observe with some precision the surface of masses: one of them uses the *derivatives* of this surface, the other is obtained by *subtracting a simple function* of N and Z from the masses.

The derivatives of the mass surface By *derivative* of the mass surface we mean a specified difference between the masses of two nearby nuclei. These functions are also smooth and have the advantage of displaying much smaller variations. For a derivative specified in such a way that differences are between nuclides in the same mass sheet, the near parallelism of these leads to an (almost) unique surface for the derivative, allowing thus a single display. Therefore, in order to illustrate the systematic trends of the masses, we found that such estimates could be obtained best in graphs such as α - and β -decay energies and separation energies of two protons and two neutrons. These four derivatives are plotted against *N*, *Z* or *A* in Part II, Figs. 1–36. However, from the way these four derivatives are built, they give only information within one of the four sheets of the mass surface (e-e, e-o, o-e or e-e; e-o standing for even N and odd Z). When observing the mass surface, an increased or decreased spacing of the sheets cannot be observed. Also, when estimating unknown masses, divergences of the four sheets could be unduly created, which is unacceptable.

Fortunately, other various representations are possible (e.g. separately for odd and even nuclei: one-neutron separation energies versus N, one-proton separation energy versus Z, β -decay energy versus A, ...). We have prepared such graphs that can be obtained from the AMDC web distribution [6].

The method of 'derivatives' suffers from involving two masses for each point to be drawn, which means that if one mass is moved then two points are changed in opposite direction, causing confusion in our drawings.

Subtracting a simple function Since the mass surface is smooth, one can try to define a function of N and Z as simple as possible and not too far from the real surface of masses. The difference between the mass surface and this function, while displaying reliably the structure of the former, will vary much less rapidly, improving thus its observation.

A first and simple approach is the semi-empirical *liquid drop* formula of Bethe and Weizsäcker [28] with the addition of a pairing term in order to fuse more or less the four sheets of the mass surface. Another possibility, that we prefer [13], is to use the results of the calculation of one of the modern models. However, we can use here only those models that provide masses specifically for the spherical part, forcing the nucleus to be un-deformed. The reason is that the models generally describe quite well the shell and sub-shell closures, and to some extent the pairing energies, but not the locations of deformation. If the theoretical deformations were included and not located at exactly the same position as given by the experimental masses, the mass difference surface would show two dislocations for each shape transition. Interpretation of the resulting surface would then be very difficult. In our work, we currently make use of such differences with models. The plots we have prepared can also be retrieved from the AMDC web site [6].

Manipulating the mass surface In order to make estimates of unknown masses or to test changes on measured ones, an interactive graphical program was developed [13, 29] that allows simultaneous observation of four graphs, either from the 'derivatives' type or from the 'differences' type, as a function of any of the variables N, Z, A, N - Z or N - 2Z, while drawing iso-lines (lines connecting nuclides having same value for a parameter) of any of these quantities. The mass of a nuclide can be modified or created in any view and we can determine how much freedom is left in setting a value for this mass. At the same time, interdependence through secondary

connections (Fig. 1) are taken into account. In cases where two tendencies may alternate, following the parity of the proton or of the neutron numbers, one of the parities may be deselected.

The replaced values for data yielding the 'irregular masses' as well as the 'estimated unknown masses' (see below) are thus derived by observing the continuity property in several views of the mass surface, with all the consequences due to connections to masses in the same chain. Comparisons with the predictions of 16 nuclear mass-models are presently available in this program.

With this graphical tool, the results of 'replacement' analyses are felt to be safer; and also the estimation of unknown masses are felt more reliable.

All mass values dependent on interpolation procedures, and indeed all values not derived from experimental data alone, have been clearly marked with the sharp (#) symbol in all tables, here and in Part II.

Since 1983 and the AME'83 tables [9], estimates are also given for the precision of such data derived from trends in systematics. These precisions are not based on a formalized procedure, but on previous experience with such estimates.

In the case of extrapolation however, the error in the estimated mass will increase with the distance of extrapolation. These errors are obtained by considering several graphs of systematics with a guess on how much the estimated mass may change without the extrapolated surface looking too much distorted. This recipe is unavoidably subjective, but has proven to be efficient through the agreement of these estimates with newly measured masses in the great majority of cases [30].

4.2. Irregular mass values

When a single mass deviates significantly from regularity with no similar pattern for nuclides with same N or with same Z values, then the correctness of the data determining this mass may be questioned.

Our policy, redefined in AME'95 [5], for those locally *irregular* masses, and only when they are derived from a unique mass relation (i.e., not confirmed by a different experimental method), is to replace them by values derived from trends in the systematics. There are only 27 such physical quantities (twice less than in AME1993) that were selected, partly, in order to avoid too strongly oscillating plots. Generally, in such a unique mass relation, only one measurement is reported. But sometimes there are two measurements (8 cases) or three (only once) that we still treat the same way, since use of the same method and the same type of relation may well lead to the same systematic error (for example a misassignment or ignorance of a final level). Taking into account the connecting chains for secondaries (Figs. 1a–1i) has the consequence that several more ground-state masses are affected (and twice as many values in each type of plot of derivatives as given in Part II). It should be stressed that only the most striking cases have been treated this way, those necessary to avoid, as much as possible, confusions in the graphs in Part II. In particular, as happened previously, the plots of α -decay energies of light nuclei (Fig. 18 and 19 in Part II) exhibit many overlaps and crossings that obscure the drawings; no attempt was made to locate possible origins of such irregularities.

Replacing these few irregular experimental values by ones we recommend, in all tables and graphs in this AME2003, means also that, as explained already in AME1995, we discontinued an older policy that was introduced in AME1993 where original irregular experimental values were given in all main tables, and 'recommended' ones given separately in secondary tables. This policy led to confusion for the users of our tables. We now only give what we consider the "*best recommended values*", using, when we felt necessary and as explained above, '*values derived from trends in systematics*'. Data not used, following this policy, can be easily located in Table I where they are flagged 'D' and always accompanied by a comment explaining in which direction the value has been changed and by which amount.

Such data, as well as the other local irregularities that can be observed in the figures in Part II could be considered as incentive to remeasure the masses of the involved nuclei, preferably by different methods, in order to remove any doubt and possibly point out true irregularities due to physical properties.

The mass evaluators insist that only the most striking irregularities have been replaced by estimates, those that obscure the graphs in Part II. The reader might convince himself, by checking in Figures 3 and 13, Part II, that the mass of ¹¹²Te determined from delayed-proton energy measurement with a precision of 150 keV is evidently 300 keV more bound than indicated by experiment.

4.3. Estimates for unknown masses

Estimates for unknown masses are also made with use of trends in systematics, as explained above, by demanding that all graphs should be as smooth as possible, except where they are expected to show the effects of shell closures or nuclear deformations. Therefore, we warn the user of our tables that the present extrapolations, based on trends of known masses, will be wrong if unsuspected new regions of deformation or (semi-) magic numbers occur.

In addition to the rather severe constraints imposed by the requirement of simultaneous REGULARITY of all graphs, many further constraints result from knowledge of reaction or decay energies in the regions where these estimates are made. These regions and these constraints are shown in Figs. 1a–1i. Two kinds of constraints are present. In some cases the masses of (Z, A) and (Z, A+4) are known but not the mass of (Z, A+2). Then, the values of $S_{2n}(A+2)$ and $S_{2n}(A+4)$ cannot both be chosen freely from systematics; their sum is known. In other cases, the mass differences between several nuclides (A+4n, Z+2n) are known from α -decays and also those of (A-2+4n, Z+2n). Then, the differences between several successive $S_{2n}(A+4n, Z+2n)$ are known. Similar situations exist for two or three successive S_{2n} 's or Q_{α} 's.

Also, knowledge of stability or instability against particle emission, or limits on proton or α emission, yield upper or lower limits on the separation energies.

For proton-rich nuclides with N < Z, mass estimates can be obtained from charge symmetry. This feature gives a relation between masses of isobars around the one with N = Z. In several cases, we make a correction taking care of the Thomas-Ehrman effect [31], which makes proton-unstable nuclides more bound than follows from the above estimate. For very light nuclides, we can use the estimates for this effect found by Comay *et al.* [32]. But, since analysis of the proton-unstable nuclides (see Section 6.3) shows that this effect is decidedly smaller for A = 100 - 210, we use a correction decreasing with increasing mass number.

Another often good estimate can be obtained from the observation that masses of nuclidic states belonging to an isobaric multiplet are represented quite accurately by a quadratic equation of the charge number Z (or of the third components of the isospin, $T_3 = \frac{1}{2}(N - Z)$): the Isobaric Multiplet Mass Equation (IMME). Use of this relation is attractive since, otherwise than the relation mentioned above, it uses experimental information (i.e. excitation energies of isobaric analogues). The exactness of the IMME has regularly been a matter of discussion. Recently a measurement [2001He29] of the mass of ³³Ar has questionned the validity of the IMME at A = 33. The measured mass, with an error of about 4 keV, was 18 keV lower than the value following from IMME, with an error of 3 keV. But, a new measurement [33] showed that one of the other mass values entering in this equation was wrong. With the new value, the difference is only 3 keV, thus within errors.

Up to the AME'83, we indeed used the IMME for deriving mass values for nuclides for which no, or little information was available. This policy was questioned with respect to the correctness in stating as 'experimental' a quantity that was derived by combination with a calculation. Since AME'93, it was decided not to present any IMME-derived mass values in our evaluation, but rather use the IMME as a guideline when estimating masses of unknown nuclides. We continue this policy here, and do not replace experimental values by an estimated one from IMME, even if orders of magnitude more precise. Typical examples are ²⁸Si and ⁴⁰Ti, for which the IMME predicts masses are known both with 160 keV precision, from double-charge exchange reactions.

Extension of the IMME to higher energy isobaric analogues has been studied by one of the present authors [34]. The validity of the method, however, is made uncertain by possible effects spoiling the relation. In the first place, the strength of some isobaric analogues at high excitation energies is known to be distributed over

several levels with the same spin and parity. Even in cases where this is not known to happen, the possibility of its occurrence introduces an uncertainty in the level energy to be used for this purpose. In the second place, as argued by Thomas and Ehrman [31], particle-unstable levels must be expected to be shifted somewhat.

Recently, information on excitation energies of $T_3 = -T + 1$ isobaric analogue states has become available from measurements on proton emission following β decays of their $T_3 = -T$ parents. Their authors, in some cases, derived from their results a mass value for the parent nuclide, using a formula derived by Antony et al. [35] from a study of known energy differences between isobaric analogues. We observe, however, that one obtains somewhat different mass values by combining Antony differences with the mass of the mirror nuclide of the mother. Also, earlier considerations did not take into account the difference between proton-pairing and neutron-pairing energies, which one of the present authors noticed to have a not negligible influence on the constants in the IMME.

Another possibility is to use a relation proposed by Jänecke [37], as recently done by Axelsson *et al.* [36] in the case of 31 Ar. We have in several cases compared the results of different ways for extrapolating, in order to find a best estimate for the desired mass value.

Enough values have been estimated to ensure that every nucleus for which there is any experimental Q-value is connected to the main group of primary nuclei. In addition, the evaluators want to achieve continuity of the mass surface. Therefore an estimated value is included for any nucleus if it is between two experimentally studied nuclei on a line defined by either Z = constant (isotopes), N = constant(isotones), N - Z = constant (isodiaspheres), or, in a few cases N + Z = constant(isobars). It would have been desirable to give also estimates for all unknown nuclides that are within reach of the present accelerator and mass separator technologies. Unfortunately, such an ensemble is practically not easy to define. Instead, we estimate mass values for all nuclides for which at least one piece of experimental information is available (e.g. identification or half-life measurement or proof of instability towards proton or neutron emission). Then, the ensemble of experimental masses and estimated ones has the same contour as in the NUBASE2003 evaluation.

5. Calculation Procedures

The atomic mass evaluation is particular when compared to the other evaluations of data [13], in that almost all mass determinations are relative measurements. Even those called 'absolute mass doublets' are relative to ¹²C, ³⁵Cl or ³⁷Cl. Each experimental datum sets a relation in mass or in energy among two (in a few cases, more) nuclides. It can be therefore represented by one link among these two nuclides. The ensemble of these links generates a highly entangled network. Figs. 1a–1i, in

Section 3 above, showed a schematic representation of such a network.

The masses of a large number of nuclides are multiply determined, entering the entangled area of the canvas, mainly along the backbone. Correlations do not allow to determine their masses straightforwardly.

To take into account these correlations we use a least-squares method weighed according to the precision with which each piece of data is known. This method will allow to determine a set of adjusted masses.

5.1. Least-squares method

Each piece of data has a value $q_i \pm dq_i$ with the accuracy dq_i (one standard deviation) and makes a relation between 2, 3 or 4 masses with unknown values m_{μ} . An overdetermined system of Q data to M masses (Q > M) can be represented by a system of Q linear equations with M parameters:

$$\sum_{\mu=1}^{M} k_i^{\mu} m_{\mu} = q_i \pm dq_i \tag{1}$$

e.g. for a nuclear reaction A(a,b)B requiring an energy q_i to occur, the energy balance writes:

$$m_{\rm A} + m_{\rm a} - m_{\rm b} - m_{\rm B} = q_i \pm dq_i \tag{2}$$

thus, $k_i^{A} = +1$, $k_i^{a} = +1$, $k_i^{B} = -1$ and $k_i^{b} = -1$.

In matrix notation, **K** being the (M, Q) matrix of coefficients, Eq. 1 writes: $\mathbf{K}|m\rangle = |q\rangle$. Elements of matrix **K** are almost all null: e.g. for A(a,b)B, Eq. 2 yields a line of **K** with only four non-zero elements.

We define the diagonal weight matrix **W** by its elements $w_i^i = 1/(dq_i dq_i)$. The solution of the least-squares method leads to a very simple construction:

$${}^{\mathsf{t}}\mathbf{KWK}|m\rangle = {}^{\mathsf{t}}\mathbf{KW}|q\rangle \tag{3}$$

the NORMAL matrix $\mathbf{A} = {}^{\mathbf{t}}\mathbf{KWK}$ is a square matrix of order M, positive-definite, symmetric and regular and hence invertible [38]. Thus the vector $|\overline{m}\rangle$ for the adjusted masses is:

$$|\overline{m}\rangle = \mathbf{A}^{-1} \mathbf{t} \mathbf{K} \mathbf{W} |q\rangle \quad \text{or} \quad |\overline{m}\rangle = \mathbf{R} |q\rangle$$
(4)

The rectangular (M, Q) matrix **R** is called the RESPONSE matrix.

The diagonal elements of \mathbf{A}^{-1} are the squared errors on the adjusted masses, and the non-diagonal ones $(a^{-1})^{\nu}_{\mu}$ are the coefficients for the correlations between masses m_{μ} and m_{ν} . Values for correlation coefficients for the most precise nuclides are given in Table B of Part II.

One of the most powerful tools in the least-squares calculation described above is the flow-of-information matrix. This matrix allows to trace back the contribution of each individual piece of data to each of the parameters (here the atomic masses). The AME uses this method since 1993.

The flow-of-information matrix \mathbf{F} is defined as follows: \mathbf{K} , the matrix of coefficients, is a rectangular (Q, M) matrix, the transpose of the response matrix ${}^{\mathbf{t}}\mathbf{R}$ is also a (Q, M) rectangular one. The (i, μ) element of \mathbf{F} is defined as the product of the corresponding elements of ${}^{\mathbf{t}}\mathbf{R}$ and of \mathbf{K} . In reference [39] it is demonstrated that such an element represents the "*influence*" of datum *i* on parameter (mass) m_{μ} . A column of \mathbf{F} thus represents all the contributions brought by all data to a given mass m_{μ} , and a line of \mathbf{F} represents all the influences given by a single piece of data. The sum of influences along a line is the "*significance*" of that datum. It has also been proven [39] that the influences and significances have all the expected properties, namely that the sum of all the influences on a given mass (along a column) is unity, that the significance of a datum is always less than unity and that it always decreases when new data are added. The significance defined in this way is exactly the quantity obtained by squaring the ratio of the uncertainty on the adjusted value over that on the input one, which is the recipe that was used before the discovery of the \mathbf{F} matrix to calculate the relative importance of data.

A simple interpretation of influences and significances can be obtained in calculating, from the adjusted masses and Eq. 1, the adjusted data:

$$\overline{q} \rangle = \mathbf{K} \mathbf{R} |q\rangle. \tag{5}$$

The i^{th} diagonal element of **KR** represents then the contribution of datum *i* to the determination of $\overline{q_i}$ (same datum): this quantity is exactly what is called above the *significance* of datum *i*. This i^{th} diagonal element of **KR** is the sum of the products of line *i* of **K** and column *i* of **R**. The individual terms in this sum are precisely the *influences* defined above.

The flow-of-information matrix **F**, provides thus insight on how the information from datum *i* flows into each of the masses m_{μ} .

The flow-of-information matrix cannot be given in full in a table. It can be observed along lines, displaying then for each datum which are the nuclei influenced by this datum and the values of these *influences*. It can be observed also along columns to display for each primary mass all contributing data with their *influence* on that mass.

The first display is partly given in the table of input data (Table I) in column 'Sig' for the *significance* of primary data and 'Main flux' for the largest *influence*. Since in the large majority of cases only two nuclei are concerned in each piece of data, the second largest *influence* could easily be deduced. It is therefore not felt necessary to give a table of all *influences* for each primary datum.

The second display is given in Part II, Table II for the up to three most important data with their *influence* in the determination of each primary mass.

5.2. Consistency of data

The system of equations being largely over-determined (Q >> M) offers the evaluator several interesting possibilities to examine and judge the data. One might for example examine all data for which the adjusted values deviate importantly from the input ones. This helps to locate erroneous pieces of information. One could also examine a group of data in one experiment and check if the errors assigned to them in the experimental paper were not underestimated.

If the precisions dq_i assigned to the data q_i were indeed all accurate, the normalized deviations v_i between adjusted \overline{q}_i and input q_i data (cf. Eq. 5), $v_i = (\overline{q}_i - q_i)/dq_i$, would be distributed as a gaussian function of standard deviation $\sigma = 1$, and would make χ^2 :

$$\chi^2 = \sum_{i=1}^{Q} \left(\frac{\overline{q}_i - q_i}{dq_i} \right)^2 \quad \text{or} \quad \chi^2 = \sum_{i=1}^{Q} v_i^2 \tag{6}$$

equal to Q - M, the number of degrees of freedom, with a precision of $\sqrt{2(Q - M)}$.

One can define as above the NORMALIZED CHI, χ_n (or 'consistency factor' or 'Birge ratio'): $\chi_n = \sqrt{\chi^2/(Q-M)}$ for which the expected value is $1 \pm 1/\sqrt{2(Q-M)}$.

Another quantity of interest for the evaluator is the PARTIAL CONSISTENCY FACTOR, χ_n^p , defined for a (homogeneous) group of p data as:

$$\chi_n^p = \sqrt{\frac{Q}{Q - M}} \frac{1}{p} \sum_{i=1}^p v_i^2.$$
 (7)

Of course the definition is such that χ_n^p reduces to χ_n if the sum is taken over all the input data. One can consider for example the two main classes of data: the reaction and decay energy measurements and the mass spectrometric data (see Section 5.5). One can also consider groups of data related to a given laboratory and with a given method of measurement and examine the χ_n^p of each of them. There are presently 181 groups of data in Table I, identified in column 'Lab'. A high value of χ_n^p might be a warning on the validity of the considered group of data within the reported errors. We used such analyses in order to be able to locate questionable groups of data. In bad cases they are treated in such a way that, in the final adjustment, no really serious cases occur. Remarks in Table I report where such corrections have been made.

5.3. Separating secondary data

In Section 3, while examining the diagrams of connections (Fig. 1), we noticed that, whereas the masses of *secondary* nuclides can be determined uniquely from the chain of secondary connections going down to a *primary* nuclide, only the latter see the complex entanglement that necessitated the use of the least-squares method.

In terms of equations and parameters, we consider that if, in a collection of equations to be treated with the least-squares method, a parameter occurs in only one equation, removing this equation and this parameter will not affect the result of the fit for all other data. We can thus redefine more precisely what was called *secondary* in Section 3: the parameter above is a *secondary* parameter (or mass) and its related equation a *secondary* equation. After solving the reduced set, the *secondary* equation can be used to find value and error for that *secondary* parameter. The equations and parameters remaining after taking out all secondaries are called *primary*.

Therefore, only the system of *primary* data is overdetermined and will thus be improved in the adjustment, each *primary* nuclide getting benefit from all the available information. *Secondary* data will remain unchanged; they do not contribute to χ^2 .

The diagrams in Fig. 1 show, that many *secondary* data exist. Thus, taking them out simplifies considerably the system. More important though, if a better value is found for a *secondary* datum, the mass of the *secondary* nuclide can easily be improved (one has only to watch since the replacement can change other *secondary* masses down the chain, see Fig. 1). The procedure is more complicated for new *primary* data.

We define DEGREES for *secondary* nuclides and *secondary* data. They reflect their distances along the chains connecting them to the network of primaries. The first secondary nuclide connected to a primary one will be a nuclide of degree 2; and the connecting datum will be a datum of degree 2 too. Degree 1 is for primary nuclides and data. Degrees for secondary nuclides and data range from 2 to 14. In Table I, the degree of data is indicated in column 'Dg'. In the table of atomic masses (Part II, Table I), each *secondary* nuclide is marked with a label in column 'Orig.' indicating from which other nuclide its mass value is calculated.

Separating secondary nuclides and data from primaries allow to reduce importantly the size of the system that will be treated by the least-squares method described above. After treatment of the primary data alone, the adjusted masses for primary nuclides can be easily combined with the secondary data to yield masses of secondary nuclides.

In the next section we will show methods for reducing further this system, but without allowing any loss of information. Methods that reduce the system of primaries for the benefit of the secondaries not only decrease computational time (which nowadays is not so important), but allows an easier insight into the relations between data and masses, since no correlation is involved.

Remark: the word *primary* used for these nuclides and for the data connecting them does not mean that they are more important than the others, but only that they are subject to the special treatment below. The labels *primary* and *secondary* are not intrinsic properties of data or nuclides. They may change from primary to secondary or reversely when other information becomes available.

5.4. Compacting the set of data

5.4.1 Pre-averaging

Two or more measurements of the same physical quantities can be replaced without loss of information by their average value and error, reducing thus the system of equations to be treated. Extending this procedure, we consider *parallel* data: reaction data occur that give essentially values for the mass difference between the same two nuclides, except in the rare cases where the precision is comparable to the precision in the masses of the reaction particles. Example: ${}^{9}Be(\gamma,n){}^{8}Be$, ${}^{9}Be(p,d){}^{8}Be$, ${}^{9}Be(d,t){}^{8}Be$ and ${}^{9}Be({}^{3}He,\alpha){}^{8}Be$.

Such data are represented together, in the main least-squares calculation, by one of them carrying their average value. If the Q data to be pre-averaged are strongly conflicting, i.e. if the consistency factor (or Birge ratio, or normalized χ) $\chi_n = \sqrt{\chi^2/(Q-1)}$ resulting in the calculation of the pre-average is greater than 2.5, the (internal) error σ_i in the average is multiplied by the Birge ratio ($\sigma_e = \sigma_i \times \chi_n$). There are 6 cases where $\chi_n > 2.5$, see Table C. The quantity σ_e is often called the 'external' error. However, this treatment is not used in the very rare cases where the errors in the values to be averaged differ too much from one another, since the assigned errors lose any significance (only one case, see Table C.) In such cases, considering policies from the Particle Data Group [40] and some possibilities reviewed by Rajput and MacMahon [41], we there adopt an arithmetic average and the dispersion of values as error which is equivalent to assigning to each of these conflicting data the same error.

As much as 25% of the 1224 cases have values of χ_n (Birge ratio) beyond unity, 2.8% beyond two, 0.2% (2 cases) beyond 3, giving an overall very satisfactory distribution for our treatment. With the choice above of a threshold of $\chi_n^0=2.5$ for the Birge ratio, only 0.4% of the cases are concerned by the multiplication by χ_n . As a matter of fact, in a complex system like the one here, many values of χ_n beyond 1 or 2 are expected to exist, and if errors were multiplied by χ_n in all these cases, the χ^2 -test on the total adjustment would have been invalidated. This explains the choice we made here of a rather high threshold ($\chi_n^0 = 2.5$), compared e.g. to $\chi_n^0 = 2$ recommended by Woods and Munster [42] or $\chi_n^0 = 1$ used in a different context

Item		n	χ_n	σ_{e}	Item	п	χn	σ_{e}
115Cd(R-)115In		2	2 61	65	$146 \mathbf{p}_{0} (\beta^{-})^{146} \mathbf{I}_{0}$	n	2.24	107
$149 \mathbf{p}_{m}(\beta^{-})^{149} \mathbf{s}_{m}$		3 2	2.54	0.5 5.4	$154_{Eu}(\beta^{-})^{154}Cd$	2	2.24	107
35 c(B-) 35 c1	.1.	2	3.54	0.06	$202 \Lambda u(\beta^{-})^{202} H_{\alpha}$	2	2.22	4.0
3(p) CI 117L $a(p)$ 116Pa	*	2	2.07	12	40C1(B-)40Ar	2	2.22	400
$^{249}\text{Bk}(\alpha)^{245}\text{Am}$		2	2.97	24	$^{36}S(^{14}C \ ^{17}O)^{33}Si$	2	2.21	70 37
$^{76}\text{Ge}(^{14}\text{C},^{16}\text{O})^{74}\text{Zn}$		2	2.53	51	153 Gd(n, γ) ¹⁵⁴ Gd	2	2.16	0.39
$^{186}\text{Re}(\beta^{-})^{186}\text{Os}$		4	2.45	2.5	${}^{36}S({}^{11}B,{}^{13}N){}^{34}Si$	3	2.13	32
144 Ce(β^{-}) ¹⁴⁴ Pr		2	2.44	2.2	58 Fe(t.p) 60 Fe	4	2.13	7.8
$^{146}La(\beta^{-})^{146}Ce$		2	2.42	129	$^{113}Cs(p)^{112}Xe$	3	2.11	5.8
$^{33}S(p,\gamma)^{34}Cl$		3	2.38	0.33	$^{32}S(n,\gamma)^{33}S$	2	2.11	0.065
220 Fr(α) 216 At		2	2.34	4.7	223 Pa(α) 219 Ac	2	2.09	10
69 Co-C _{5.75}		2	2.33	840	177 Pt(α) 173 Os	2	2.06	6.1
136 I ^m (β^{-}) ¹³⁶ Xe		2	2.33	266	147 La(β^{-}) 147 Ce	2	2.04	81
176 Au(α) 172 Ir		2	2.31	18	$^{244}Cf(\alpha)^{240}Cm$	2	2.03	4.0
131 Sn $(\beta^{-})^{131}$ Sb		2	2.29	28	204 Tl $(\beta^{-})^{204}$ Pb	2	2.03	0.39
110 In(β^+) 110 Cd		3	2.29	28	$^{166}\mathrm{Re}^m(\alpha)^{162}\mathrm{Ta}$	2	2.01	17
178 Pt(α) 174 Os		2	2.25	6.3	168 Ir ^m (α) 164 Re ^m	2	2.00	10
166 Os(α) 162 W		2	2.24	10				

Table C. Worst pre-averagings. *n* is the number of data in the pre-average.

*arithmetic average and dispersion of values are being used in the adjustment.

by the Particle Data Group [40], for departing from the rule of internal error of the weighted average.

Used policies in treating parallel data

In averaging β - (or α -) decay energies derived from branches, found in the same experiment, to or from different levels in the decay of a given nuclide, the error we use for the average is not the one resulting from the least-squares, but the smallest occurring one.

Some quantities have been reported more than once by the same group. If the results are obtained by the same method and all published in regular refereed journals, only the most recent one is used in the calculation, unless explicitly mentioned otherwise. The reason is that one is inclined to expect that authors who believe their two results are of the same quality would have averaged them in their latest publication. Our policy is different if the newer result is not published in a regular refereed paper (abstract, preprint, private communication, conference, thesis or annual report), then the older one is used in the calculation, except if the newer is an update of the values in the other. In the latter case the original reference in our list mentions the unrefereed paper.

5.4.2 Replacement procedure

Large contributions to χ^2 have been known to be caused by a nuclide *G* connected to two other ones *H* and *K* by reaction links with errors large compared to the error in the mass difference of *H* and *K*, in cases where the two disagreed. Evidently, contributions to χ^2 of such local discrepancies suggest an unrealistically high value of the overall consistency parameter. This is avoided by a replacement procedure: one of the two links is replaced by an equivalent value for the other. The preaveraging procedure then takes care both of giving the most reasonable mass value for *G*, and of not causing undesirably large contributions to χ^2 .

5.4.3 Insignificant data

Another feature to increase the meaning of the final χ^2 is, that data with weights at least a factor 10 less than other data, or than combinations of *all* other data giving the same result, have not been included, generally speaking, in the calculation. They are given in the list of input data (except for most older data of this type that already appeared in our previous tables), but labelled 'U'; comparison with the output values allows to check our judgment. Earlier, data were labelled 'U' if their weight was 10 times less than that of a *simple* combination of other data. This concept has been extended since AME'93 to data that weigh 10 times less than the combination of *all* other accepted data.

5.5. Used policies - treatment of undependable data

The important interdependence of most data, as illustrated by the connection diagrams (Figs. 1a–1i) allows local and general consistency tests. These can indicate that something may be wrong with input values. We follow the policy of checking all significant data differing by more than two (sometimes 1.5) standard deviations from the adjusted values. Fairly often, study of the experimental paper shows that a correction is necessary. Possible reasons are that a transition has been assigned to a wrong final level or that a reported decay energy belongs to an isomer rather than to a ground state or even that the mass number assigned to a decay has been shown to be incorrect. In such cases, the values are corrected and remarks are added below the corresponding data in Table I to explain the reasons for the corrections.

It can also happen, though, that study of the paper leads to serious doubts about the validity of the results within the reported error, but could not permit making a specific correction. In that case, the result is labelled 'F' and not used in the adjustment. It is however given in Table I and compared to the adjusted value. The reader might observe that, in several cases, the difference between the experimental value and the adjusted one is small compared to the experimental error: this does not disprove the correctness of the label 'F' assignment. Cases where reading the paper does not lead to correction or rejection, but yet the result is not trusted within the given error, are labelled 'B' if published in a regular refereed journal, or 'C' otherwise.

Data with labels 'F', 'B' or 'C' are not used in the calculation. We do not assign such labels if, as a result, no experimental value published in a regular refereed journal could be given for one or more resulting masses. When necessary, the policy defined for 'irregular masses' with 'D'-label assignment may apply (see Section 4.2).

In some cases thorough analysis of strongly conflicting data could not lead to reasons to think that one of them is more dependable than the others or could not lead to the rejection of a particular piece of data. Also, bad agreement with other data is not the only reason for doubt in the correctness of reported data. As in previous work, and as explained above (see Section 4), we made use of the property of regularity of the surface of masses for helping making a choice and also for making further checks on the other data.

We do not accept experimental results if information on other quantities (e.g. half-lives), derived in the same experiment and for the same nuclide, were in strong contradiction with well established values.

5.6. The AME computer program

Our computer program in four phases has to perform the following tasks: i) decode and check the data file; ii) build up a representation of the connections between masses, allowing thus to separate primary masses and data from secondary ones, to pre-average same and parallel data, and thus to reduce drastically the size of the system of equations to be solved (see Section 5.3 and 5.4), without any loss of information; iii) perform the least-squares matrix calculations (see above); and iv) deduce the atomic masses (Part II, Table I), the nuclear reaction and separation energies (Part II, Table III), the adjusted values for the input data (Table I), the *influences* of data on the primary nuclides (Table I), the *influences* received by each primary nuclide (Part II, Table II), and display information on the inversion errors, the correlations coefficients (Part II, Table B), the values of the χ^2 s and the distribution of the v_i (see below), ...

5.7. Results of the calculation

In this evaluation we have 7773 experimental data of which 1230 are labelled U (see above) and 374 are not accepted and labelled B, C, D or F (respectively 207, 58, 37 and 72 items). In the calculation we have thus 6169 valid input data, compressed to 4373 in the pre-averaging procedure. Separating secondary data, leaves a system of 1381 primary data, representing 967 primary reactions and decays, and 414 primary

mass spectrometric measurements. To these are added 887 data estimated from systematic trends, some of which are essential for linking unconnected experimental data to the network of experimentally known masses (see Figs. 1a–1i).

In the atomic mass table (Part II, Table I) there is a total of 3504 masses (including 12 C) of which 3179 are ground-state masses (2228 experimental masses and 951 estimated ones), and 325 are excited isomers (201 experimental and 122 estimated). Among the 2228 experimental masses, 192 nuclides have a precision better than 1 keV and 1020 better than 10 keV. There are 231 nuclides known with a precision below 100 keV. Separating secondary masses in the ensemble of 3504, leaves 847 primary masses (12 C not included).

We have thus to solve a system of 1381 equations with 847 parameters. Thus, theoretically, the expectation value for χ^2 should be 534±33 (and the theoretical $\chi_n = 1 \pm 0.031$).

The total χ^2 of the adjustment is actually 814; this means that, in the average, the errors in the input values have been underestimated by 23%, a still acceptable result. In other words, the experimentalists measuring masses were, on average, too optimistic by 23%. The distribution of the v_i 's (the individual contributions to χ^2 , as defined in Eq. 6, and given in Table I) is also acceptable, with 15% of the cases beyond unity, 3.2% beyond two, and 8 items (0.007%) beyond 3.

Considering separately the two main classes of data, the partial consistency factors χ_n^p are respectively 1.269 and 1.160 for energy measurements and for mass spectrometry data, showing that both types of input data are responsible for the underestimated error of 23% mentioned above, with a better result for mass spectrometry data.

As in the preceding work [4], we have tried to estimate the average accuracy for 181 groups of data related to a given laboratory and with a given method of measurement, by calculating their partial consistency factors χ_n^p (cf. Section 5.2). On the average the experimental errors appear to be slightly underestimated, with as much as 57% (instead of expected 33%) of the groups of data having χ_n^p larger than unity. Agreeing better with statistics, 5.5% of these groups are beyond $\chi_n^p = 2$. Fortunately though, the impact of the most deviating groups on the final results of our evaluation is reasonably low.

6. Discussion of the input data

Mostly we accept values as given by authors; but in some cases, we must deviate. An example is for recalibration due to change in the definition of the volt, as discussed in Section 2. For somewhat less simple cases, a remark is added.

A curious example of combinations of data that cannot be accepted without change follows from the measurements of the Edinburgh-Argonne group. They report decay energies in α -decay series, where the ancestors are isomers between

which the excitation energy is accurately known from their proton-decay energies. These authors give values for the excitation energies between isomeric daughter pairs with considerably smaller errors than follow from the errors quoted for the measured α -decay energies. The evident reason is, that these decay energies are correlated; this means that the errors in their differences are relatively small. Unfortunately, the presented data do not allow an exact calculation of both masses and isomeric excitation energies. This would have required that, instead of the two E_{α} values of an isomeric pair, they would have given the error in their difference (and, perhaps, a more exact value for the most accurate E_{α} of the pair). Instead, entering all their Q_{α} and E_1 (isometric excitation energies) values in our input file would yield outputs with too small errors. And accepting any partial collection makes some errors rather drastically too large. We therefore do enter here a selection of input values, but sometimes slightly changed, chosen in such a way that our adjusted Q_{α} and E_{1} values and errors differ as little as possible from those given by the authors. A further complication could occur if some of the Q_{α} 's are also measured by other groups. But until now, we found no serious troubles in such cases.

Necessary corrections to recent mass spectrometric data are mentioned in Section 6.2.

A change in errors, not values, is caused by the fact explained below that in several cases we do not necessarily accept reported α -energies as belonging to transitions between ground-states. This also causes errors in derived proton decay energies to deviate from those reported by some authors (e.g. in the α -decay chain of ¹⁶⁶Ir).

6.1. Improvements along the backbone

Rather few new measurements of stable species with a classical mass spectrometer have become available; all of them of the Winnipeg group.

Most of the new mass spectrometric data were obtained by precision measurements of ratios of cyclotron frequencies of ions in Penning traps. Similarly to the classical measurements of ratios of voltages or resistances, we found that they can be converted to linear combinations in μ u of masses of electrically neutral atoms, without any loss of accuracy. In such cases, we added a remark, to the equation used in the table of input data (Table I), to describe the original data. Other groups give their results directly as masses, a not recommended practice for high precision measurements.

The new mass values for ¹H and ²D have errors about one third of the ones in our previous evaluation, due to new Penning trap measurements. Their values in mass units differ less from the earlier ones [5] than the errors then adopted (in eV_{90} they differ somewhat more). But, for ⁴He new evidence showed that measurements used in the previous evaluation were less dependable than thought: the difference in the mass values in mass units is some 4 times the error assigned in 1995 [5]. The new

values are thought more dependable: two new measurements agree. For this reason, we also now replace the old Penning ³He measurement by one of the two groups mentioned, even though its claimed precision is rather smaller. The new Penning results are tested too by making a separate least square analysis of 30 relations, derived from recent Penning trap results, between H, D, T, ³He, ¹²C, ¹³C, ¹⁴N, ¹⁵N, ¹⁶O, ²⁰Ne and ⁴⁰Ar. The result was quite satisfactory: the resulting consistency factor is $\chi_n = 1.01$.

In earlier evaluations we found it necessary to multiply errors in values from some groups of mass spectrometric data with discrete factors (F = 1.5, 2.5 or 4.0) following the partial consistency factors χ_n^p we found for these groups (see Section 5.2). The just mentioned result was a reason not to do so (that means F = 1) for the Penning trap measurements.

The new Penning trap measurements on ²⁰Ne, ²²Ne, ²³Na and ²⁴Mg agree nicely with earlier precision reaction energies. Their combination with the precision ²⁸Si result, already used in AME95, causes some difficulties, not solved completely by the new Penning ²⁶Mg result, see Section 7.2, Table C.

A somewhat similar problem occurred between 35 Cl and 40 Ar. It was partly solved by a new Penning trap measurement on 36 Ar, see Section 7.4. And a somewhat analogous problem in the connection between lighter Xe isotopes and 133 Cs could be solved in a similar way. We note, in connection with the note above on this problem, that the new Penning trap measurements find 133 Cs 5 keV less stable than the AME95 value to which a 3 keV error was assigned (see Section 7.5).

Satisfactory new measurements, finally, were made of masses of stable Hg isotopes. As we discuss below (Section 7.1), these data helped to solve the most difficult problem in our evaluations along the backbone since 1983.

6.2. Mass spectrometry away from β -stability

With ISOLTRAP, a Penning trap connected to the CERN on-line mass separator ISOLDE, atomic masses are determined for nuclides further away from β -stability, from the cyclotron frequencies of their ions captured in the trap. Such a frequency is compared to that of a well know calibrator to yield a ratio of the two masses. This ratio is converted, without loss of accuracy, in a linear relation between the two masses. Methods which are relying on cyclotron frequency measurements have the advantage that, roughly speaking, only one parameter has to be measured, namely a frequency, that is the physical quantity that can be measured the best with high accuracy. Very high resolving power ($10^8/A$) and accuracies (recently improved up to 2×10^{-8}) are achieved up till quite far from the line of β -stability. Such high resolving power made it possible, for the first time in the history of mass-spectrometry, to resolve nuclear isomers from their ground-state (⁸⁴Rb^m) and to determine their excitation energies,

as beautifully just demonstrated [2003Gu.A] for ⁷⁰Cu, ⁷⁰Cu^{*m*} and ⁷⁰Cu^{*n*}. Their measured excitation energies have been confirmed by $\beta\gamma$ spectroscopy [2003Va.2]. Already in the 1993 evaluation ISOLTRAP data were used. The number of such data is now considerably larger and the precision improved by one order of magnitude, due to careful study of the apparatus and calibration obtained with the absolute calibrator ¹²C from a carbon cluster source allowing to cover the whole atomic mass range. Typically, the precision can reach 1 keV or better (0.3 keV for ¹⁸Ne). One of the most exotic nuclides, ⁷⁴Rb (65 ms), is even reported with a precision of 4 keV.

Far from stability, the mass-triplet measurements, in which undetectable systematic effects could build-up in large deviations when the procedure is iterated [1986Au02], could be recalibrated with the help of the ISOLTRAP measurements. Recalibration was automatically obtained in the evaluation, since each mass-triplet was originally converted to a linear mass relation among the three nuclides, allowing both easy application of least-squares procedures, and automatic recalibration. In Table I, the relevant equations are normalized to make the coefficient of the middle isotope unity, so that they read e.g.

97
Rb – (0.490 × 99 Rb – 0.511 × 95 Rb) = 350 ± 60keV

(the isotope symbol representing the mass excess in keV). The other two coefficients are three-digit approximations of

$$\frac{A_2}{A_3 - A_1} \times \frac{A_2 - A_1}{A_3}$$
 and $\frac{A_2}{A_3 - A_1} \times \frac{A_3 - A_2}{A_1}$

We took A instead of M in order to arrive at coefficients that do not change if the M-values change slightly. The difference is unimportant.

Most of the mass-triplet data, performed in the 80's are now outweighed, except for the most exotic (and thus the most interesting) Francium and neutron-rich Rubidium and Cesium isotopes.

The Orsay Smith-type mass spectrometer MISTRAL, also connected to ISOLDE, has performed quite precise measurements of very short-lived light nuclides. In particular, the mass of ¹¹Li (8.75 ms) is already given in our tables with a precision of 28 keV, and a new measurement (under analysis) should reduce this to about 10 keV. Also, the highly accurate results (5×10^{-7}) for ³⁰Na and ³³Mg provide important calibration masses for the more exotic nuclides measured by 'time-of-flight' techniques (see discussion below).

Mass measurements by time-of-flight mass spectrometry technique at SPEG (GANIL) and TOFI (Los Alamos), also apply to very short nuclides, but the precision is here lower. Masses of almost undecelerated fragment products, coming from thin targets bombarded with heavy ions [43] or high energy protons [44] are measured from a combination of magnetic deflection and time of flight determination. Nuclei in an extended region in A/Z and Z are analyzed simultaneously. Each individual ion, even if very short-lived $(1\mu s)$, is identified and has its mass measured at the same time. In this way, mass values with accuracies of $(3 \times 10^{-6} \text{ to } 5 \times 10^{-5})$ are obtained for a large number of neutron-rich nuclides of light elements, up to A = 70. A difficulty is that the obtained value applies to an isomeric mixture where all isomers with half-lives of the order of, or longer than the time of flight (about 1 μ s) may contribute. The resolving power, around 10⁴, and cross-contaminations can cause significant shifts in masses. The most critical part in these experiments is calibration, since obtained from an empirically determined function, which, in several cases, had to be extrapolated rather far from the calibrating masses. It is possible that, in the future, a few mass-measurements far from stability may provide better calibration points and allow a re-analysis of the concerned data, on a firmer basis. Such recalibrations require analysis of the raw data and cannot be done by the evaluators. With new data from other methods allowing now comparison, we observed strong discrepancies for one of the two groups, and had to increase thus the associated partial consistency factor to F = 1.5. We noted already earlier that important differences occurred between ensemble of results within this group of data. Using F = 1.5 for data labeled 'TO1-TO6' in the 'Lab' column of Table I, allows to recover consistency.

Longer time-of-flights (50 to 100 μ s), thus higher resolving powers, can be obtained with cyclotrons. The accelerating radio-frequency is taken as reference to ensure a precise time determination, but this method implies that the number of turns of the ions inside the cyclotron, should be known exactly. This was achieved succesfully at SARA-Grenoble for the mass of ⁸⁰Y. More recently, measurements performed at GANIL with the CSS2 cyclotron, could not determine the exact number of turns. In a first experiment on ¹⁰⁰Sn, a careful simulation was done instead. In a second experiment on ⁶⁸Se, ⁷⁶Sr, ⁸⁰Sr and ⁸⁰Y, a mean value of the number of turns was experimentally determined for the most abundant species only, thus mainly the calibrants. Recent Penning traps measurements on ⁶⁸Se (CPT-Argonne) and ⁷⁶Sr (ISOLTRAP) revealed that this last method suffered serious systematic errors. Also, the measured ⁸⁰Y mass not only deviates from that of SARA by 10 σ , but also contradicts the lower limit set by a recent Q_{β} measurement at Yale (see [30] for a detailed analysis). For these reasons, results from this second GANIL experiment are not used in our set of data for adjustment.

Atomic masses of nuclides up to rather far removed from stability have recently been determined from their orbital frequency in a storage ring (ESR at GSI), with precisions sometimes as good as a few tens of keV. Many of the measured nuclides belong to known α -decay chains. Thus, the available information on masses of, especially, proton-rich nuclides is considerably extended.
It must be mentioned that, in the first group of mass values as given by GSI authors [2000Ra23], several cannot be accepted without changes. The reason is that, in their derivation, α -decay energies between two, or more, of the occurring nuclides have been used. Evidently, they can therefore not without correction be included in our calculations, where they are again combined with these Q_{α} 's. Remarks added to the data in Table I warn for this matter where important. This point is added here to show a kind of difficulty we meet more often in this work. Fortunately, for this group of data it is only of historical interest since all their data are outdated by more recent measurements [2003Li.A] with the same instruments and with a much better precision.

As said above, many ESR results in [2003Li.A] yield an average mass value M_{exp} for a mixture of isomers. We here use our new treatment for the possible mixture of isomers (see Appendix B), and take care to mention such changes duly in remarks added to these data.

The mass M_0 of the ground-state can be calculated if both the excitation energy E_1 of the upper isomer, and the relative intensities of the isomers are known. But often this is not the case. If E_1 is known but not the intensity ratio, one must assume equal probabilities for all possible relative intensities. In the case of one excited isomer, see Appendix B.4, the mass estimate for M_0 becomes $M_{exp} - E_1/2$, and the part of the error due to this uncertainty $0.29E_1$ (see Section B.4). This policy was discussed with the authors of the measurements. In eight cases, more than two isomers contribute to the measured line. They are treated as indicated in Appendix B.

A further complication arises if E_1 is not known. This, in addition with some problems connected with α -decay chains involving isomers, was a reason for us to consider the matter of isomers with considerably more care than we did before. Part of the results of our estimates (as always, flagged with '#') are incorporated in the NUBASE evaluation. In estimating values E_1 , we first look at experimental data possibly giving lower limits: e.g. is known that one of two isomers decays to the other; or is even known that γ -rays of known energy occur in such decays. If not, we tried interpolation between values E_1 for neighboring nuclides that can be expected to have the same spin assignments (for odd A: isotones if Z is even, or isotopes if Z is odd). If such a comparison does not yield useful results, indications from theory were sometimes accepted, including upper limits for transition energies following from the measured half-lives. Of course, values estimated this way were provided with somewhat generous errors, dutifully taken into account in deriving final results.

In several of these measurements, an isomer can only contribute if its half-life is at least several seconds. But half-lives as given in tables like NUBASE are those for neutral atoms. For naked nuclei the decay of such an isomer cannot occur by electron conversion; their half-lives may therefore be considerably larger. Examples are the reported mass measurements of the 580 ms ¹⁵¹Er isomer at E_1 =2585.5 keV; and even of the 103 ms ¹¹⁷Te isomer at E_1 =296.1 keV.

An interesting result from the new mass-spectrometric measurements is the following. With ISOLTRAP, masses of several more proton-rich nuclides have been determined with a precision of about 15 keV. In combination with α -decay data, good information is obtained for even-Z nuclei between ¹⁷⁶Pt and ²¹⁰Th. These data, combined with Pb α -energies, allow a check on neutron pairing energies in proton-rich Hg and Pb isotopes. The Jensen-Hansen-Jonson [45] estimate is found decidedly better than the earlier formula $12/\sqrt{A}$ MeV.

In some cases, where in principle corrections for isomerism or contaminations should be made, the mass spectrometric data are insignificant. We found it unnecessary then to make the isomer correction; but as a warning, the reference key number is then provided with a label 'Z'.

6.3. Proton-decays and α -decays

Limits to proton-decay energies may be estimated from half-lives for this kind of decay. Especially interesting are the limits [1999Ja02] for the series of nuclides with N = Z - 1 from ⁶⁹Br to ⁸⁹Rh. For them, we gave as inputs values for these decay energies, treated as systematic data (see below) but thought especially dependable.

Our 1995 update [5] used some then recent results of measurements of energies of protons emitted in proton decay. Together with many new data, we now possess results for many proton-rich nuclides, from ${}^{105}_{51}$ Sb to ${}^{185}_{83}$ Bi; among them for all intermediary odd-Z nuclides with the exception of only ${}_{61}$ Pm and ${}_{65}$ Tb. These data are important for two reasons. In the first place, we apply systematics of some quantities (among them proton separation energies) for estimating mass values for nuclides, for which no experimental mass data are available. For this purpose, knowledge of proton separation energies just beyond the proton drip line is quite valuable.

In the second place, the properties of proton decay allow in several cases to measure proton-decay energies from both members of an isomeric pair. In the many cases that both are observed to decay to the ground-state of the daughter, one so derives the excitation energy of the isomer. And these studies even allow to get a fair estimate of the spin-parities of the separate members.

This feature is the more valuable since often for both members α -decay is observed. In a particular case, even a succession of several such decays was found. Their study showed several decays earlier assigned to ground-states to belong in reality to upper isomers. Also, these measurements are found to yield good values for the excitation energies of the isomers among the descendants. We here follow the judgement of the authors, including their judgement about the final levels fed in those α -decays.

Often, though, knowledge of final levels in observed α -decays is not available. We need to discuss what to do then. A systematic investigation we made long ago suggested, that in most cases the excitation energy of the final level must be small. We therefore adopted the policy of accepting the measured E_{α} as feeding the groundstate but to provide, in such cases, the resulting decay energy with a label (not given in Table I) that takes care that its error is increased to 50 keV.

Our computer program averages data of the same kind and uses only the average, also given in Table I, in the final calculation. Caution is then necessary with these 50 keV additions: they are applied to the relevant averages.

Yet, systematics of α -decay energies, theory, or preferably both, may in some cases suggest a larger E_1 . In such cases, the estimate for this value (provided with a generous error) has been added as input value.

The mentioned results of proton decay analysis have been a reason to omit the mentioned label in several cases. And we also have to be careful with the use of this label if mass spectrometric results with a precision of about 50 keV or better are known for mother and daughter. Comparison (preferably in combination with theoretical considerations) may here too suggest to drop the mentioned label; or just reversely not to accept a reported α -energy.

In regions where the Nilsson model for deformed nuclides applies, it is expected that the often most intense α -transition feeds a level in the daughter with the same model assignment as the mother. (It is not rarely the only observed α -ray.) In that case, adding an estimate for the E_1 is attractive. And not rarely the energy difference with the ground-state can be estimated by comparison with the energy differences between the corresponding Nilsson levels in nearby nuclides.

Unfortunately, some authors derive a value they call Q_{α} from a measured α -particle energy by not only correcting for recoil but also for screening by atomic electrons (see Appendix A). In our calculations, the latter corrections have been removed.

Finally, some measured α particle energies are at least partly due to summing with conversion electrons. This is sometimes clear from the observation, that the width of the observed line is larger than that of other ones. In deriving the desired Q_{α} , it is then necessary to make a small correction for the escaping X-rays. This is again mentioned in remarks added to the items.

6.4. Decay energies from capture ratios and relative positron feedings

For allowed transitions, the ratio of electron capture in different shells is proportional to the ratio of the squares of the energies of the emitted neutrinos, with a proportionality constant dependent on Z and quite well known [46]. For (non-unique) first forbidden transitions, the ratio is not notably different; with few exceptions.

The neutrino energy mentioned is the difference of the transition energy Q with the electron binding energy in the pertinent shell. Especially if the transition energy is not too much larger than the binding energy in, say, the K shell, it can be determined rather well from a measurement of the ratio of capture in the K and L shells.

The non-linear character of the relation between Q and the ratio introduces two problems. In the first place, a symmetrical error for the ratio is generally transformed in an asymmetrical one for the transition energy. Since our least-squares program cannot handle them, we have symmetrized the probability distribution by considering the first and second momenta of the real probability distribution (see NUBASE2003, Appendix A). The other problem is related to averaging of several values that are reported for the same ratio. Our policy, since AME'93, is to average the capture ratios, and calculate the decay energy following from that average. In this procedure we used the best values [46] of the proportionality constant. We also recalculated older reported decay energies originally calculated using now obsolete values for this constant.

The ratio of positron emission and electron capture in the transition to the same final level also depends on the transition energy in a known way (anyhow for allowed and not much delayed first forbidden transitions). Thus, the transition energy can be derived from a measurement of the relative positron feeding of the level, which is often easier than a measurement of the positron spectrum end-point. For several cases we made here the same kind of combinations and corrections as mentioned for capture ratios. But in this case, a special difficulty must be mentioned. Positron decay can only occur when the transition energy exceeds $2m_ec^2 = 1022$ keV. Thus, quite often, a level fed by positrons is also fed by γ -rays coming from higher levels fed by electron capture. Determination of the intensity of this *side* feeding is often difficult. Cases exist where such feeding occurs by a great number of weak γ -rays easily overlooked (the *pandemonium* effect [47]). Then, the reported decay energy may be much lower than the real value. In judging the validity of experimental data, we kept this possibility in our mind.

6.5. Superheavy nuclides

Unfortunately, the names of four elements beyond Z=103 as earlier proposed, and that we accepted in our 1995 evaluation [5], were changed. The Commission on Nomenclature of Inorganic Chemistry of the International Union of Pure and Applied Chemistry IUPAC [48] revised its earlier proposal (see also NUBASE2003, Section 2). As a result, following names and symbols are now definitely accepted (names for Z = 107 and 109 are not changed):

104	rutherfordium	Rf	replacing	Db
105	dubnium	Db	"	Jl
106	seaborgium	Sg	"	Rf
108	hassium	Hs	"	Hn

In the 1995 evaluation we already included results assigned to elements 110 and 111; and in 1996 [1996Ho13] the discovery was reported of element 112. The discovery of element 118 and its α -descendants 116 and 114 was announced in Berkeley in 1999 [1999Ni03] but was later withdrawn [2002Ni10]. But authors from Dubna reported observation of isotopes of elements 114 and 116. All these reports have not yet been officially accepted as sufficient evidence for the discovery of these elements, except for element 110. A provisional recommendation of the Inorganic Chemistry Division of the International Union of Pure and Applied Chemistry proposes for it the name darmstadtium, symbol Ds. Until this name and this symbol are officially adopted, we will not use them in our evaluations, to avoid a situation similar to the one described above. No names have been proposed to our knowledge for the heavier elements. We use symbols Ea, ... Ei for elements 110, ... 118.

No data are available that allow to give any purely experimental mass value for any isotope of the latter elements, in fact for no nuclide with A > 265. One of the reasons is, that α -decays in the present region of deformed nuclides preferentially feed levels with the same Nilsson model assignments as the mother, which in the daughter are most often excited states, with unknown excitation energies E_1 . Thus, in order to find the corresponding mass difference, we have to estimate these E_1 's. For somewhat lighter nuclides, one may estimate them, as said above, from known differences in excitation energies for levels with the same Nilsson assignments in other nuclides. But such information is lacking in the region under consideration. In its place, one might consider to use values obtained theoretically [49]. We have not done so, but used their values as a guide-line. Finally, we choose values in such a way that diagrams of α -systematics and mass systematics looked acceptable. Important for this purpose were the experimental α -decay energies for the heaviest isotopes for Z = 112, 114 and 116, especially for the even-A isotopes among them. The errors we assigned to values thus obtained may be somewhat optimistic; but we expect them not to be ridiculous.

In addition to these uncertainties, it must be mentioned that Armbruster [50] gives reasons to doubt the validity of the Dubna results mentioned. We recognize the seriousness of his criticism, but nevertheless decided to accept the Dubna results for the time being. This has a consequence for our mass estimates from systematics for all nuclides with neutron numbers above the probably semi-magic N = 162: they depend strongly on the correctness of the Dubna results.

Figure 3: Difference between the mass values obtained in the AME2003 and the AME1993, for nuclides along the line of β -stability around stable Hg's. The errors found in the 1993 evaluation are given by the two lines symmetric around the zero line. Points and error bars refer to the present evaluation.

7. Special cases

7.1. The problem of the stable Hg isotopes

In our earlier evaluations we did not accept the 1980 Winnipeg measurements of the atomic masses of stable Hg isotopes, reported with errors of only about 1 keV. We reconsider the reasons.

In that work [1980Ko25], the mass differences were measured between those Hg isotopes and ${}^{12}C_2$ Cl₅ molecules (for A = 199 and 201), or ${}^{12}C^{13}C$ Cl₅ ones (for A = 200, 202 and 204). The resulting Hg masses values were 22 μ u high (odd A) and 17 μ u high (even-A), compared with values derived from mass spectrometric results for both lighter and heavier nuclides combined with experimental reaction and decay energies, see Fig. 1 in [9]. The difference suggests an influence on the intensities of the ion beams, since ${}^{13}C$ is much less abundant than ${}^{12}C$. Therefore, both sets of results were judged questionable.

Very recently, Winnipeg reported [2003Ba49] a new value for ¹⁹⁹Hg, 7 μ u lower than their 1980 result. In addition, measurements with the Stockholm SMILETRAP Penning trap spectrometer gave results for ¹⁹⁸Hg and ²⁰⁴Hg, essentially agreeing with the 1980 Winnipeg even-mass values. Thus, the latter appear to be reasonable.

We now calculated atomic masses accepting these data, in addition to old and new nuclear reaction and decay results. Fig. 3 shows differences between these results and the values adopted in our previous evaluation AME'95.

The relation with the higher-A mass spectrometric results (Th and U isotopes) is acceptable at present: the new differences nearly equal the old ones but with changed sign. With lower-A, Winnipeg provided further information by new measurements of the mass of ¹⁸³W and its difference with ¹⁹⁹Hg. These essentially confirm the mass values around ¹⁸³W as given in our earlier evaluations [1, 5]. For completeness, we observe that the new ¹⁸³W result is 15 μ u higher than the 1977 Winnipeg result (error 2.7 μ u), which was one of the items that helped to suggest the lower Hg masses.

It is therefore significant that Fig. 3 shows a jump between 191 Ir and 194 Pt. Closer scrutiny, shows that nuclear reaction energies, in the region between these two nuclides, have discrepancies which, as yet, are not resolved. The upshot, though, is that the earlier difficulty in the connection of the Hg's with lower *A* data appears to be due to errors in the mass spectrometric data then used. We therefore think that the mass values for these Hg isotopes in the present work are definitely more dependable than our earlier ones.

7.2. The masses of ²⁶Al and ²⁷Al

The earlier two results of the ${}^{25}Mg(n,\gamma)$ reactions were not in a perfect agreement, neither with one another nor with the combinations of the average of the well agreeing values for ${}^{25}Mg(p,\gamma)$ with the two values for ${}^{26}Mg(p,n){}^{26}Al$, see Table D. The new Penning trap mass values for ${}^{24}Mg$ and ${}^{26}Mg$ [2003Be02], combined with the average of the very nicely agreeing values for the ${}^{24}Mg(n,\gamma)$ reaction, give a value halfway between the ones just mentioned. This is pleasant but thus it must be concluded that there is an uncertainty in the mass of ${}^{26}Al$. This is unfortunate, especially because of the special interest of the ${}^{26}Mg(p,n){}^{26}Al$ reaction for problems connected with the intensity of allowed Fermi β -transitions.

A somewhat similar problem occurs in the connections of 27 Al with the nuclides just mentioned and, through the (p, γ) reaction, with 28 Si. We found no stringent reasons to trust some of them more than others. Thus the mass value presented here for 27 Al is a compromise and its error somewhat optimistic.

7.3. The ${}^{35}S(\beta^-){}^{35}Cl$ decay energy

This case has been investigated several times in connection with the report that a neutrino might exist with a mass of 17 keV.

Unfortunately, the reported decay energies are so much different (with a Birge ratio $\chi_n = 3.07$, see Table C, Section 5), that we decided to use all of the nine

Method	S_n	Reference	
25 Mg(n, γ)	11093.10 (0.06)	1990Pr02	Z
25 Mg(n, γ)	11093.23 (0.05)	1992Wa06	Ζ
$^{25}Mg(p,\gamma) - ^{26}Mg(p,n)$	11092.63 (0.14)		
$^{25}Mg(p,\gamma) - ^{26}Mg(p,n)$	11092.36 (0.19)		
$^{24}Mg - ^{26}Mg + 2n - ^{24}Mg(n,\gamma)$	11092.94 (0.05)	2003Be02	

Table D. ²⁶Mg neutron binding energies derived in different ways.

available data, irrespective of their claimed precision. Moreover, the most recent, and probably most accurate among the nine ${}^{35}S(\beta^-)$ decay-energy values, are all higher than their average. We therefore applied the procedure described in Section 5.4.1 to get an arithmetic average value and error (derived from the dispersion of the 9 data) of 167.222 ± 0.095 keV. In AME'93 we had 7 data with $\chi_n = 3.45$; the situation unfortunately did not improve significantly.

A value 167.19(0.11) keV, in good agreement with the above adopted value, can also be derived from the reported reaction energies for the ${}^{34}S(n,\gamma){}^{35}S$ and ${}^{34}S(p,\gamma){}^{35}Cl$ reactions.

7.4. The masses of ^{35,37}Cl and the new ³⁶Ar mass

The SMILETRAP ³⁶Ar result [2003Fr08] is some 1.2 keV lower than the AME95 value, for which an error of 0.3 keV was claimed. The latter value is, essentially, due to mass spectrometric results for ³⁵Cl and ³⁷Cl, combined with reaction energies for five reactions. These data do agree quite well if combined in a least squares analysis: $\chi_n = 1.13$. Adding the new mass value for ³⁶Ar increases χ_n to 2.00. But this value is reduced to a reasonable 1.35 if, of the two available values for the ³⁶Ar(n, γ)³⁷Ar reaction energy, the oldest not well documented one is no longer used. Also, this removes an earlier hardness in the connection with ⁴⁰Ar, of which the mass was already known with high precision.

7.5. Consequences of new ¹³³Cs mass

The ¹³³Cs results are important for the determination of masses of many Cs and Ba isotopes: as discussed above. Two new ¹³³Cs mass values have been reported, agreeing well. The resulting ¹³³Cs mass is about 5 keV higher than the AME'95 one, to which an error of 3 keV had been assigned. It was mainly the result of a set of connections, through known Cs β^+ decay energies to Xe nuclides, for which mass

spectrometric mass values were available (see the scheme Fig. 1 in [1]). The nearest ones are those at mass numbers 124, 128, 129, 130 and 132. Analyzing them, we find that the connection with ¹³²Xe would make ¹³³Cs 15(7) keV higher, whereas that with ¹²⁴Xe, 35(20) keV lower. The first one, thus, is improved by the SMILETRAP result. The other throws some doubt on the reported ¹²⁵Cs β^+ decay energy. The other connections are not severely affected.

7.6. The ¹⁶³Ta(α)¹⁵⁹Lu(α)¹⁵⁵Tm decay chain

What follows is an analysis of α -chains for which also mass-spectrometric mass values are available. It is given as an example; but also because it presents special difficulties.

For ¹⁵⁹Lu and ¹⁶³Ta [2003Li.A] gives mass values with precision 30 keV. The nuclide ¹⁵⁵Tm is connected with precision data to nuclides with more accurately known masses. From these mass values one calculates for ¹⁵⁹Lu an α -decay energy of 4480(34) keV to the ¹⁵⁵Tm ground-state, and 42(5) keV less to its isomer. The experimental value is 4533(7) keV, average of two agreeing measurements, see Table I. The difference suggests that the E_{α} (two well agreeing measurements) originate in an upper isomer. Let us look critically to the known decay data.

For ¹⁵⁹Lu, the half-lives reported for α - and β -decays are not different, not suggesting isomerism.

In order to see a possible consequence of a less stable ¹⁵⁹Lu, we examine its α -decay feeding by ¹⁶³Ta. The mass measurements yield $Q_{\alpha} = 4652(42)$ keV, to be compared with a rather higher experimental value 4749(6) keV. The difference would even be larger if ¹⁵⁹Lu would be less stable!

This quite strongly suggests that the observed ¹⁶³Ta α 's may originate in a higher isomer. First question: could the half-lives for its α - and β -decays be different? For gamma and X(K) the half-lives is found $T_{1/2} = 11(1)$ s; for α no value. Then, do other N = 90 nuclides show isomerism? Yes, but the situations for them seem not comparable. Finally: can we get some information from α ancestors? For ¹⁷⁹Tl(α)¹⁷⁵Au(α)¹⁷¹Ir(α)¹⁶⁷Re, [2002Ro17] gives correlations between α branches reported for their isomers. Their analysis suggests that the ¹⁶⁷Re isomers must α decay to different isomers in ¹⁶³Ta. This induces us to assign the discussed ¹⁶³Ta α branch to the upper isomer.

This solves part of the problem. For the other part, we label the observed ¹⁵⁹Lu Q_{α} 's with the flag for uncertain assignment (increasing error to 50 keV, see Section 6.3), already because it is unclear which of the two ¹⁵⁵Tm isomers is fed. Thus, the main part of the trouble is removed.

7.7. The mass of ¹⁴⁹Dy and its α -ancestors

AME95 gives for ¹⁴⁹Dy a mass excess of -67688(11) keV. This value was derived with help of [1991Ke11]'s value $Q_{\beta^+} = 3812(10)$ keV for ¹⁴⁹Dy(β^+)¹⁴⁹Tb. But ISOLTRAP finds a 45 keV more bound value, -67729(18) keV [2001Bo59]. And ESR-GSI [2003Fi.A] found mass values for the ¹⁴⁹Dy and its α -ancestors ¹⁵⁷Yb, ¹⁶¹Hf and ¹⁶⁵W that all agreed with the values derived from combining Q_{α} 's with the ISOLTRAP ¹⁴⁹Dy mass. It is not likely that the mentioned Q_{β^+} belongs to an upper ¹⁴⁹Dy isomer. And repeated study of the [1991Ke11] paper did not suggest distrust. Therefore we decided just to accept all experimental data mentioned.

7.8. The masses of 100 Sn and 100 In

The mass of ¹⁰⁰In was derived in AME95 from a preliminary result of a GANIL measurement replaced since by a final report, the latter also giving a mass value for ¹⁰⁰Sn for which AME95 gave only a value derived from systematics. These results are particularly interesting because of the double magic character of ¹⁰⁰Sn which is, moreover, the heaviest known nuclide with N = Z. But for both the reported values indicated over 0.5 MeV more stability than in AME'95, and indeed there indicated by systematics. The difference is not really large compared with the claimed precision, yet unpleasant. Therefore it is satisfactory that new measurements of the positron decay energies of these two nuclides indicate indeed higher mass values. The final values are still somewhat low compared with systematics, but no longer seriously so.

8. General informations and acknowledgements

The full content of the present issue is accessible on-line at the web site [6] of the AMDC. In addition, on that site, several local analyses that we conducted but could not give in the printed version, are available. Also, several graphs for representation of the mass surface, beyond the main ones in Part II, can be obtained there.

As before, the table of masses (Part II, Table I) and the table of nuclear reaction and separation energies (Part II, Table III) are made available in plain ASCII format to allow calculations with computer programs using standard languages. The headers of these files give information on the used formats. The first file with name **mass_rmd.mas03** contains the table of masses. The next two files correspond to the table of reaction and separation energies in two parts of 6 entries each, as in Part II, Table III: **rct1_rmd.mas03** for S_{2n} , S_{2p} , Q_{α} , $Q_{2\beta}$, $Q_{\varepsilon p}$ and $Q_{\beta n}$ (odd pages in this issue); and **rct2_rmd.mas03** for S_n , S_p , $Q_{4\beta}$, $Q_{d,\alpha}$, $Q_{p,\alpha}$ and $Q_{n,\alpha}$ (facing even pages). As explained in Section 4.2, we do no more produce special tables in which are included experimental data that we do not recommend to use.

We wish to thank our many colleagues who answered our questions about their experiments and those who sent us preprints of their papers. Special thanks to C. Schwarz and P. Pearson at Elsevier for a particularly good cooperation and reliance in preparing the present publication, resulting in a very short delay between our final calculation and printing. We appreciate the help of C. Gaulard in the preparation of some of the figures of this publication, and of C. Gaulard and D. Lunney for careful reading of the manuscript. One of us (AHW) expresses his gratitude to the NIKHEF-K laboratory for the permission to use their facilities, and especially thanks Mr. K. Huyser for all help with computers.

Appendix A. The meaning of decay energies

Conventionally, the decay energy in an α -decay is defined as the difference in the atomic masses of mother and daughter nuclides:

$$Q_{\alpha} = M_{\text{mother}} - M_{\text{daughter}} - M_{^{4}\text{He}} \tag{8}$$

This value equals the sum of the observed energy of the α particle and the easily calculated energy of the recoiling nuclide (with only a minor correction for the fact that the cortege of atomic electrons in the latter may be in an excited state). Very unfortunately, some authors quote as resulting Q_{α} a value 'corrected for screening', which essentially means that they take for the values *M* in the above equation the masses of the bare nuclei (the difference is essentially that between the total binding energies of all electrons in the corresponding neutral atoms).

This bad custom is a cause of confusion; even so much that in a certain paper this "correction" was made for some nuclides but not for others.

A similar bad habit has been observed for some proton decay energies (in a special NDS issue). We very strongly object to this custom; at the very least, the symbol Q should not be used for the difference in nuclear masses!

Appendix B. Mixtures of isomers or of isobars in mass spectrometry

In cases where two or more unresolved lines may combine into a single one in an observed spectrum, while one cannot decide which ones are present and in which proportion, a special procedure has to be used.

The first goal is to determine what is the most probable value M_{exp} that will be observed in the measurement, and what is the uncertainty σ of this prediction. We assume that all the lines may contribute and that all contributions have equal probabilities. The measured mass reflects the mixing. We call M_0 the mass of the lowest line, and M_1, M_2, M_3, \ldots the masses of the other lines. For a given composition of the mixture, the resulting mass *m* is given by

$$m = (1 - \sum_{i=1}^{n} x_i)M_0 + \sum_{i=1}^{n} x_iM_i \qquad \text{with} \begin{cases} 0 \le x_i \le 1\\ \sum_{i=1}^{n} x_i \le 1 \end{cases}$$
(9)

in which the relative unknown contributions x_1, x_2, x_3, \ldots have each a uniform distribution of probability within the allowed range.

If P(m) is the normalized probability of measuring the value *m*, then :

$$\overline{M} = \int P(m) m \, dm \tag{10}$$

and
$$\sigma^2 = \int P(m) (m - \overline{M})^2 dm$$
 (11)

It is thus assumed that the experimentally measured mass will be $M_{exp} = \overline{M}$, and that σ , which reflects the uncertainty on the composition of the mixture, will have to be quadratically added to the experimental uncertainties.

The difficult point is to derive the function P(m).

B.1. Case of 2 spectral lines

In the case of two lines, one simply gets

$$m = (1 - x_1)M_0 + x_1M_1 \quad \text{with} \quad 0 \le x_1 \le 1 \tag{12}$$

The relation between m and x_1 is biunivocal so that

$$P(m) = \begin{cases} 1/(M_1 - M_0) & \text{if } M_0 \le m \le M_1, \\ 0 & \text{elsewhere} \end{cases}$$
(13)

i.e. a rectangular distribution (see Fig. 4a), and one obtains :

$$M_{exp} = \frac{1}{2}(M_0 + M_1)$$
(14)
$$\sigma = \frac{\sqrt{3}}{6}(M_1 - M_0) = 0.290 (M_1 - M_0)$$

Figure 4: Examples of probabilities to measure m according to an exact calculation in cases of the mixture of two (a) and three (b) spectral lines.

B.2. Case of 3 spectral lines

In the case of three spectral lines, we derive from Eq. 9:

$$m = (1 - x_1 - x_2)M_0 + x_1M_1 + x_2M_2$$
(15)

with
$$\begin{cases} 0 \le x_1 \le 1 \\ 0 \le x_2 \le 1 \\ 0 \le x_1 + x_2 \le 1 \end{cases}$$
 (16)

The relations (15) and (16) may be represented on a x_2 vs x_1 plot (Fig. 5). The conditions (16) define a triangular authorized domain in which the density of probability is uniform. The equation (15) is represented by a straight line. The part of this line contained inside the triangle defines a segment which represents the values of x_1 and x_2 satisfying all relations (16). Since the density of probability is constant along this segment, the probability P(m) is proportional to its length. After normalization, one gets (Fig. 4*b*):

$$P(m) = \frac{2k}{M_2 - M_0} \quad \text{with} \begin{cases} k = (m - M_0) / (M_1 - M_0) & \text{if } M_0 \le m \le M_1 \\ k = (M_2 - m) / (M_2 - M_1) & \text{if } M_1 \le m \le M_2 \end{cases}$$
(17)

and finally:

$$M_{exp} = \frac{1}{3}(M_0 + M_1 + M_2)$$

$$\sigma = \frac{\sqrt{2}}{6}\sqrt{M_0^2 + M_1^2 + M_2^2 - M_0M_1 - M_1M_2 - M_2M_0}$$
(18)

176

Figure 5: Graphic representation of relations 15 and 16. The length of the segments (full thick lines) inside the triangle are proportional to the probability P(m). Three cases are shown corresponding respectively to $m < M_1$, $m = M_1$, and to $m > M_1$. The maximum of probability is obtained when $m = M_1$.

B.3. Case of more than 3 spectral lines

For more than 3 lines, one may easily infer $M_{exp} = \sum_{i=0}^{n} M_i / (n+1)$, but the determination of σ requires the knowledge of P(m). As the exact calculation of P(m) becomes rather difficult, it is more simple to do simulations. However, care must be taken that the values of the x_i 's are explored with an exact equality of chance to occur. For each set of x_i 's, m is calculated, and the histogram $N_j(m_j)$ of its distribution is built (Fig. 6). Calling *nbin* the number of bins of the histogram, one gets :

$$P(m_j) = \frac{N_j}{\sum_{j=1}^{nbin} N_j}$$
(19)

$$M_{exp} = \sum_{j=1}^{nbin} P(m_j) m_j$$

$$\sigma^2 = \sum_{j=1}^{nbin} P(m_j) (m_j - M_{exp})^2$$

A first possibility is to explore the x_i 's step-by-step: x_1 varies from 0 to 1, and for each x_1 value, x_2 varies from 0 to $(1 - x_1)$, and for each x_2 value, x_3 varies from 0 to $(1 - x_1 - x_2)$, ... using the same step value for all.

A second possibility is to choose x_1, x_2, x_3, \ldots randomly in the range [0,1] in an independent way, and to keep only the sets of values which satisfy the relation $\sum_{i=1}^{n} x_i \leq 1$. An example of a Fortran program based on the CERN library is given

Figure 6: Examples of Monte-Carlo simulations of the probabilities to measure m in cases of two (a), three (b) and four (c) spectral lines.

in Figure 7 for the cases of two, three and four lines. The results are presented in Figure 6.

Both methods give results in excellent agreement with each other, and as well with the exact calculation in the cases of two lines (see Fig. 4a and 6a) and three lines (see Fig. 4b and 6b).

B.4. Example of application for one, two or three excited isomers

We consider the case of a mixture implying isomeric states. We want to determine the ground state mass $M_0 \pm \sigma_0$ from the measured mass $M_{exp} \pm \sigma_{exp}$ and the knowledge of the excitation energies $E_1 \pm \sigma_1, E_2 \pm \sigma_2, \ldots$

With the above notation, we have $M_1 = M_0 + E_1, M_2 = M_0 + E_2, \dots$

```
program isomers
C-----
                       C.Thibault
c- October 15, 2003
c- Purpose and Methods : MC simulation for isomers (2-4 levels)
c- Returned value : mass distribution histograms
c-----
     parameter (nwpawc=10000)
     common/pawc/hmemor(nwpawc)
     parameter (ndim=500000)
     dimension xm(3,ndim)
     data e0,e1,e31,e41,e42/100.,1100.,400.,200.,400./
     call hlimit(nwpawc)
c histograms 2, 3, 4 levels
     call hbook1(200, '', 120, 0., 1200., 0.)
     call hbook1(300,'',120,0.,1200.,0.)
     call hbook1(400,'',120,0.,1200.,0.)
     call hmaxim(200,6500.)
     call hmaxim(300,6500.)
     call hmaxim(400,2500.)
     w=1.
c random numbers [0,1]
     ntot=3*ndim
     iseq=1
     call ranecq(iseed1,iseed2,iseq,' ')
     call ranecu(xm,ntot,iseq)
     do i=1,ndim
c 2 levels :
        t=1-xm(1,i)
        e = t*e0 + xm(1,i)*e1
        call hfill(200,e,0.,w)
c 3 levels :
        if ((xm(1,i)+xm(2,i)).le.1.) then
         t=1.-xm(1,i)-xm(2,i)
         e= t*e0 + xm(1,i)*e31 + xm(2,i)*e1
         call hfill(300,e,0.,w)
        end if
c 4 levels
        if ((xm(1,i)+xm(2,i)+xm(3,i)).le.1.) then
         t=1.-xm(1,i)-xm(2,i)-xm(3,i)
          e = t*e0 + xm(1,i)*e41 + xm(2,i)*e42 + xm(3,i)*e1
         call hfill(400,e,0.,w)
        end if
     end do
     call hrput(0,'isomers.histo','N')
     end
```

Figure 7: Fortran program used to produce the histograms of Figure 6.

For a single excited isomer, equations (14) lead to :

$$M_{0} = M_{exp} - \frac{1}{2}E_{1}$$

$$\sigma^{2} = \frac{1}{12}E_{1}^{2} \quad \text{or} \quad \sigma = 0.29E_{1}$$

$$\sigma_{0}^{2} = \sigma_{exp}^{2} + (\frac{1}{2}\sigma_{1})^{2} + \sigma^{2}$$

For two excited isomers, equations (18) lead to :

$$M_{0} = M_{exp} - \frac{1}{3}(E_{1} + E_{2})$$

$$\sigma^{2} = \frac{1}{18}(E_{1}^{2} + E_{2}^{2} - E_{1}E_{2}) \quad \text{or} \quad \sigma = 0.236\sqrt{E_{1}^{2} + E_{2}^{2} - E_{1}E_{2}}$$

$$\sigma_{0}^{2} = \sigma_{exp}^{2} + (\frac{1}{3}\sigma_{1})^{2} + (\frac{1}{3}\sigma_{2})^{2} + \sigma^{2}$$

If the levels are regularly spaced, *i.e.* $E_2 = 2E_1$,

$$\sigma = \frac{\sqrt{6}}{12}E_2 = 0.204E_2$$

while for a value of E_1 very near 0 or E_2 ,

$$\sigma = \frac{\sqrt{2}}{6}E_2 = 0.236E_2$$

For three excited isomers , the example shown in Figure 6c leads to:

$$M_{0} = M_{exp} - \frac{1}{4}(E_{1} + E_{2} + E_{3}) = 450.$$

$$\sigma = 175.$$

$$\sigma_{0}^{2} = \sigma_{exp}^{2} + (\frac{1}{4}\sigma_{1})^{2} + (\frac{1}{4}\sigma_{2})^{2} + (\frac{1}{4}\sigma_{3})^{2} + \sigma^{2}$$

References

References such as 1984Sc.A, 1989Sh10 or 2003Ot.1 are listed under "References used in the AME2003 and the NUBASE2003 evaluations", p. 579.

[1] G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 1.

- [2] G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 66.
- [3] C. Borcea, G. Audi, A.H. Wapstra and P. Favaron, Nucl. Phys. A 565 (1993) 158.
- [4] G. Audi, A.H. Wapstra and M. Dedieu, Nucl. Phys. A 565 (1993) 193.
- [5] G. Audi and A.H. Wapstra, Nucl. Phys. A 595 (1995) 409.
- [6] The AME2003 files in the electronic distribution and complementary documents can be retrieved from the Atomic Mass Data Center (AMDC) through the *Web*: http://csnwww.in2p3.fr/amdc/
- G. Audi, O. Bersillon, J. Blachot and A.H. Wapstra, Nucl. Phys. A 624 (1997) 1; http://csnwww.in2p3.fr/AMDC/nubase/nubase97.ps.gz
- [8] A.H. Wapstra and K. Bos, At. Nucl. Data Tables 20 (1977) 1.
- [9] A.H. Wapstra, G. Audi and R. Hoekstra, Nucl. Phys. A432 (1985) 185.
- [10] K.-N. Huang, M. Aoyagi, M.H. Chen, B. Crasemann and H. Mark, At. Nucl. Data Tables 18 (1976) 243.
- [11] P.J. Mohr and B.N. Taylor, J. Phys. Chem. Ref. Data 28 (1999) 1713.
- [12] T.P. Kohman, J.H.E. Mattauch and A.H. Wapstra, J. de Chimie Physique 55 (1958) 393.
- [13] G. Audi, Hyperfine Interactions 132 (2001) 7; École Internationale Joliot-Curie 2000, Spa, p.103; http://csnwww.in2p3.fr/AMDC/masstables/hal.pdf
- [14] John Dalton, 1766-1844, who first speculated that elements combine in proportions following simple laws, and was the first to create a table of (very approximate) atomic weights.
- [15] E.R. Cohen and A.H. Wapstra, Nucl. Instrum. Methods 211 (1983) 153.
- [16] E.R. Cohen and B.N. Taylor, CODATA Bull. 63 (1986), Rev. Mod. Phys. 59 (1987) 1121.
- [17] T.J. Quin, Metrologia 26 (1989) 69;B.N. Taylor and T.J. Witt, Metrologia 26 (1989) 47.
- [18] A. Rytz, At. Nucl. Data Tables 47 (1991) 205.
- [19] A.H. Wapstra, Nucl. Instrum. Methods A292 (1990) 671.
- [20] R.G. Helmer and C. van der Leun, Nucl. Instrum. Methods 422 (1999) 525.
- [21] Nuclear Data Sheets.
- [22] M.L. Roush, L.A. West and J.B. Marion, Nucl. Phys. A147 (1970) 235.

- [23] P.M. Endt, C.A. Alderliesten, F. Zijderhand, A.A. Wolters and A.G.M. van Hees, Nucl. Phys. A510 (1990) 209.
- [24] D.P. Stoker, P.H. Barker, H. Naylor, R.E. White and W.B. Wood, Nucl. Instrum. Methods 180 (1981) 515.
- [25] A.H. Wapstra, unpublished.
- [26] G. Audi, M. Epherre, C. Thibault, A.H. Wapstra and K. Bos, Nucl. Phys. A378 (1982) 443.
- [27] Systematic errors are those due to instrumental drifts or instrumental fluctuations, that are beyond control and are not accounted for in the error budget. They might show up in the calibration process, or when the measurement is repeated under different experimental conditions. The experimentalist adds then quadratically a systematic error to the statistical and the calibration ones, in such a way as to have consistency of his data. If not completely accounted for or not seen in that experiment, they can still be observed by the mass evaluators when considering the mass adjustment as a whole.
- [28] C.F. von Weizsäcker, Z. Phys. 96 (1935) 431;
 H.A. Bethe and R.F. Bacher, Rev. Mod. Phys. 8 (1936) 82.
- [29] C. Borcea and G. Audi, Rev. Roum. Phys. 38 (1993) 455;
 CSNSM Report 92-38, Orsay 1992: http://csnwww.in2p3.fr/AMDC/extrapolations/bernex.pdf
- [30] D. Lunney, J.M. Pearson and C. Thibault, Rev. Mod. Phys. 75 (2003) 1021.
- [31] R.G. Thomas, Phys. Rev. 80 (1950) 136, 88 (1952) 1109;
 J.B. Ehrman, Phys. Rev. 81 (1951) 412.
- [32] E. Comay, I. Kelson and A. Zidon, Phys. Lett. B210 (1988) 31.
- [33] M.C. Pyle, A. García, E. Tatar, J. Cox, B.K. Nayak, S. Triambak, B. Laughman, A. Komives, L.O. Lamm, J.E. Rolon, T. Finnessy, L.D. Knutson and P.A. Voytas, Phys. Rev. Lett. B88 (2002) 122501.
- [34] A.H. Wapstra, Proc. Conf. Nucl. Far From Stability/AMCO9, Bernkastel-Kues 1992, Inst. Phys. Conf. Series 132 (1993) 125.
- [35] M.S. Antony, J. Britz, J.B. Bueb and A. Pape, At. Nucl. Data Tables 33 (1985) 447;
 M.S. Antony, J. Britz and A. Pape, At. Nucl. Data Tables 34 (1985) 279;
 A. Pape and M.S. Antony, At. Nucl. Data Tables 39 (1988) 201;
 M.S. Antony, J. Britz and A. Pape, At. Nucl. Data Tables 40 (1988) 9.
- [36] L. Axelsson, J. Äystö, U.C. Bergmann, M.J.G. Borge, L.M. Fraile, H.O.U. Fynbo, A. Honkanen, P. Hornshøj, A. Jonkinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, B. Petersen, K. Riisager, M.H. Smedberg, O. Tengblad and ISOLDE, Nucl. Phys. A628 (1998) 345.

182

- [37] J. Jänecke, in D.H. Wilkinson, 'Isospin in Nuclear Physics', North Holland Publ. Cy. (1969) eq. 8.97; J. Jänecke, Nucl. Phys. 61 (1965) 326.
- [38] Y.V. Linnik, Method of Least Squares (Pergamon, New York, 1961); Méthode des Moindres Carrés (Dunod, Paris, 1963).
- [39] G. Audi, W.G. Davies and G.E. Lee-Whiting, Nucl. Instrum. Methods A249 (1986) 443.
- [40] Particle Data Group, 'Review of Particle Properties', Phys. Rev. D66 (2002) 10001.
- [41] M.U. Rajput and T.D. Mac Mahon, Nucl. Instrum. Methods A312 (1992) 289.
- [42] M.J. Woods and A.S. Munster, NPL Report RS(EXT)95 (1988).
- [43] A. Gillibert, L. Bianchi, A. Cunsolo, A. Foti, J. Gastebois, Ch. Grégoire, W. Mittig, A. Peghaire, Y. Schutz and C. Stéphan, Phys. Lett. B176 (1986) 317.
- [44] D.J. Vieira, J.M. Wouters, K. Vaziri, R.H. Krauss, Jr., H. Wollnik, G.W. Butler, F.K. Wohn and A.H. Wapstra, Phys. Rev. Lett. 57 (1986) 3253.
- [45] A.S. Jensen, P.G. Hansen and B. Jonson, Nucl. Phys. A431 (1984) 393.
- [46] W. Bambynek, H. Behrens, M.H. Chen, B. Crasemann, M.L. Fitzpatrick, K.W.D. Ledingham, H. Genz, M. Mutterrer and R.L. Intemann, Rev. Mod. Phys. 49 (1977) 77.
- [47] J.C. Hardy, L.C. Carraz, B. Jonson and P.G. Hansen, Phys. Lett. B71 (1977) 307.
- [48] Commission on Nomenclature of Inorganic Chemistry, Pure and Applied Chemistry 69 (1997) 2471.
- [49] S. Cwiok, S. Hofmann and W. Nazarewicz, Nucl. Phys. A573 (1994) 356;
 S. Cwiok, W. Nazarewicz and P.H. Heenen, Phys. Rev. Lett. 63 (1999) 1108.
- [50] P. Armbruster, Eur. Phys. J. A7 (2000) 23.

Table I. Input data compared with adjusted values

EXPLANATION OF TABLE

The ordering is in groups according to highest occurring relevant mass number.

Item	In mass-doublet equation: $H = {}^{1}H, N = {}^{14}N,$	In mass-triplet equation: Rb ^{<i>x</i>} , Rb ^{<i>y</i>} : different	In nuclear reaction: K^m , Cs^m , Cs^n :								
	$D = {}^{2}H, O = {}^{16}O, C = {}^{12}C.$	mixtures of isomers or contaminants.	upper isomers, see NUBASE.								
Input value Adjusted value	Mass doublet: value and its standard error in μ u. Triplet: value and its standard error in keV. Reaction: value and its standard error in keV. The value is the combination of mass excesses $\Delta(M - A)$ given under 'ite It is the author's experimental result and the author's stated uncertainty, ex in a few cases for which comments are given and for some α -reactions: if α -decay is not known to feed the ground-state, then the error is increased to keV. If more than one group report such energies, an average is calculated (mentioned in the Table) and the 50 keV is added to the averaged error in adjustment (see Section 6.3). Output of calculation. For secondary data ($Dg = 2-20$) the adjusted value the same as the input value and not given; also, the adjusted value is only g once for a group of results for the same reaction or doublet. Values and er were rounded off, but not to more than tens of keV.										
	# Value and error derived no from systematic trends.* No mass value has been of	ot from purely experimental calculated for one of the ma	data, but at least partly sses involved.								
v _i	Normalized deviation betwee ence divided by the input ence	een input and adjusted valu ror (see Section 5.2).	e, given as their differ-								
Dg	 Primary data (see Sec 2–13 Secondary data of diff B Well-documented dat disagree with other w Data from incomplete o Data included in or su D Data not checked by o by an estimated value F Study of paper raises error. R Item replaced for con same result. U Data with much less w 	tion 3). ferent degrees. a, or data from regular rev ell-documented values. e reports, at variance with ot operseded by later work of s ther ones and at variance wit (see Section 4.2). doubts about validity of day mputational reasons by an weight than that of a combin	riewed journals, which her data. ame group. h systematics, replaced ata within the reported equivalent one giving nation of other data.								
Sig	Significance (×100) of prim	nary data only (see Section 5	5.1); the significance of								
Main flux	Largest <i>influence</i> $(\times 100)$ at (see Section 5.1).	nd nucleus to which the day	ta contributes the most								

Lab	Identifies the group which measured the corresponding item. Example of Lab key: MA8 Penning Trap data of Mainz-Isolde group. The numbers refer to different experimental conditions.
F	Multiplying factor for mass spectrometric data (see Section 6.1). The standard error given in the 'Input value' column has been multiplied by this factor before being used in the least-squares adjustment.
Reference	Reference keys:
	(in order to reduce the width of the Table, the two digits for the centuries are omitted; at the end of this volume however, the full reference key-number is given: 2003Ba49 and not 03Ba49)
	03Ba49 Results derived from regular journal. These keys are copied from Nuclear Data Sheets. Where not yet available, the style 03Kr.1 has been used.
	94Jo.A Result from abstract, preprint, private communication, conference, thesis or annual report.
	NDS03a References to energies of excited states, where of some interest, are mentioned in remarks in the Qfile. Their reference-keys refer to Nuclear Data Sheets and are indicated NDS036 in which '03' indicates the year (here 2003) and '6' the month (Oct, Nov, Dec indicated a b c) of the NDS issue taken from.
	When the information has been obtained from the electronic version of NDS, the "Evaluated Nuclear Structure Data Files" (ENSDF), the reference-keys are indicated 'Ens03' for e.g. year 2003.
	When the excited energy is derived or estimated in NUBASE2003, it is indicated with 'Nubase'.
	AHW or GAu or CTh : comment written by one of the present authors.
	* A remark on the corresponding item is given below the block of data corresponding to the same (highest) <i>A</i> .
	Y recalibrations of 65Ry01 for charged particle recalibrations, and re- calculated triplets for isomeric mixtures.
	Z recalibrations of 91Ry01 for α particles, 90Wa22 for γ in (n,γ) and (p,γ) reactions and 91Wa.A for protons and γ in (p,γ) reactions (see Section 2).

Remarks. For data indicated with a star in the reference column, remarks have been added. They are collected in groups at the end of each block of data in which the highest occurring relevant mass number is the same. They give:

- i) Information explaining how the values in column 'Input value' have been derived for papers not mentioning e.g. the mass differences as derived from measured ratios of voltages or frequencies - a bad practice - or the reaction energies or values for transitions to excited states in the final nuclei (for which better values of the excitation energies are now known).
- ii) Reasons for changing values (e.g. recalibrations) or errors as given by the authors or for rejecting them (i.e. for labelling them B, C or F).
- iii) Value suggested by systematical trends and recommended in this evaluation as best estimate (see Section 4.2).
- iv) Separate values for capture ratios (see Section 6.4).

Item	Input value Adjusted		value v _i Dg			Sig	Main flux	Lab	F	Reference		
$\pi^+ \pi^+ (2eta^+)\pi^- *\pi^+$	Conventio	140081.18 1021.998 nally! This is N	0.35 0.001 I=139570.	140081.2 1021.9980 18(0.35) + m(e ⁻	0.4 0.0010 -)	0.0 0.0	1 1	100 100	$\begin{array}{ccc} 100 & \pi^+ \\ 100 & \pi^- \end{array}$			02PaDG * 88CoTa GAu **
H ₁₂ -C	ave.	93900.391 93900.3804 93900.3865 93900.3860 93900.386	0.012 0.0084 0.0017 0.0025 0.001	93900.3849	0.0012	$-0.5 \\ 0.5 \\ -1.0 \\ -0.4 \\ -1.0$	U U - 1	78	78 ¹ H	WA1 MI1 WA1 ST2	1.0 1.0 1.0 1.0	95Va38 95Di08 01Va33 02Be64 average
D ₆ -C H ₂ -D	ave.	84610.6616 84610.6710 84610.6656 84610.666 1548.302	0.0067 0.0054 0.0036 0.003 0.012	84610.6671 1548.2863	0.0021	$0.8 \\ -0.7 \\ 0.4 \\ 0.3 \\ -0.5$	- - 1 U	61	61 ² H	WA1 MI1 MI1 OH1	1.0 1.0 1.0 2.5	95Va38 95Di08 95Di08 average 93Go37
1 H(n, γ) 2 H		1548.2836 2224.561 2224.549 2224.560 2224.5756 2224.5727 2224.5660	0.0018 0.009 0.009 0.009 0.0022 0.0300 0.0004	2224.5660	0.0004	$ \begin{array}{r} 1.5 \\ 0.6 \\ 1.9 \\ 0.7 \\ -4.4 \\ -0.2 \\ 0.0 \\ \end{array} $	U U U F U 1	100	100 1 n	MI1 Utr NBS PTB NBS	1.0	95Di08 82Va13 Z 82Vy10 Z 83Ad05 Z 86Gr01 * 97Ro26 * 99Ke05 *
* ¹ H(n, γ) ² H * ¹ H(n, γ) ² H * ¹ H(n, γ) ² H * * ¹ H(n, γ) ² H	Original 2 Original en More prec correc All errors	2224.58 224.5890(0.002 rror 0.0005 incr isely, H+n-D= ted to 23881 in 2003Fi.A inc	0.05 2) revised eased for o 2388170.0 69.95(0.4 reased 20	by ref. calibration 7(0.42) nu 2) nu ppm for calibrat	ion	-0.3	U			Bdn		03Fi.A * 90Wa22 ** GAu ** 99Ke05 ** 99Mo39** GAu **
${}^{3}H_{4}$ -C		64197.0690	0.0062	64197.111	0.010	6.7	В			WA1	1.0	93Va04 *
³ He ₄ -C		64197.1136 64117.2399 64117.252 64117.294	0.0116 0.0039 0.030 0.030	64117.277	0.010	-0.3 9.4 0.8 -0.6	1 B - -	73	73 ³ H	ST2 WA1 WA1 ST2	1.0 1.0 1.0 1.0	02Be64 93Va04 93Va04 * 01Fr18
D ₂ -H ³ H H D- ³ He	ave.	64117.273 4329.257 5897.512 5897.495	0.021 0.003 0.005 0.006	4329.2460 5897.4908	0.0026 0.0026	$0.2 \\ -2.5 \\ -2.8 \\ -0.5$	1 U 0 1	24	24 ³ He	B08 B08 B09	1.5 1.5	average 75Sm02 75Sm02 81Sm02
³ H- ³ He		19.951 19.967 19.948	0.004 0.002 0.003	19.9585	0.0012	$0.8 \\ -1.7 \\ 1.4$	U B U	0	0 110	100	2.5 2.5 2.5	84Ni16 * 85Li02 85Ta.A *
³ H(β ⁻) ³ He	ave	18.600 18.592 18.591 18.593 18.591 18.597 18.5895 18.5895	$\begin{array}{c} 0.004 \\ 0.003 \\ 0.002 \\ 0.003 \\ 0.003 \\ 0.014 \\ 0.0025 \\ 0.001 \end{array}$	18.5912	0.0011	$\begin{array}{c} -2.2 \\ -0.3 \\ 0.1 \\ -0.6 \\ 0.1 \\ -0.4 \\ 0.7 \\ 0.1 \end{array}$	U - - - U - 1	95	68 ³ He			87B007 * 91Ka41 * 91R007 * 92H009 * 93We03 95Hi14 95St26 average
${}^{*3}H_4 - C$ ${}^{*3}He_4 - C$ ${}^{*3}He_4 - C$ ${}^{*3}H - ^{3}He$ ${}^{*3}H - ^{3}He$ ${}^{*3}H(\beta -)^{3}He$ ${}^{*3}H(\beta -)^{3}He$ ${}^{*3}H(\beta -)^{3}He$	Item prelin Original cl Original et Atom mas require Same auth Result 186 $E^-=18.57$: $E^-=18.57$: $E^-=18.57$:	ninarily disrega nanged after dis ror 0.011 replaces s difference=ior ed correction ca ors as ref. 04(6) is include 21(0.0030), SFS 05(0.0020), SFS 33(0.0002+syst)	rded cussion w ced n mass diff nnot be es d in 1987 and recoi and recoi s and recoi	ith authors erence 18.573 + timated Bo07 l as in ref. l as in ref. recoil as in ref.	- 0.011	0.1	1	,,				AHW ** AHW ** AHW ** 85Au07 ** 85Bo34 ** 88Ka32 ** 89St05 ** 88Ka32 **

Item	Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	. Lab	F	Reference
⁴ He ₃ -C	7809.7493 7809.7704 7809.7620 7809.7467	0.0030 0.0039 0.0003 0.0066	7809.76246	0.00019	$4.4 \\ -2.0 \\ 1.5 \\ 1.0 \\ 0.0$	o U o U	100	100 411	WA1 ST2 WA1 MZ2	1.0 1.0 1.0 2.5	95Va38 01Fr18 01Va.A 01Br27
$D_2 - {}^4He$	7809.76246 25600.331 25600.328	0.00019 0.005 0.005	25600.3015	0.0007	-2.4	1 0 B	100	100 ⁺ He	WA1 MZ1 MZ1	1.0 2.5 2.5	03Va.1 90Ge12 * 92Ke06 *
${}^{4}\mathrm{H}(\gamma,n){}^{3}\mathrm{H}$	23000 2700 2600 3500 2600 3000 3800 3100 2300 2670	500 600 200 500 400 200 300 300 300 300	2880	100	$\begin{array}{c} 2.1\\ 0.0\\ 0.3\\ 1.4\\ -1.2\\ 0.7\\ -0.6\\ -3.1\\ -0.7\\ 1.9\\ 0.7\end{array}$	U U U U U 2 U U 2 2 2 2 2 2 2			IVIZ I	2.5	69Mi10 * 69Mi10 * 81Se11 85Fr01 * 86Be35 * 86Mi14 * 87Go25 * 90Am04 * 91Bl05 * 95Al31 03Mo11
${}^{4}Li(p)^{3}He \\ {}^{*}D_{2}-{}^{4}He \\ {}^{*}^{4}H(\gamma,n)^{3}H \\ {}^{*}^{4$	$\begin{array}{c} 2070\\ 3300\\ \text{Error has to be confirm}\\ \text{Found in }^{7}\text{Li}(\pi^{-},t)^{4}\text{H}\\ \text{From }^{9}\text{Li}(^{3}\text{He},^{3}\text{He},^{3}\text{H}e,^{3}\text{H}e,^{3}\text{H}e,^{1}\text{G}0)^{4}\text{H}\\ \text{From }^{7}\text{Li}(n,\alpha)^{4}\text{H}\\ \text{Found in }^{9}\text{Be}(\pi^{-},t)^{4}\text{H}\\ \text{Found in }^{7}\text{Li}(\pi^{-},t)^{4}\text{H}\\ \text{Found in }^{2}\text{D}(t,n)^{4}\text{H}\end{array}$	310 300 ned (e) ⁴ H (H, same data i	3100 in ref.	210	-0.7	2					63M611 87Br.B 69M110 ** 85Fr01 ** 86Be35 ** 86M114 ** 91Go19 ** 91Bl05 **
${}^{5}H(\gamma,2n)^{3}H$ ${}^{4}He(n,\gamma)^{5}He$ ${}^{4}He(p,\gamma)^{5}Li$ ${}^{8}H(\gamma,2n)^{3}H$ ${}^{8}H(\gamma,2n)^{3}H$ ${}^{8}H(\gamma,2n)^{3}H$ ${}^{8}H(\gamma,2n)^{3}H$ ${}^{8}H(\gamma,2n)^{3}H$ ${}^{8}H(\gamma,2n)^{3}H$ ${}^{8}H(\gamma,2n)^{3}H$ ${}^{8}H(e(n,\gamma)^{5}He$ ${}^{4}He(p,\gamma)^{5}Li$	$\begin{array}{c} 7400\\ 5200\\ 1700\\ 1800\\ -890\\ -1965\\ From {}^9B(\pi^-, pt){}^5H, s\\ Probably higher state\\ From {}^7Li({}^6Li, {}^8B)\\ Probably higher state\\ From p({}^6He, {}^2He)\\ From t(t,p)\\ Average of many reac\\ Average of many reac\\ \end{array}$	700 400 300 50 50 aame data in re tions leading t	1800 ef. to ⁵ He to ⁵ Li	100	-8.0 -8.5 0.3	F F U 2 2 2					87G025 * 95A131 * 01K052 * 03G011 * 66L04 * 91G019 ** 01K052 ** 01K052 ** 01K052 ** 01K052 ** 03G011 ** AHW **
$\label{eq:constraint} \begin{array}{c} {}^{6}Li_{2}\!-\!C \\ {}^{6}H(\gamma,\!3n)^{3}H \\ {}^{6}Li(p,\alpha)^{3}He \\ {}^{6}Li(p,t)^{4}Li \\ {}^{6}Li(p,t)^{6}Be \\ {}^{6}Li(^{3}He,t)^{6}Be \\ {}^{6}Li(^{3}He,t)^{6}Be \\ {}^{*}e^{6}H(\gamma,\!3n)^{3}H \\ {}^{*}e^{6}H(\gamma,\!3n)^{3}H \end{array}$	30245.590 2700 2600 2800 4018.2 -18700 -5074 -4306 From ⁷ Li(⁷ Li, ⁸ B) ⁶ H From ⁹ Be(¹¹ B, ¹⁴ O) ⁶ H ⁶ H not observed in From ⁷ Li(⁷ Li, ⁸ B) ⁶ H	$\begin{array}{c} 0.032\\ 400\\ 500\\ 500\\ 1.1\\ 300\\ 13\\ 6\\ 1\\ n^{6}\text{Li}(\pi^{-},\pi^{+})\end{array}$	30245.59 2700 4019.633 -18900 -5071 -4307	0.03 260 0.015 210 5 5	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.2 \\ -0.2 \\ 1.3 \\ -0.7 \\ 0.3 \\ -0.1 \end{array}$	1 2 2 2 U R 2 2	100	100 ⁶ Li	1.0 MIT Brk CIT CIT	1.0	01He36 84A108 * 86Be35 * 92A1.A * 81Ro02 65Ce02 67Ho01 66Wh01 84A108 ** 86Be35 ** 87Se.A ** 92A1.A **

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
3 He(α,γ) 7 Be		1586.3	0.6	1586.10	0.11	-0.3	U					82Kr05
7 He(γ ,n) 6 He		430	20	435	17	0.2	3					02Me07
$^{7}\text{Li}(d, {}^{3}\text{He}){}^{6}\text{He}{}^{-19}\text{F}(){}^{18}\text{O}$		-1981.09	0.42	-1981.1	0.4	0.0	1	100	100 ⁶ He	MSU		78Ro01 *
$^{6}\text{Li}(\mathbf{n},\boldsymbol{\gamma})^{7}\text{Li}$		7249.98	0.09	7249.97	0.08	-0.1	_			Ptn		85Ko47 Z
		7249.94	0.15			0.2	_			Bdn		03Fi.A
	ave.	7249.97	0.08			0.0	1	100	100 ⁷ Li			average
⁷ Li(t, ³ He) ⁷ He		-11184	30	-11174	17	0.3	R			LAI		69St02
$^{7}\text{Li}(p,n)^{7}\text{Be}$		-1644.30	0.10	-1644.24	0.07	0.6	_			Mar		70Ro07 *
47.7		-1644.18	0.10			-0.6	_			Auc		85Wh03 *
	ave.	-1644.24	0.07			0.0	1	100	100 ⁷ Be			average
$^{7}\text{Li}(\pi^{+},\pi^{-})^{7}\text{B}$		-11870	100	-11940	70	-0.7	R					81Se.A
⁷ Li(d, ³ He) ⁶ He- ¹⁹ F() ¹⁸ O	Q-Q=0.	98(0.41) to 19	982.07(0.	09) level in 18	0							AHW **
⁷ Li(p,n) ⁷ Be	T=1880.0	54(0.09,Z); er	ror in Q i	ncreased								AHW **
^{k⁷} Li(p,n) ⁷ Be	T=1880.4	43(0.02,Z); er	ror in Q i	ncreased								AHW **
⁴ He(⁶⁴ Ni ⁶⁰ Ni) ⁸ He		_31818	15	-31800	7	12	_			Pri		75Ko18
110(111, 111)110		-31796	8	51000	'	-0.5	_			Tex		77Tr07
	91/6	_31801	7			-0.5	1	Q/	94 ⁸ Ho	нел		average
$8 Be(\alpha)^4 He$	ave.	-31801	0.05	01.84	0.04	0.1	1	94	94 He	Zur		68Be02
De(u) IIe		91.88	0.05	91.04	0.04	-0.8	_			Zui		03DC02 4
	91/0	91.80	0.05			0.0	1	100	100 ⁸ Be			92 Wu09 4
61 ;(³ He n) ⁸ B	ave.	1074.8	1.0	1074.8	1.0	0.0	1	100	100 BC	Nv1		58Du78 V
7 Li(n 20^{8} Li		2032 78	0.15	2032.61	0.05	1.1	1	100	100 D	1991		74In A
$LI(II, \gamma)$ LI		2032.78	0.15	2032.01	0.05	-1.1	_			OPn		011 v01 7
		2032.77	0.16			-0.9	_			Bdn		03Ei 4
	ave	2032.57	0.00			0.7	1	100	100 ⁸ 1 i	Duii		average
8 Be $(\alpha)^{4}$ He	For atom	ic binding en	ergy corr	ection see ref		0.0		100	100 11			67St30 **
$k^7 \text{Li}(n,\gamma)^8 \text{Li}$	PrvCom	to ref.	eigy com									74Aj01 **
9 Po(p α) 61 ;		2125 4	1 9	2124.0	0.4	0.3	п			NDm		670401
$b = b = (p, \alpha)^{9} D a$		2125.4	1.0	2124.9	0.4	-0.5	1	11	11 9Da	NDm		65D=28
$^{\circ}LI(\alpha,p)^{\circ}De$		-2123.0	1.2	-2124.9	1.0	0.0	1	11	11 De	MELL		03DI20 75Vo19
$^{7}LI(t,p)^{7}LI$		-2385.7	5.0	-2385.5	1.9	0.1	1	42	42 ° L1	MSU		/5Ka18
Be("He,n)'C		-6287	5	-6280.6	2.1	1.5	3			CIT		0/Ba.A Z
911-(-62/5.2	3.5	1270	20	-1.5	3	02	01.911-	D		/1M001 Z
9 He(γ ,n) 8 He		1270	30	1270	29	0.0	1	92	91 ⁻ He	Ber		99B020
$^{\circ}$ Be(γ ,n) $^{\circ}$ Be		-1005	1	-1005.5	0.4	-0.3	-			W1S		50W056 Y
Be(p,d) Be		557.5	1.	559.2	0.4	1./				W1S		51W120 Y
		550.0	2			-0.4	U			BIr		53C002 I
		550.6	1.1			0.2	_			NDm		670d01 7
9Do((11))8Do		1665 4	0.0	1665 2	0.4	-0.0	1	00	00 9Da	NDIII		070d01 Z
${}^{9}\text{De}(\gamma, \Pi)$ De	ave.	-1003.4	100	-1003.5	20	0.2	1	00	00 De			average 875-05
${}^{9}\mathbf{P}_{0}({}^{14}\mathbf{C} {}^{14}\mathbf{O}){}^{9}\mathbf{H}_{0}$		-30472	100	-30014	29	-1.4	1	0	0.940	Por		05Po P
${}^{9}P_{0}(n n){}^{9}P_{0}$		-34380	100	-34379	29	0.0	2	,	9 He	Wie		50P;50 7
be(p,ii) b		-1830.4	1.0				Z			W1S		30KI39 Z
¹⁰ B ³⁷ Cl-C ³⁵ Cl		9987.21	0.56	9986.9	0.4	-0.2	U			H38	2.5	84E105
10B(3He,6He)7B		-18550	100	-18480	70	0.7	2			Brk		67Mc14
10 He(γ ,2n) ⁸ He		1200	300	1070	70	-0.4	U					94Ko16
$^{10}\text{Li}(\gamma,n)^{9}\text{Li}$		150	150	25	15	-0.8	U					90Am05 *
		25	15				2					95Zi03 *
${}^{10}\text{Li}^m(\gamma,n)^9\text{Li}$		240	60	220	40	-0.3	2					97Bo10 *
		210	50			0.2	2					97Zi04 *
⁹ Be(⁹ Be, ⁸ B) ¹⁰ Li ⁿ		-33770	260	-33750	40	0.1	U			Brk		75Wi26 *
⁹ Be(¹³ C, ¹² N) ¹⁰ Li ⁿ		-36370	50	-36390	40	-0.5	2			Ber		93Bo03 *

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
${}^{10}\text{Be}(d,{}^{3}\text{He}){}^{9}\text{Li}$ ${}^{9}\text{Be}(n,\gamma){}^{10}\text{Be}$		-14142.8 6812.33 6812.10	2.5 0.06 0.14	-14143.1 6812.29	1.9 0.06	$-0.1 \\ -0.6 \\ 1.4$	1 	59	58 ⁹ Li	MSU MMn Bdn		75Ka18 86Ke14 Z 03Fi.A
¹⁰ Be(¹⁴ C, ¹⁴ O) ¹⁰ He ¹⁰ B(p,n) ¹⁰ C	ave.	6812.29 -41190 -4430.17	0.06 70 0.09	-4430.30	0.12	0.0 -1.5	1 2 0	100	99 ¹⁰ Be	Ber Auc		average 94Os04 89Ba28 Z
${}^{10}B({}^{14}N,{}^{14}B){}^{10}N$ ${*}^{10}Li(\gamma,n){}^{9}Li$	From ¹¹ B	-4430.30 -47550 $(\pi^{-},p)^{10}$ Li	400				2			Auc		98Ba85 02Le16 GAu **
* ¹⁰ Li(γ ,n) ⁹ Li * * ¹⁰ Li ^m (γ ,n) ⁹ Li	Resonanc could From ¹⁰ B	e less than 50 also be final s e(¹² C, ¹² N) ¹⁰ L	above the state interaction (1^+ lev)	one neutron t action; then ¹⁰ wel)	hreshold Li would	l, but l be 200	high	er				95Z103 ** 97Bo10 ** GAu **
* ${}^{10}\text{Li}^{m}(\gamma, n){}^{9}\text{Li}$ * ${}^{9}\text{Be}({}^{9}\text{Be}, {}^{8}\text{B}){}^{10}\text{Li}^{n}$ *	Theoretics Q=-34060 Revis	al work: 1 ⁺ le 0(250) to 2 ⁺ le ed with Breit-	evel above evel 290(8 -Wigner l	e 1- gs 80) above 1 ⁺ 1 line shape. Pro	level obably 2	+ level						02Ga12 ** 93Bo03 ** 97Bo10 **
* ⁵ Be(¹³ C, ¹² N) ¹⁰ Li ⁿ	Revised w	vith Breit–Wi	gner line	shape (probab	ly 2 ⁺ lev	vel)						97Bo10 **
¹¹ Li-C _{.917}		43780 43805	130 28	43798	21	$0.1 \\ -0.3$	U 1	55	55 ¹¹ Li	TO2 P40	1.5 1.0	88Wo09 03Ba.A
${}^{9}\text{Li} - {}^{11}\text{Li}_{.273} {}^{8}\text{Li}_{.750}$		-1923	31	-1894	6	1.0	U			P13	1.0	75Th08
$^{11}B(d \alpha)^{9}Be$		-1164 8029	15	-1166 8031.1	6 0.6	-0.1	к U			Ald Bir		62Pu01 54E110 Y
D(d,d) De		8024 8029.7	7 2.8	0051.1	0.0	1.0 0.5	U U			MIT NDm		64Sp12 67Od01
${}^{9}\text{Be}({}^{3}\text{He},p){}^{11}\text{B}$		10322.1	2.3	10322.0	0.6	-0.1	U 2			NDm CIT		67Od01 70Go11
${}^{11}B({}^{7}Li {}^{8}B){}^{10}Li$		-32431	80	-32396	15	0.1	Ū			MSU		94Yo01 *
${}^{11}B({}^{7}Li,{}^{8}B){}^{10}Li^{n}$		-32908	62	-32870	40	0.6	R			MSU		94Yo01
${}^{10}B(n,\gamma){}^{11}B$		11454.1 11454.15	0.2 0.27	11454.12	0.16	$0.1 \\ -0.1$	_			Ptn Bdn		86Ko19 Z 03Fi.A
11 N(p) 10 C	ave.	11454.12	0.16	1320	50	0.0	1	100	100 ¹¹ B	MSU		average
n(p) e		1300	40	1520	50	0.4	0			Lis		96Ax01
		1450	400			-0.3	U			MSU		98Az01 *
		1630	50			-6.3	В			Spe		000101 *
		1350	120			-0.3	3			Lis		00Ma62 *
${}^{11}B(\pi^{-}\pi^{+}){}^{11}Ii$		_33120	50	_33151	19	-0.6	5			115		03Gu00 91Ko B
${}^{11}B({}^{14}C,{}^{14}O){}^{11}Li$		-37120	35	-37117	19	0.1	_			MSU		93Yo07
${}^{11}\mathrm{B}(\pi^-,\pi^+)^{11}\mathrm{Li}$	ave.	-33143	29	-33151	19	-0.3	1	45	45 ¹¹ Li			average
$^{11}C(\beta^+)^{11}B$		1982.8	2.6	1982.4	0.9	-0.1	-					75Be28
${}^{11}B(p,n){}^{11}C$		-2759.7	3.	-2764.8	0.9	-1.7	U			Wis		50Ri59 Z
$^{11}\mathbf{P}(^{3}\mathbf{H}_{2},t)^{11}\mathbf{C}$		-2763.2	1.4	2001.0	0.0	-1.1	-			R1C Str		61Bel3 Z
$^{11}C(\beta^+)^{11}B$	ave	1982.4	0.9	-2001.0 1982.4	0.9	0.9	1	100	100 ⁻¹¹ C	30		average
$*^{11}B(^{7}Li,^{8}B)^{10}Li$	Original (>-32471) re-	evaluated	190211	017	010	•	100	100 0			GAu **
*	Existe	ence of this lev	vel not co	mpletely certa	in							94Yo01 **
$*^{11}N(p)^{10}C$	From ¹⁴ N	(³ He, ⁶ He) ¹¹ N	Q=-2501	10(100) to 250)(150) le	vel						90Aj01 **
* ¹¹ N(p) ¹⁰ C	From ⁹ Be	$(^{12}N, ^{10}Be)^{11}N$	1									98Az01 **
$*^{11}N(p)^{10}C$ $*^{11}N(p)^{10}C$	From ¹⁰ B From scat	$({}^{17}N, {}^{13}B){}^{11}N$ ttering ${}^{10}C$ on	H. precice	ely, 1270(+180	0,-50)							000101 ** 00Ma62**
$^{12}C(\alpha, ^{8}He)^{8}C$		-64278	26	-64267	24	0.4	2			Tex		76Tr01
¹² C(³ He, ⁶ He) ⁹ C		-31578	8	-31574.4	2.3	0.5	Ū			MSU		71Tr03
/		-31575.6	3.2			0.4	R			MSU		79Ka.A

Item	Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$ \begin{array}{c} {}^{10}\text{Be}(t,p){}^{12}\text{Be} \\ {}^{10}\text{B}(\alpha,d){}^{12}\text{C} \\ {}^{10}\text{B}(^3\text{He},p){}^{12}\text{C} \\ {}^{10}\text{B}(^3\text{He},p){}^{12}\text{C} \\ {}^{12}\text{O}(2p){}^{10}\text{C} \\ {}^{12}\text{O}(2p){}^{10}\text{C} \\ {}^{12}\text{C}(\pi^+,\pi^-){}^{12}\text{O} \\ *{}^{10}\text{B}(^3\text{He},p){}^{12}\text{C} \\ \end{array} $	-4809 1340.3 19692.86 ave. 1339.9 1770 -31034 Original Q=15305.45(0 to 4438.91(0.31) le	15 0.8 0.44 0.4 20 48 0.3) revised vel	1339.9 19693.0 1339.9 1771 -31026 by authors to 15	0.4 0.4 18 18 5253.95(31)	-0.5 0.3 0.0 0.1 0.2	2 - 1 3 R	100	100 ¹⁰ B	Brk Wis Mun		78A129 56Do41 Z 83Ch08 * average 95Kr03 80Bu15 83Vo.A ** 90Aj01 **
$C H^{-13}C C D^{-13}C H$ $^{13}C^{-}C_{1,083}$ $^{11}B(t,p)^{13}B$ $^{13}Be(\gamma,n)^{12}Be$ $^{12}C(n,\gamma)^{13}C$ $^{12}C(p,\gamma)^{13}N$ $^{13}C(^{14}C,^{14}O)^{13}Be^{q}$	4470.185 2921.923 2921.9086 2921.9074 3354.8404 -233.4 100 4946.31 1943.24 1944.1 ave. 1943.49 -37020	$\begin{array}{c} 0.008\\ 0.008\\ 0.0012\\ 0.0015\\ 0.0041\\ 1.0\\ 70\\ 0.10\\ 0.32\\ 0.5\\ 0.27\\ 50\\ \end{array}$	4470.1943 2921.9080 3354.8378 4946.3058 1943.49	0.0010 0.0009 0.0010 0.0009 0.27	$\begin{array}{c} 0.8 \\ -1.3 \\ -0.5 \\ 0.4 \\ -0.6 \\ \end{array}$ $\begin{array}{c} 0.0 \\ 0.8 \\ -1.2 \\ 0.0 \end{array}$	U U 1 1 2 3 U 	58 37 6	58 ¹³ C 37 ¹³ C 6 ¹³ C 100 ¹³ N	B08 B08 MI1 MI1 WA1 Str Bdn Ber	1.5 1.5 1.0 1.0 1.0	75Sm02 75Sm02 95Di08 95Di08 95Va38 83An15 01Th01 03Fi.A 77Fr20 Z 77He26 Z average 92Os04
$\label{eq:constraints} \begin{split} ^{14}\text{Be}-\text{C}_{1.167} & \text{C} & \text{D}_2-^{14}\text{C} & \text{H}_2 \\ \text{C} & \text{H}_2-\text{N} \\ ^{14}\text{N}-\text{C}_{1.167} & \text{I}_1^{14}\text{C} & \text{H}_2-\text{N} \\ \text{I}_4 & \text{N}(\textbf{p},t)^{11}\text{B} & \text{I}_1^{14}\text{C} \\ ^{14}\text{C}(\textbf{d}, \boldsymbol{\alpha})^{12}\text{B} \\ ^{14}\text{C}(\textbf{d}, \boldsymbol{\alpha})^{12}\text{B} & \text{I}_4^{14}\text{C}(^{11}\text{B}, 1^2\text{N})^{13}\text{Be}^p \\ ^{14}\text{C}(^{14}\text{C}, 1^{14}\text{O})^{14}\text{B} \\ ^{14}\text{C}(^{14}\text{C}, 1^{14}\text{O})^{14}\text{B} \\ ^{14}\text{C}(^{14}\text{C}, 1^{14}\text{O})^{14}\text{B} \\ ^{14}\text{C}(^{14}\text{C}, 1^{14}\text{N})^{14}\text{B} \\ ^{14}\text{C}(\boldsymbol{\beta}^{-})^{14}\text{N} \\ ^{14}\text{N}(\textbf{p}, \textbf{n})^{14}\text{O} \\ \end{split}$	$\begin{array}{c} 42660\\ 9311.498\\ 12576.0598\\ 3074.0056\\ 1716.269\\ -42214\\ 361.8\\ -22135.5\\ -39600\\ 8176.61\\ -38100\\ -43440\\ -21499\\ -20494\\ ave21506\\ 155.74\\ 155.95\\ -5925.41\\ -5925.41\\ -5925.41\\ -5925.41\\ -5925.41\\ -5926.68\\ Original error 160 incrose B: find 17 keV neutring Withdrawn by authors \\ \end{array}$	150 0.006 0.0008 0.0018 0.003 50 1.4 1.0 90 0.24 170 60 30 21 0.08 0.22 0.08 0.22 0.08 0.22 0.08 0.21 0.14 eased with 6 5. See also r	42890 9311.503 12576.0594 3074.0048 1716.270 -42254 -22135.5 8176.435 -37960 -21506 -20487 -21506 156.476 -5926.29 0 calibration ur	140 0.004 0.0006 0.004 23 1.0 0.004 130 21 21 21 21 0.004 0.11 acertainty	$\begin{array}{c} 1.0\\ 0.5\\ -0.5\\ -0.5\\ 0.3\\ -0.8\\ 0.0\\ -0.7\\ 0.8\\ -0.2\\ 0.0\\ 9.2\\ 2.4\\ -10.9\\ -8.0\\ 2.3\\ \end{array}$	2 1 1 1 1 2 U R 2 - - 1 B U F F 1	20 59 12 80 100 100	20 ¹⁴ C 56 ¹⁴ N 12 ¹⁴ N 80 ¹⁴ C 100 ¹² N 100 ¹⁴ B 42 ¹⁴ O	TO2 B08 MI1 B08 MSU Wis MSU Dbn Bdn Bdn Ber ChR Ors Auc Auc	1.5 1.5 1.0 1.0 1.5	88Wo09 75Sm02 95Di08 95Va38 75Sm02 76Ro04 56Do41 Z 75No.A 98Be28 03Fi.A 84Gi09 * 95Bo10 73Ba34 81Na.A average 91Su09 * 95Wi20 81Wh03 98Ba83 * 95Wi20 81Wh03 98Ba83 * 91No07 ** 03To03 **
$ \begin{array}{c} C \ D \ H^{-15} N \\ C \ H_3^{-15} N \\ {}^{15} F^{-} C_{1,25} \\ {}^{14} N \ D^{-15} N \ H \\ {}^{14} C(d,p)^{15} C \\ {}^{14} N(n,\gamma)^{15} N \end{array} $	21817.9119 23366.1979 17477 9241.780 -1006.5 10833.314 10833.2339 10833.32	0.0008 0.0017 86 0.008 0.8 0.012 0.0300 0.22	21817.9117 23366.1980 18010 9241.8523 10833.2961	0.0007 0.0007 140 0.0009 0.0009	-0.3 0.1 6.2 6.0 -1.5 2.1 -0.1	1 C F 2 U U U	70 19	67 ¹⁵ N 18 ¹⁵ N	MI1 MI1 1.0 B08 Wis PTB Bdn	1.0 1.0 1.5	95Di08 95Di08 01Ze.A 75Sm02 56Do41 Y 97Ju02 97Ro26 * 03Fi.A

Item		Input va	lue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{14}N(p,\gamma)^{15}O$		7297.1	0.9	7296.8	0.5	-0.4	R			CIT		72Ne05
$^{15}N(p,n)^{15}O$		-3535.1	1.0	-3536.5	0.5	-1.4	-			CIT		72Je02 Z
	ave	-3536.5	0.8			1.4	1	100	100 150			725IIU6 Z
$*^{14}N(n,\gamma)^{15}N$	Original	error 0.0005 ind	creased for	calibration		0.0	1	100	100 0			GAu **
$C_4 - O_2$		15256.121	0.009	15256.1413	0.0005	2.3	U			WA1	1.0	95Va38
-4 -3		15256.1425 15256.1415	0.0008 0.0005			-1.5 -0.4	о 1	97	97 ¹⁶ O	WA1 WA1	1.0 1.0	01Va33 03Va.A
$CH_4 - O$		36385.5062 36385.5073 36385.5060	0.0013 0.0019 0.0022	36385.5087	0.0004	1.9 0.8 1.2			10 111	MI1 MI1 MI1	1.0 1.0 1.0	95Di08 95Di08 95Di08
140 11 0	ave.	36385.506	0.001	22077 422	0.004	2.4	1	20	18 'H	D 00	15	average
$H_2 = 0$		239/7.413	0.014	23977.433	0.004	1.0	1	22	22 14N	B08 MI1	1.5	/55m02
$^{16}\Omega(\alpha ^{8}\text{He})^{12}\Omega$		-66020	120	-65958	20	-0.4	II.	32	32 IN	Brk	1.0	78Ke06
${}^{16}O({}^{3}He, {}^{6}He){}^{13}O$		-30516	14	-30513	10	0.2	2			Brk		70Me11 *
		-30511	13			-0.2	2			MSU		71Tr03 *
14C(14C,12N)16B		-48380	60				2			Ber		95Bo10
¹⁴ C(t,p) ¹⁶ C		-3015 -3013	8 4	-3013	4	$0.2 \\ -0.1$	2 2			MSU LAl		77Fo09 78Se04
14C(3He,p)16N		4983	4	4978.5	2.6	-1.1	R			BNL		66Ga08
¹⁴ N(³ He,n) ¹⁶ F		-970	15	-957	8	0.9	R			Har		68Ad03
¹⁵ N(d,p) ¹⁶ N		286	12	264.5	2.6	-1.8	U			CIT		55Pa50 Y
		269	10			-0.4	U			Pit		57Wa01 Y
		267	8			-0.3	U			MII		64Sp12
¹⁶ O(³ He t) ¹⁶ F		-15430	10	-15436	8	-0.5	2			KVI		
$^{16}O(\pi^+ \pi^-)^{16}Ne$		-27763	45	-27711	20	1.1	2			IX VI		80Bu15
$*^{16}O(^{3}He.^{6}He)^{13}O$	M increa	sed by 7 for mo	re recent ca	alibrator M(⁹ C)=	=21913(2)		-					AHW **
* ¹⁶ O(³ He, ⁶ He) ¹³ O	Recalibra	ated using their	¹² C(³ He, ⁶ H	He) result								AHW **
¹⁷ B-C _{1.417}		46830	180	46990	180	0.6	2			TO2	1.5	88Wo09
		47127	250			-0.5	2			GA3	1.0	910r01
$^{17}O(n,\alpha)^{14}C$		1817.2	3.5	1817.70	0.11	0.1	U					01Wa50
$^{10}O(n,\gamma)^{17}O$		4143.24	0.23	4143.13	0.11	-0.5	-			D 1		77Mc05 Z
160(1-)170		4143.06	0.13	1010 50	0.11	0.5	-			Bdn		03F1.A
$^{16}O(a,p)^{17}O$	01/0	1918.74	0.5	1918.50	0.11	-0.4	1	100	100 170	ĸez		90P105 *
$^{16}O(n,\gamma)^{17}E$	ave.	600.35	0.11	600.27	0.11	0.1	1	100	100 0	CIT		75Po05
$^{16}O(d n)^{17}F$		-1625.0	0.20	-162430	0.25	0.5	_			Nvl		60Bo21 Z
${}^{16}O(p,\gamma)^{17}F$	ave.	600.27	0.25	600.27	0.25	0.0	1	100	100 ⁻¹⁷ F	1111		average
$*^{16}O(d,p)^{17}O$	Estimate	d systematical e	rror 0.5 add	led to statistical	error 0.062	2						AHW **
¹⁸ Na-C ₁₅		25969	54				2			1.0	1.0	01Ze.A
18 Ne $-^{22}$ Ne $_{.818}$		12755.19	0.30				2			MA8	1.0	03B1.A
¹⁸ O(⁴⁸ Ca, ⁵¹ V) ¹⁵ B		-21760	50	-21767	23	-0.1	2			Hei		78Bh02
10 16		-21768	25			0.1	2			Can		83Ho08
¹⁰ O(d,α) ¹⁰ N		4235	7	4245.6	2.7	1.5	R			CIT		55Pa50 Z
160/311		4244	4	2104.27	0.20	0.4	R			MIT		6/Sp09 Z
¹¹ O(² He,n) ¹⁰ Ne		-3205	15	-3194.27	0.28	0.8	U			NVI A14		61To02 Y
		-3196 -3194.0	15			_0.0	U			Alu		94Ma14
¹⁸ O(⁴⁸ Ca. ⁴⁹ Ti) ¹⁷ C		-17465	35	-17476	18	-0.3	2			Hei		77No08
,		-17479	20		-	0.2	2			Can		82Fi10

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{18}O(t \alpha)^{17}N$		3872	15				2			L.A1		60Ia13
$^{17}O(n \gamma)^{18}O$		8043 5	10	8044.0	0.6	0.5	1	38	38 ¹⁸ O	Bdn		03Fi A
$^{17}O(n \gamma)^{18}F$		5606.2	0.6	5606 5	0.5	0.5	1	76	76 ⁻¹⁸ E	CIT		75Ro05 Z
$^{18}O(^{48}C_{2} + ^{48}T_{1})^{18}C$		-21434	30	5000.5	0.5	0.4	2	70	/0 1	Can		82Fi10
$^{18}O(^{7}Li^{7}Be)^{18}N$		-14761	20	-14758	19	0.2	2			Can		83Pu01
${}^{18}O({}^{14}C {}^{14}N){}^{18}N$		-13720	50	-13740	19	-0.4	2			Ors		80Na14
${}^{18}\mathrm{F}(\beta^+){}^{18}\mathrm{O}$		1657	2	1655 2	0.6	-0.9	_			015		64Ho28
${}^{18}O(n n)^{18}F$		-2436.97	073	-2437.6	0.6	-0.8	_			Nv1		64Bo13 Z
${}^{18}\mathrm{F}(\beta^+){}^{18}\mathrm{O}$	ave.	1654.9	0.7	1655.2	0.6	0.5	1	69	45 ¹⁸ O			average
$^{18}\text{Ne}(\beta^+)^{18}\text{F}$		4438	9	4443.5	0.6	0.6	U					63Fr10
¹⁹ C-C _{1.583}		35180 35506	130 253	34810	110	$-1.9 \\ -2.8$	B B			TO2 GA3	1.5 1.0	88Wo09 91Or01
C D4-H 19F		50178.88	0.05	50178.85	0.07	-0.3	1	99	99 ¹⁹ F	B08	1.5	75Sm02
$^{19}Mg - C_{1.583}$		35470	270				2			1.0	1.0	01Ze.A
19 Ne $-^{22}$ Ne $_{864}$		9323.95	0.36	9323.5	0.3	-1.2	1	73	73 ¹⁹ Ne	MA8	1.0	03B1.A
$^{17}O(t,p)^{19}O^{-1004}$		3524	7	3517.2	2.8	-1.0	R			Man		65Mo19
${}^{18}C(n,\gamma){}^{19}C$		530	120	580	90	0.4	3					99Na27 *
		650	150			-0.5	3					01Ma08 *
18O(18O,17F)19N		-19374	50	-19377	16	-0.1	2			Ors		81Na.A
		-19334	35			-1.2	2			Can		89Ca25
¹⁸ O(⁴⁸ Ca, ⁴⁷ Sc) ¹⁹ N		-16540	20	-16526	17	0.7	2			Can		83Ho08
¹⁸ O(d,p) ¹⁹ O		1727	8	1730.4	2.8	0.4	2			Nob		54Mi89 Y
		1732	8			-0.2	2			CIT		54Th30
		1731	5			-0.1	2			Nob		57Ah19 Y
		1727	5			0.7	2			MIT		64Sp12 Z
190(0-)190		1734	10	4022.2	2.0	-0.4	U			Man		65Mo16
$^{19}O(\beta)^{19}F$		4800	12	4822.3	2.8	1.9	U			D .		59AI06
$^{17}F(p,n)^{17}Ne$		-4019.6	1.4	-4021.17	0.29	-1.1	U			Ric		61Bel3 Z
		-4021.1	1.0			-0.1	_			Zur		600v01 Z
	91/0	-4019.0	0.7			-2.3	1	28	27 ¹⁹ No			090v01 Z
$*^{18}C(n x)^{19}C$	From Co	-4020.1	tion cross s	ections and and	ular distrib	-2.0	1	20	27 100			99Na27 **
$*^{18}C(n,\gamma)^{19}C$	From me	omentum distr.	following 1	-n removal	ular ulsulo	ution						01Ma08**
²⁰ C-Ci		40360	240	40320	260	-0.1	2			TO2	1.5	88Wo09
1.00/		40165	491			0.3	2			GA3	1.0	91Or01
		40420	550			-0.2	2			GA5	1.0	99Sa.A
²⁰ N-C _{1.667}		23210	150	23370	60	1.0	2			GA1	1.0	87Gi05
1.007		23380	130			-0.1	2			TO2	1.5	88Wo09
		23397	69			-0.5	2			GA3	1.0	91Or01
C D ₄ - ²⁰ Ne		63966.9329	0.0026	63966.9360	0.0017	1.2	1	44	34 ²⁰ Ne	MI1	1.0	95Di08
20 Ne $-C_{1.667}$		-7559.814	0.014	-7559.8246	0.0019	-0.8	U			ST2	1.0	02Bf02
$O D_2 - {}^{20}Ne$		30677.497	0.067	30677.9998	0.0017	3.0	в			OH1	2.5	93Go38
²⁰ Ne- ²² Ne _{.909}		270.94	0.33	271.107	0.017	0.5	U			MA8	1.0	03B1.A
²⁰ Ne(³ He, ⁸ Li) ¹⁵ F		-29960	200	-29830	130	0.6	2			MSU Brk		78Be26
20 Ne(α ⁸ He) ¹⁶ Ne		-29730 -60150	80	-60212	22	-0.0	и Ш			Brk		78Ke06
ne(a, ne) ne		-60197	23	00212	22	-0.6	R			Tex		83Wo01
²⁰ Ne(³ He, ⁶ He) ¹⁷ Ne		-26188	50	-26167	27	0.4	2			Brk		70Me11 *
		-26158	32			-0.3	2					98Gu10
¹⁸ O(⁴⁸ Ca, ⁴⁶ Sc) ²⁰ N		-25873	60	-25000	60	14.5	В			Can		890r03 *
¹⁸ O(t,p) ²⁰ O		3082.4	1.9	3081.9	0.9	-0.3	2			Str		82An12
18 2 20		3081.7	1.0			0.2	2		10	Str		85An17
¹⁸ O(³ He,p) ²⁰ F		6875.2	1.5	6878.1	0.6	2.0	1	17	17 ¹⁸ O	NDm		70Ro06
$^{19}F(n,\gamma)^{20}F$		6601.29	0.14	6601.335	0.030	0.3	-			ILn		83Hu12 Z
		6601.32	0.05			0.3	-			MMn		8/Ke09 Z
		6601.35	0.04			-0.4	-			UKn Data		90Ka04
		6601 226	0.15			0.0	1	100	100 ²⁰ F	вdn		USFI.A
	ave.	0001.336	0.030			0.0	1	100	100 ²⁰ F			average

Item	Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
²⁰ Ne(p,n) ²⁰ Na * ²⁰ Ne(³ He, ⁶ He) ¹⁷ Ne * ¹⁸ O(⁴⁸ Ca, ⁴⁶ Sc) ²⁰ N	-14672.1 Orig. M=16479(50) bu Probably to excited lev	7. at revised ca els in ²⁰ N a	librator M(⁹ C)= nd ⁴⁶ Sc	=28910.2(2	.1)	2					71Wi07 Z AHW ** GAu **
$^{21}N-C_{1.75}$ $^{21}Ne^{-22}Ne_{.955}$ $^{18}O(^{18}O,^{15}O)^{21}O$ $^{18}O(^{64}Ni,^{61}Ni)^{21}O$ $^{19}F(t,p)^{21}F$ $^{20}Ne(n,\gamma)^{21}Ne$ $^{20}Ne(p,\gamma)^{21}Na$	$\begin{array}{c} 27060\\ 26930\\ 27162\\ 2073.85\\ -12499\\ -11713\\ 6221.0\\ 6761.16\\ 6761.19\\ 2431.2 \end{array}$	190 210 131 0.39 20 15 1.8 0.04 0.14 0.7	27110 2073.90 -12482 -11723 6761.16	100 0.05 12 12 0.04	$\begin{array}{c} 0.3 \\ 0.6 \\ -0.4 \\ 0.1 \\ 0.9 \\ -0.7 \\ 0.1 \\ -0.2 \end{array}$	2 2 2 U 2 2 2 2 2 2 2 2			GA1 TO2 GA3 MA8 Can Dar Str MMn Bdn	1.0 1.5 1.0 1.0	87Gi05 88Wo09 91Or01 03B1.A 89Ca25 85Wo01 84An17 86Pr05 Z 03Fi.A 69B103 Z
${}^{22}N-C_{1.833}$ ${}^{22}O-C_{1.833}$ ${}^{22}Ne-C_{1.833}$ ${}^{22}Ne-2^{0}Ne^{-1}R_{233}$ ${}^{22}Ne^{-2}Ne^{-1}R_{233}$ ${}^{18}O^{(18}O^{(14}O)^{22}O^{-1}Ne^{(17)}P_{22}Ne^{-2}Ne^{-2}P_{22}Ne^{(17)}R_{22}Ne^{-2}P_{22}Ne^{(17)}R_{22}Ne^{-2}P_{22}Ne^{(17)}R_{22}Ne^{-2}P_{22}Ne^{(17)}R_{22}Ne^{-2}P_{22}Ne^{(17)}R_{22}Ne^{-2$	34340 34683 34240 9842 8614.885 -1056.415 -19060 -6710 10364.4 10363.9 6738.3 -10798 -10794 -11691 2842.2 2840.4 2841.5 T=701.8(0.5) to 7407.5 Reanalysis using E(exc Original value -108344 from Q to 709.0, I Original value -108366 Q=-12400(20) to 709.0	250 389 320 81 0.019 0.290 100 180 0.3 0.5 1.1 33 18 20 0.5 1.5 1.0 9(1.0) level 2) for lower (30) re-calct 627.0 and 2: (12) re-calct 0 level	34390 9970 -8614.886 -1055.061 -18850 -6700 10364.26 6739.6 -10800 -11680 2842.3 levels of ref. ilated 571.6 levels ilated	210 60 0.019 60 60 0.04 12 12 0.4	$\begin{array}{c} 0.1 \\ -0.7 \\ 0.5 \\ 1.5 \\ -0.1 \\ 1.9 \\ 2.1 \\ 0.0 \\ -0.5 \\ 0.7 \\ 1.2 \\ -0.3 \\ 0.6 \\ 0.2 \\ 1.3 \\ 0.8 \end{array}$	2 2 2 R 1 U 2 2 U U R 2 2 2 U 2 2 U 2	100	100 ²² Ne	TO2 GA3 GA5 GA3 ST2 OH1 Can ChR MMn Bdn Dar Can	1.5 1.0 1.0 1.0 2.5	88Wo09 91Or01 99Sa.A 91Or01 02Bf02 93Go38 76Hi10 79Ba31 86Pr05 Z 03Fi.A 70An06 * 69St07 * 88Cl04 * 89Cr04 * 68Be35 68We02 72Gi17 70An06** 90Endt ** 90Endt ** GAu ** GAu **
${}^{23}N-C_{1.917} \\ {}^{23}O-C_{1.917} \\ {}^{23}Na-C_{1.917} \\ {}^{23}Ne^{-22}Ne_{1.045} \\ {}^{22}Ne^{(18}O_{1}^{-17}F)^{23}F \\ {}^{22}Ne^{(18}O_{1}^{-17}F)^{23}Ne \\ {}^{22}Ne^{(p,\gamma)^{23}Na} \\ {}^{23}F(\beta^{-})^{23}Ne \\ {}^{23}Na(p,n)^{23}Mg \\ \end{array}$	$\begin{array}{r} 37110\\ 15860\\ 15700\\ 15621\\ -10230.721\\ -10230.716\\ -10229\\ ave. \ -10230.719\\ 3469.58\\ -14080\\ 5200.65\\ 5200.64\\ 8794.26\\ 8510\\ -4836.5\\ -4848.0\\ \end{array}$	2000 320 150 186 0.0037 0.0048 9 0.003 0.37 90 0.12 0.20 0.17 170 6. 7.	41220# 15690 -10230.7191 3469.46 -14090 5200.65 8794.109 8480 -4838.4	320# 130 0.0029 0.11 80 0.10 0.018 80 1.3	$\begin{array}{c} 2.1\\ -0.5\\ -0.1\\ 0.4\\ 0.5\\ -0.7\\ -0.2\\ 0.0\\ -0.3\\ -0.1\\ 0.0\\ 0.0\\ -0.9\\ -0.2\\ -0.3\\ 1.4 \end{array}$	D 2 2 2 2 - - U 1 U 2 2 2 U R U U	100	100 ²³ Na	GA5 GA1 TO2 GA3 MI2 MI2 P40 MA8 Can MMn Bdn Ric ChR	1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0	995a.A * 87Gi05 88W009 91Or01 99Br47 03Ga.A average 03Bl.A 89Or04 86Pr05 Z 03Fi.A 89Ba42 74G017 58Bi41 Y 58Bo77 Y
* ²³ N-C _{1.917}	-4835.8 -4843.2 Systematical trends sug	2.5 5.1 ggest ²³ N 38	300 less bound		$-1.1 \\ 0.9$	1 U	26	26 ²³ Mg	Har Tkm		62Fr09 Z 63Ok01 Z CTh **

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
²⁴ O-C ₂		20000	500	20470	250	0.6	2			TO2	1.5	88Wo09
		20659	442			-0.4	2			GA3	1.0	910r01
		20460	340			0.0	2			GA5	1.0	99Sa.A
²⁴ F-C ₂		8135	86	8120	80	-0.2	2			GA3	1.0	910r01
		8030	120			0.5	2			TO4	1.5	91Zh24
$^{24}Mg - C_2$		-14958.310	0.014	-14958.300	0.014	0.7	1	96	96 ²⁴ Mg	ST2	1.0	03Be02
24 22		-14962	8			0.5	U			P40	1.0	03Ga.A
24 Ne $-^{22}$ Ne _{1.091}		3009.62	0.42				2			MA8	1.0	03B1.A
²⁴ Mg(³ He, ⁸ Li) ¹⁹ Na		-32876	12				2			MSU		75Be38
24 Mg(α , ⁸ He) ²⁰ Mg		-60677	27				2			Tex		76Tr03
²⁴ Mg(³ He, ⁶ He) ²¹ Mg		-27488	40	-27508	16	-0.5	2			Brk		70Me11
		-27512	18			0.2	2			MSU		71Tr03
²² Ne(t,p) ²⁴ Ne		5587	10	5587.6	0.4	0.1	U			LAI		61Si03 Z
$^{24}Mg(p,t)^{22}Mg$		-21194	3	-21197.4	1.3	-1.1	2			MSU		74Ha02
		-21198.3	1.5			0.6	2			MSU		74No07
23 Na(n, γ) ²⁴ Na		6959.50	0.12	6959.58	0.08	0.6	2			BNn		74Gr37 Z
		6959.67	0.14			-0.7	2			ILn		83Hu11 Z
		6959.38	0.08			2.5	В			Ptn		83Ti02
		6959.59	0.14			-0.1	2			Bdn		03Fi.A
23 Na(p, γ) ²⁴ Mg		11692.95	0.17	11692.684	0.013	-1.6	U			Wis		67Mo17Z
		11692.43	0.31			0.8	Ũ					85Uh01 Z
$^{24}Mg(n d)^{23}Mg$		-14307 5	15	-14306.6	13	0.6	1	74	74 ²³ Mg	MSU		74No07
$^{24}Mg(^{7}Li^{8}He)^{23}A1$		-37397	27	-37393	20	0.1	R	<i>,</i> .	/g			01Ca37
$^{24}N_{2}(B^{-})^{24}M_{0}$		5511.5	1.0	5515.45	0.08	4.0	R					69Bo48
$^{24}Mg(p n)^{24}A1$		14660.0	2.0	5515.45	0.00	4.0	2			Val		690v017
$^{24}M_{\alpha}(\pi^{+},\pi^{-})^{24}S;$		22588	52	22666	10	15	2			141		80Pu15
$\operatorname{Wig}(n, n)$ Si		-23588	52	-23000	19	-1.5	2					30 D u15
$^{25}F-C_{2.082}$		12210	150	12100	110	-0.5	2			TO2	1.5	88Wo09
- 2.085		12120	151			-0.1	2			GA3	1.0	910r01
		11990	130			0.6	2			TO4	1.5	91Zh24
²⁵ Ne-C		-2293	32	-2263	28	0.9	2			P40	1.0	01Lu20
²⁵ Mg_C		-14165	10	-14163.08	0.03	0.2	Ū			P40	1.0	03Ga A
$^{23}N_{0}(t,p)^{25}N_{0}$		7499.9	10	-14105.08	0.05	0.2	2			I 40 Str	1.0	84Ap17
$24M_{\alpha}(n, n)^{25}M_{\alpha}$		7400.0	1.2	7220 59	0.02	0.0	2			Su MM=		00D-02 7
wig(ii, y) wig		7330.04	0.08	7550.58	0.05	-0.8	-			OPn		90F102 Z
		7330.09	0.05			-2.3	-			Ddm		92 Wa00
		7550.55	0.15			0.5	-	60	E C 253 C	Duli		03FI.A
24. 25.11	ave.	/330.6/	0.04	0071 6	0.5	-2.2	1	60	56 - Mg			average
$^{24}Mg(p,\gamma)^{25}Al$		22/1.6	1.1	2271.6	0.5	0.0	2					71Ev01 Z
		2271.7	0.7			-0.2	2					72Pi07 Z
		2271.4	0.8			0.2	2					85Uh01 Z
²⁶ F-C		19820	210	19620	180	-0.6	2			т02	15	88Wo09
1 C _{2.167}		19544	300	17020	100	0.0	2			GA3	1.0	910r01
		19490	210			0.2	2			TO4	1.5	917h24
²⁶ Ne C		1/4/0	00	461	20	0.4	2			GA3	1.0	910r01
NC-C _{2.167}		440	33	401	29	0.1	2			D40	1.0	011 µ20
26No. C		401	33	7267	6	0.0	2			P40	1.0	01Lu20
Na-C _{2.167}		-7307	14	-7307	0	0.0	2			F40 D40	1.0	
2614- 0		-/30/	14	17407 071	0.020	0.0	2	75	75 2614-	P40 CT2	1.0	030a.A
$^{20}Mg - C_{2.167}$		-1/40/.014	0.034	-1/40/.0/1	0.030	-1./	1	15	/5 -°Mg	S12	1.0	03Be02
25. 26. 22.		-1/400	8			-0.9	U			P40	1.0	03Ga.A
²³ Na ⁻²⁶ Na _{.721} ²² Na _{.284}		-2881	33	*			U			P13	1.0	75Th08
26		-2921	22	*			U			P13	1.0	/5Th08
20 Al $(n,\alpha)^{23}$ Na		2966.5	2.5	2965.95	0.06	-0.2	U					01Wa50
²⁰ Mg(/Li, ⁸ B) ²⁵ Ne		-22050	100	-22120	26	-0.7	U			Brk		73Wi06
²⁶ Mg(¹³ C, ¹⁴ O) ²⁵ Ne		-19067	50	-18989	26	1.6	R			Can		85Wo04
$^{25}Mg(n,\gamma)^{26}Mg$		11093.10	0.06	11093.07	0.03	-0.4	-			MMn		90Pr02 Z
		11093.23	0.05			-3.1	_			ORn		92Wa06Z
		11093.16	0.22			-0.4	U			Bdn		03Fi.A
	ave.	11093.18	0.04			-2.7	1	61	40 ²⁵ Mg			average
$^{25}Mg(p,\gamma)^{26}Al$		6306.39	0.11	6306.45	0.05	0.6	_		0			85Be17 Z
0.1.11		6306.38	0.08			0.9	_			Utr		91Ki04 Z

Item	Input value			Adjusted value			Dg	Sig	Main flux	k Lab	F	Reference
$^{25}Mg(p,\gamma)^{26}Al$ $^{26}Mg(\pi^-,\pi^+)^{26}Ne$ $^{26}Mg(t,^{3}He)^{26}Na$ $^{26}Mg(^{7}Li,^{7}Be)^{26}Na$	ave.	6306.38 -17676 -9292 -10182	0.06 72 20 40	6306.45 -17666 -9334 -10214	0.05 27 6 6	$1.1 \\ 0.1 \\ -2.1 \\ -0.8$	1 R U U	71	67 ²⁶ Al	LA1 ChR		average 80Na12 74Fl01 72Ba35 *
²⁶ Mg(p,n) ²⁶ Al		-4786.25	0.12	-4786.62	0.06	-3.1	1	23	22 ²⁶ Al	Auc		94Br11 *
$^{20}Mg(^{3}He,t)^{20}Al - {}^{14}N()^{14}O$ $*^{26}Mg(^{7}Li^{7}Be)^{26}Ne$	$0 - 10^{\circ}$	1139.43 222(30) correct	0.13 ed for con	1139.67 tribution of un	0.11 esolved 8'	1.8 1.8 2 5	1 _1	65	58 ¹⁴ O	ChR		87Ko34 *
$*^{26}Mg(n n)^{26}Al$	Q = 102 T=5209	222(30) correct 246(0, 12) to 26	Al ^m at 228	305 R 305	esoiveu o.	2.5 100	CI					AHW **
$*^{26}Mg(^{3}He,t)^{26}Al^{-14}N()1$	Q(to 10	57.740(0.023)	level)-14N	N() ¹⁴ O=81.69(0	.13)							82A119 **
²⁷ F-C _{2.25}		27500 26005 27100	700 770 900	26760	400	-0.7 1.0 -0.3	2 2 2			TO2 GA3 TO4	1.5 1.0 1.5	88Wo09 91Or01 91Zh24
²⁷ Ne-C _{2.25}		26900 7470 7567 7670	580 300 172 130	7590	120	-0.2 0.4 0.1 -0.4	2 2 2 2			GA5 GA1 GA3 TO4	1.0 1.0 1.0	99Sa.A 87Gi05 91Or01 91Zh24
²⁷ Na-C _{2 25}		-5922	11	-5923	4	-0.1	1	12	12 ²⁷ N	a P40	1.0	01Lu17
²⁷ Na- ²⁷ Al		12538	4	12538	4	0.0	1	88	88 ²⁷ Na	a P40	1.0	01Lu17
26 Na $-^{27}$ Na $_{.770}$ 22 Na $_{.236}$		-1437	86	-1391	6	0.5	U			P13	1.0	75Th08
27 Al(p, α) 24 Mg		1601.3	0.5	1600.96	0.12	-0.7	U			Zur		67St30 Z
²⁶ Mg(¹⁸ O, ¹⁷ F) ²⁷ Na		-13295 -13433	55 60	-13430	4	-2.5 0.0	F U			Mun Can		78Pa12 * 85Fi08
$^{26}Mg(n,\gamma)^{27}Mg$		6443.26 6443.44 6443.35	0.08 0.05 0.13	6443.39	0.04	1.6 -1.1 0.3	2 2 2			MMn ORn Bdn		90Pr02 Z 92Wa06 Z 03Fi.A
26 Mg(p, γ) 27 Al		8270.8 8271.2 8271.3	0.5 0.5 0.5	8271.05	0.12	$0.5 \\ -0.3 \\ -0.5$				Utr Utr		59An33 * 63Va24 Z 78Ma24 *
²⁷ Al(p,n) ²⁷ Si	ave.	8271.10 -5593.8 -5594.27 -5594.72	0.29 0.26 0.11 0.10	-5594.70	0.10	-0.2 -3.5 -3.9	1 F F 2	17	16 ²⁷ Al	Auc Auc Auc		average 77Na24 * 85Wh03 * 94Br37 Z
* ²⁶ Mg(¹⁸ O, ¹⁷ F) ²⁷ Na * ²⁶ Mg(p, γ) ²⁷ A1 * ²⁶ Mg(p, γ) ²⁷ A1 * ²⁶ Mg(n, γ) ²⁷ A1	Shape of E(p)=33 E(p)=33 E(p)=80	of peak raises d 38.65(0.12) to 38.21(0.30) to 39.90(0.05 Z) t	oubt on ce 8596.8(0.5 8596.8(0.5 0 9050 7(0	entroid determin 5) level 5) level 1) 5 7) level	nation							GAu ** 78Ma24 ** 78Ma24 ** 78Ma24 **
$*^{27}Al(p,n)^{27}Si$	F: Meas	surement conta	ins error	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								94Br37 **
²⁸ Ne-C _{2.333}		11958 12160	238 140	12070	160	$0.5 \\ -0.4$	2 2			GA3 TO4	1.0 1.5	91Or01 91Zh24
²⁸ Na-C _{2.333}		-1097	96	-1062	14	0.4	U	100	100 281	GA3	1.0	910r01
²⁸ Mg_C		-1062 -16134	14	-16123.2	2.2	0.0	1 II	100	100 -«Na	1 P40 P40	1.0	01Lu17 03Ga A
²⁸ Si-C _{2.333}		-23073.43 -23073.00 -23073.466	0.30 0.27 0.008	-23073.4675	0.0019	-0.1 -0.7 -0.2	U U U			ST1 OH1 ST2	1.0 2.5 1.0	93Je06 94Go.A 02Be64
$\begin{array}{c} C_2 D_2 - {}^{28}\text{Si} \\ {}^{15}\text{N}_2 - {}^{28}\text{Si} H_2 \\ {}^{28}\text{Si}_2 \ {}^{16}\text{O} - {}^{35}\text{Cl} \ {}^{37}\text{Cl} \end{array}$		51277.0224 7641.2007 14013.07	0.0024 0.0024 0.70	51277.0232 7641.1998 14012.41	0.0018 0.0018 0.07	$0.3 \\ -0.4 \\ -0.6$	1 1 U	58 58	57 ²⁸ Si 43 ²⁸ Si	MI1 MI1 H46	1.0 1.0 1.5	95Di08 95Di08 93Nx02
²⁶ Na- ²⁸ Na _{.619} ²² Na _{.394}		-4203	87	-4208	10	-0.1	U			P13	1.0	75Th08
²⁸ Si(³ He, ⁸ Li) ²³ Al		-34274	25	-34278	19	-0.2	2			MSU		75Be38
26 Si(α , ⁶ He) ²⁴ Si 28 Si(³ He, ⁶ He) ²⁵ Si		-61433 -27981	21 10	-01421	21	0.6	к 2			Tex MSU		801r04 72Be12

Item		Input value		Adjusted value		v _i	Dg	Sig	Main flux	t Lab	F	Reference
²⁸ Si(p,t) ²⁶ Si		-22009	3				2			MSU		74Ha02
27 Al(n, γ) 28 Al		7725.02	0.20	7725.10	0.06	0.4	U			BNn		78St25 Z
		7725.02	0.10			0.8	2					81Su.A Z
		7725.14	0.09			-0.4	2			ILn		82Sc14 Z
27 28		7725.17	0.15			-0.5	2			Bdn		03Fi.A
27 Al(p, γ) ²⁸ Si		11584.89	0.30	11585.11	0.12	0.7	_		27	Utr		78Ma23 Z
27	ave.	11585.12	0.13			-0.1	1	84	84 ²⁷ Al			average
27 Al(p, γ) 26 Si ⁷		-956.15	0.03	-956.139	0.025	0.3	2			Utr		78Ma23 Z
		-956.025	0.020			-5.7	В			Auc		94Br3/ Z
28 c: (71 : 811a) 27 D		-930.15	40	27166	27	-0.4	2 D					96 Wa.A Z
$^{28}M_{\alpha}(B^{-})^{28}\Lambda^{1}$		-37313	2.0	-37400	21	1.2	3					54O103
$^{28}S_{1}^{r}(T)^{28}S_{1}^{r}$		12541 23	2.0	12541 25	0.12	0.1	P			Utr		00En02 7
28 Si(n n) ²⁸ P		_15118.3	4 1	_15116	3	0.1	2			Val		690v01 7
51(p,ii)		-15112.3	6	15110	5	-0.7	2			BNL		71Go18 Z
28 Si $(\pi^+ \pi^-)^{28}$ S		-24544	160			0.7	2			DILL		82Mo12 *
$*^{28}Si(\pi^+,\pi^-)^{28}S$	Original	-24603(160) r	ecalibrated	to ${}^{16}\Omega(\pi^+ \pi^-$	16 Ne O=	-27704	1(20)					GAu **
	onginu	21005(100)1	countration	10 0(11 ,11) ne q-	2110	(20)					Grid 44
²⁹ Ne-C _{2.417}		19433	551	19390	290	-0.1	2			GA3	1.0	91Or01
		19300	400			0.1	2			TO4	1.5	91Zh24
20		19400	410			0.0	2			GA5	1.0	00Sa21
$^{29}Na-C_{2.417}$		2838	143	2861	14	0.2	U		20	GA3	1.0	910r01
20		2861	14			0.0	1	100	100 ⁻²⁹ Na	P40	1.0	01Lu17
²⁹ Mg-C _{2.417}		-11400	15	- - 0.4			2			P40	1.0	03Ga.A
²⁰ Na- ²⁹ Na _{.512} ²² Na _{.506}		-5763	91	-5604	9	1.2	U			P10	1.5	75Th08
180/130 0 291		-5576	66 50	1615	1.4	-0.4	U			P13	1.0	75Th08
²⁶ M ₂ (11D 8D) ²⁹ M ₂		-1456	50	-1615	14	-3.2	в			D.I.		81Pa1/
$^{26}Mg(^{12}B,^{8}B)^{-7}Mg$		-19/20	50	-19849	14	-2.0	U			BIK		79De12
Mg(-0, -0) - Mg		-9207	33 45	-9255	14	-0.5	U			Can		76Pa12 85Ei08
$27 \Lambda 1(t p)^{29} \Lambda 1$		-9230	43			0.4	2			Str		8/Ap17
$^{28}Si(n \gamma)^{29}Si$		8473.6	0.3	8473 566	0.021	_0.1	2			MMn		80Ic02 7
51(11,7) 51		8473.61	0.04	0475.500	0.021	-11	2			MMn		90Is02 Z
		8473.55	0.04			0.4	2			ORn		92Ra19 Z
		8473.5509	0.0300			0.5	2			PTB		97Ro26 *
		8473.54	0.17			0.2	U			Bdn		03Fi.A
${}^{28}Si(p,\gamma){}^{29}P$		2747.1	1.7	2748.8	0.6	1.0	U					73Ba35 Z
		2748.8	0.6				2					74By01 Z
$*^{28}$ Si(n, γ) ²⁹ Si	Original	error 0.0005 in	creased for	r calibration								GAu **
30 No. C		22872	991	24800	610	1 1	n			GA2	1.0	010-01
		23872	004 850	24800	010	1.1	2			GA5	1.0	910r01
³⁰ Na C		23000	0JU 218	8076	27	-1.0	2 11			GA3	1.0	005a21
1va-C _{2.5}		9330	130	07/0	21	_1.8	U			TO4	1.0	917h74
		8976	27			1.0	2			P40	1.0	01Lu17
³⁰ Mg-C ₂		-9700	230	-9566	9	0.4	0			TOI	1.5	86Vi09
0 2.5		-9597	98		-	0.3	Ū			GA3	1.0	91Or01
		-9490	110			-0.5	U			TO4	1.5	91Zh24
		-9566	9				2			P40	1.0	03Ga.A
26Na-30Na.433 22Na 591		-7515	117	*			U			P13	1.0	75Th08
²⁶ Mg(¹⁸ O, ¹⁴ O) ³⁰ Mg		-16234	55	-16093	8	2.6	В			Mun		78Pa12 *
²⁹ Si(n, γ) ³⁰ Si		10609.6	0.3	10609.199	0.022	-1.3	0			MMn		80Is02 Z
		10609.21	0.04			-0.3	3			MMn		90Is02 Z
		10609.24	0.05			-0.8	3			ORn		92Ra19 Z
		10609.1776	0.0300			0.7	3			PTB		97Ro26 *
20		10609.23	0.21			-0.1	U			Bdn		03Fi.A
29 Si(p, γ) 30 P		5594.5	0.4	5594.5	0.3	0.0	3					85Re02
		5594.5	0.5			0.0	3					96Wa33

Item	Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference	•
30 Na $(\beta^{-})^{30}$ Mg 30 Si $(t, {}^{3}$ He $)^{30}$ Al	17167 8520 8545	330 40	17272 8542	27 14	$0.3 \\ -0.5 \\ 0.2$	U 4 4					83De04 69Aj03 87Pe06	*
$*^{26}Mg(^{18}O,^{14}O)^{30}Mg$ $*^{29}Si(n,\gamma)^{30}Si$ $*^{30}Na(\beta^{-})^{30}Mg$	Tentative, say authors; fo Original error 0.0005 in Calculated from 3 values	our counts or creased for c s used as cal	nly alibration ibrators		0.2						AHW * GAu * GAu *	* *
⁵¹ Na-C _{2.583}	13559	327	13590	230	0.1	2			GA3	1.0	910r01	
$^{31}Mg-C$	-3830	210	_3454	13	-0.1	2			TO4	1.5	91Z1124 86Vi09	
wig C _{2.583}	-3520	180	5454	15	0.4	0			GA1	1.0	87Gi05	
	-3458	149			0.0	Ŭ			GA3	1.0	91Or01	
	-3370	120			-0.5	U			TO4	1.5	91Zh24	
	-3454	13				2			P40	1.0	03Ga.A	
$^{31}P(p,\alpha)^{28}Si$	1915.8	0.2	1915.97	0.18	0.8	1	84	84 ³¹ P	Zur		67St30	
³⁰ Si(¹⁸ O, ¹⁷ F) ³¹ Al	-12200	25	-12213	20	-0.5	4					88Wo02	
30.0:(-12237	35	6507 205	0.026	0.7	4			Ber		89Bo.A	-
$S^{(n,\gamma)} S^{(n,\gamma)}$	6587.32	0.20	6587.395	0.026	0.4	1			MMn OPr		901s02	2 7
	6587 3970	0.03			-0.1	4			PTR		92Ra19 .	۲ *
	6587.39	0.14			0.0	Ü			Bdn		03Fi.A	
$*^{30}$ Si(n, γ) ³¹ Si	Original error 0.0005 ind	creased for c	alibration								GAu *	*
20												
³² Na-C _{2.667}	19720	636	20470	380	1.2	2			GA3	1.0	91Or01	
	19900	500			0.3	2			104 C 15	1.5	91Zh24	
^{32}Ma	20980	260	1025	10	-1.0	2			GA5 TO1	1.0	005a21 86Vi00	
Wg-C _{2.667}	-800 -890	200	-1025	19	-0.0	U U			GA1	1.5	80 V109 87 Gi05	
	-924	214			-0.5	Ŭ			GA3	1.0	91Or01	
	-820	130			-1.1	U			TO4	1.5	91Zh24	
	-1142	113			1.0	0			P40	1.0	01Lu20	
22	-1025	19				2			P40	1.0	03Ga.A	
³² Al-C _{2.667}	-11870	200	-11880	90	0.0	2			GA1	1.0	87Gi05	
32 . 39	-11877	104			0.0	2			GA3	1.0	910r01	
$^{32}\text{Ar} - ^{37}\text{K}_{.821}$	27434.8	1.9	21214	26	1.1	2			MA8	1.0	03BL1 77De12	
$32S(^{3}He^{6}He)^{29}S$	-31277	55 50	-51514	20	-1.1	2			MSU		73Be00	
30 Si(t p) 32 Si	7307	1	7308 81	0.04	18	ū			Str		80An A	
${}^{32}S(p,t){}^{30}S$	-19614	3	1000101	0.01	110	2			MSU		74Ha02	
${}^{31}Si(n,\gamma){}^{32}Si$	9203.2180	0.0300				5			PTB		97Ro26	*
${}^{31}P(n,\gamma){}^{32}P$	7935.73	0.16	7935.65	0.04	-0.5	U			MMn		85Ke11	Ζ
	7935.65	0.04				2			ILn		89Mi16	Ζ
21 22	7935.60	0.16			0.3	U			Bdn		03Fi.A	
${}^{51}P(p,\gamma){}^{52}S$	8864.9	0.9	8863.78	0.21	-1.2	-					72Co13	_
	8865.6	1.0			-1.8	-					73Ve08	Z
	0003.1 ave 8864.5	0.9			-1.5	1	25	16 ³¹ P			74 V102	
32 S(n d) ³¹ S	_12817.8	1.5			-1.0	2	23	10 · F	MSU		73Mo23	
$^{32}Na(\beta^-)^{32}M\sigma$	18300	1400	20020	360	12	Ű			11100		83De04	
$^{32}\text{Si}(\beta^{-})^{32}\text{P}$	221.4	1.2	224.31	0.19	2.4	Ŭ					84Po09	
$^{32}P(\beta^{-})^{32}S$	1710.1	0.7	1710.48	0.22	0.5	R					68Fi04	
³² S(p,n) ³² Cl	-13470	14	-13468	7	0.1	2			Yal		69Ov01	Ζ
4	-13470	9			0.2	2			BNL		71Go18	Ζ
32S(3He,t)32Cl	-12699	15	-12705	7	-0.4	2					89Je07	

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	k Lab	F	Reference
$^{32}S(\pi^+,\pi^-)^{32}Ar * ^{31}Si(n,\gamma)^{32}Si$	Original e	-22815 rror 0.0005 ind	50 creased for c	-22793.5 calibration	1.8	0.4	U					80Bu15 GAu **
³³ Na-C _{2.75}		27386	1601	26720	940	-0.4	2			GA3	1.0	91Or01
33.4		26370	1160	5054		0.3	2			GA5	1.0	00Sa21
⁵⁵ Mg-C _{2.75}		5460 5203 5710 5254	900 318 180 21	5254	21	-0.2 0.2 -1.7	o U U 2			GA1 GA3 TO4 P40	1.0 1.0 1.5	87Gi05 91Or01 91Zh24 03Ga A
³³ Al-C _{2.75}		-9250 -9167 -9020	160 142 120	-9160	80	$0.6 \\ 0.1 \\ -0.8$	2 2 2 2			GA1 GA3 TO4	1.0 1.0 1.5	87Gi05 91Or01 91Zh24
$^{33}Ar - ^{36}Ar_{017}$		19689.2	4.5	19686.8	0.5	-0.5	Ū			MA6	1.0	01He29
$^{33}Ar - ^{39}K_{846}$		20629.86	0.43				2			MA8	1.0	03B1.1
${}^{33}S(n,\alpha){}^{30}Si$		3496.9	5.0	3493.33	0.14	-0.7	U					01Wa50
$^{32}S(n,\gamma)^{33}S$		8641.5 8641.82 8641.60 8641.81	0.3 0.10 0.03 0.17	8641.615	0.029	$0.4 \\ -2.1 \\ 0.5 \\ -1.1$	0 - - U			MMn ORn MMn Bdn		80Is02 Z 83Ra04 Z 85Ke08 Z 03Fi.A
	ave.	8641.618	0.029			-0.1	1	100	91 ³² S			average
$^{32}S(p,\gamma)^{33}Cl$		2276.4 2276.8	0.9 0.5	2276.7	0.4	$0.3 \\ -0.2$	2 2					59Ku79 76Al01
$^{33}\text{Si}(\beta^{-})^{33}\text{P}$		5768	50	5845	16	1.5	R					73Go33
$^{55}P(\beta^{-})^{55}S$		249 248.3	2 1.3	248.5	1.1	$-0.2 \\ 0.2$	2 2					54N106 84Po09
³⁴ Mg-C _{2.833}		8855	476	9460	250	1.3	2			GA3	1.0	91Or01
		9190	350			0.5	2			TO4	1.5	91Zh24
³⁴ A1 C		3400	350 250	3150	120	-1.5	2			GA5 GA1	1.0	005a21 87Gi05
AI-C _{2.833}		$-3262 \\ -2940$	218 120	-5150	120	$0.5 \\ -1.2$	2 2 2			GA3 TO4	1.0 1.0 1.5	91Or01 91Zh24
34Ar-36Ar.944		10907.4	3.8	10908.7	0.4	0.3	U			MA6	1.0	01He29
³⁴ Ar- ³⁹ K _{.872}		11919.02	0.36				2			MA8	1.0	02He23
$^{33}S(n,\gamma)^{34}S$		11417.12 11417.22	0.10 0.23	11417.11	0.09	-0.1 -0.5	-	02	07 330	ORn Bdn		83Ra04 Z 03Fi.A
33 S (m a) 34 C1	ave.	5142.42	0.09	5142 75	0.12	-0.3	1	92	8/ 558	Oalr		average
$S(p, \gamma) \subset I$		5142.42	0.20	5142.75	0.12	1.7	_			Utr		83Wa27 Z
		5143.29	0.20			-2.7	_			Auc		94Li20
	ave.	5142.77	0.13			-0.2	1	91	87 ³⁴ Cl			average
34S(p,n)34Cl		-6273.11	0.25	-6274.36	0.15	-5.0	F			Auc		92Ba.A *
³⁴ S(³ He,t) ³⁴ Cl		-5510.8	0.4	-5510.60	0.15	0.5	1	13	13 ³⁴ Cl	Mun		77Vo02
$*^{33}S(p,\gamma)^{34}Cl$	E(p)=974.	76(0.15,Z) to	6088.20(0.1	0,Z) level								83Ra04 **
* ³⁴ S(p,n) ³⁴ Cl	F: disturbe	ed by resonance	e; at least 0	.5 uncertain								94Li20 **
³⁵ Mg-C _{2.917}		18669 18830	1721 1070	17340#	430#	$-0.8 \\ -1.4$	D D			GA3 GA5	$1.0 \\ 1.0$	91Or01 * 00Sa21 *
35Al-C2 917		-340	460	-140	190	0.4	2			GA1	1.0	87Gi05
2.917		$-296 \\ 80$	298 190			$0.5 \\ -0.8$	2 2			GA3 TO4	1.0 1.5	91Or01 91Zh24
$C_3 - {}^{35}Cl H$		23322.239	0.034	23322.29	0.04	0.9	1	62	62 ³⁵ Cl	B07	1.5	71Sm01
$C_5 H_{10} - {}^{35}Cl_2$		140545.01	0.13	140544.96	0.08	-0.3	1	17	17 ³⁵ Cl	B07	1.5	71Sm01
$^{37}S(n,\gamma)^{33}S$		6986.00 6985.84 6986.09	0.10 0.05 0.14	6985.88	0.04	-1.2 0.9 -1.5	_			ORn MMn Bdn		83Ra04 Z 85Ke08 Z 03Fi A
	ave.	6985.89	0.04			-0.2	1	99	95 ³⁴ S	Dun		average

Item	Input v		value Adjusted v		value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{34}S(p,\gamma)^{35}Cl$		6370.7	0.4	6370.72	0.10	0.1	U					76Sp08 Z
35 0 (0 -) 35 01		6370.70	0.20	1 67 10	0.00	0.1	U			Oak		83Ra04 *
$S(\beta)$		167.4	0.2	167.18	0.09	-1.1	В					57C062 *
		167.288	0.15			_3.5	B					85Δp01 *
		166.93	0.050			13	0					85Ma59
		167.4	0.1			-2.2	B					85Oh06 *
		166.7	0.2			2.4	в					89Si04 *
		167.56	0.03			-12.5	В					92Ch27 *
		167.35	0.10			-1.7	В					93Ab11 *
		167.23	0.10			-0.5	B					93Be21 *
		167.27	0.10			-0.9	B	06	05 350			93Mo01 *
35C1(m,m) 35 A m		167.222	0.095	6749 5	0.7	-0.4	1	96	95 58	Ham		Averag *
^{cr} Ci(p,ii) ^{cr} Af		-0/4/.2	1.0	-0748.3	0.7	-0.8	2			Auc		77Wh02 7
		-6751.9	1.0			-0.0	2			Mtr		78Az01 Z
* ³⁵ Mg-C2 017	Average	GA3+GA5 18	790(910)			1.9	2					GAu **
* ³⁵ Mg-C _{2.917}	Systemat	tical trends sug	gest ³⁵ Mg	1350 more bou	nd							CTh **
$*^{34}S(p,\gamma)^{35}Cl$	E(p)=126	54.97(0.13,Z)	to 7598.91(0.15,Z) level								83Ra04 **
$*^{35}S(\beta^{-})^{35}Cl$	Adopted	simple average	ge and disp	ersion of 9 data	ì							GAu **
³⁶ Mg-C ₂		24930	1610	23000#	540#	-1.2	D			GA5	1.0	00Sa21 *
³⁶ Al-C ₃		6187	421	6210	230	0.0	2			GA3	1.0	91Or01
5		6500	400			-0.5	2			TO4	1.5	91Zh24
		6140	310			0.2	2			GA5	1.0	00Sa21
³⁶ Si-C ₃		-13490	320	-13400	130	0.3	2			GA1	1.0	87Gi05
		-13578	191			0.9	2			GA3	1.0	91Or01
36 A. C		-13110	150	22454 804	0.020	-1.3	2	00	00 36 4	104 8T2	1.5	91Zn24
$^{36}\Lambda r(^{3}He^{8}Ii)^{31}C1$		-32434.893	50	-52454.694	0.029	0.0	2	99	99 AI	MSU	1.0	03FI08 77Be13
${}^{36}S({}^{48}C_{2}, {}^{51}V){}^{33}A1$		-14150	140	-14150	70	0.0	R			Dar		86Wo07
${}^{36}S({}^{14}C {}^{17}O){}^{33}Si$		-6380	20	-6343	16	1.9	2			Mun		84Ma49
${}^{36}S({}^{11}B,{}^{14}N){}^{33}Si$		-4311	30	-4367	16	-1.9	2			Can		85Fi03
³⁶ Ar(³ He, ⁶ He) ³³ Ar		-23512	30	-23511.3	0.9	0.0	U			MSU		74Na07
36S(11B,13N)34Si		-7327	25	-7385	14	-2.3	2			Can		85Fi03
36S(14C,16O)34Si		-2989	20	-2950	14	1.9	2			Mun		84Ma49
36S(64Ni,66Zn)34Si		-8903	33	-8907	14	-0.1	2			Dar		86Sm05 *
${}^{36}S(d,\alpha){}^{34}P$		4604.4	5.				2					82So.A *
36 Ar(p,t) 34 Ar		-19513	3	-19515.2	0.4	-0.7	U			MSU		74Ha02
³⁶ S(¹⁴ C, ¹⁵ O) ³⁵ Si		-16184	50	-16140	40	0.9	2			Mun		84Ma49
$^{30}S(^{13}C,^{14}O)^{33}Si$		-21122	60	-21190	40	-1.1	2			Can		86Fi06
$^{30}S(^{04}N1,^{05}Zn)^{35}S1$		-17250	100	-17490	40	-2.4	В			Dar		86Sm05 *
⁵⁶ S(d, ⁵ He) ⁵⁵ P		-/60/	2	-/601.8	1.9	1.0	2			BNL		841n08
$^{35}C1(n x)^{36}C1$		-/001 8570 73	0.20	8570 63	0.06	-0.4	2 11			RNn		63KII04 788+25 7
$CI(II, \gamma)$ CI		8579.75	0.20	8579.05	0.00	-0.2	0			MMn		80Is02 Z
		8579.81	0.20			-0.9	Ŭ			MMn		81Ke02 Z
		8579.66	0.10			-0.3	_					81Su.A Z
		8579.61	0.09			0.3	-			ILn		82Kr12 Z
		8579.67	0.17			-0.2	-			Bdn		03Fi.A
25 24	ave.	8579.64	0.06			0.0	1	98	97 ³⁶ Cl			average
$^{35}Cl(p,\gamma)^{36}Ar$		8506.1	0.5	8506.97	0.05	1.7	U			~		72Ho40 Z
³⁰ S(/Li,/Be) ³⁰ P		-11277	27	-11275	13	0.1	2			Can		85Dr06
³⁶ S(¹⁴ C, ¹⁴ N) ³⁶ P		-10256	15	-10257	13	0.0	2	20	25 360	Mun		84Ma49
$^{36}C1(B^{-})^{36}A_{\pi}$		- 1924.04	0.51	-1924.30	0.19	0.2	1	39	32 - S			01 Wa50
C(p) A		/00./	0.0	109.08	0.00	1.0	U					orshoo
Item	Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	. Lab	F	Reference	
---	-----------------------	---------------------------------------	-----------------	------------	-----------------------	--------	---------	---------------------------------	-------	-----	-----------	
³⁶ Ar(p,n) ³⁶ K	-13588.3	8.				2			BNL		71Go18	
* ³⁶ Mg-C ₂	Systematical trends	suggest 36]	Mg 1800 more	e bound							GAu *	
* ³⁶ S(⁶⁴ Ni, ⁶⁶ Zn) ³⁴ Si	Calibrated with 36S	(⁶⁴ Ni, ⁶² Ni)	M=-26862(12	2) now-2	6861(7)						AHW *	
$*^{36}S(d,\alpha)^{34}P$	Original error 1.2 iu	idged too s	mall	,							GAu *	
* ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si	M-A=-14482(59)	for average	e of ground-sta	ate and 54	, 114, 20	07 lev	vels				86Sm05*	
³⁷ Al-Case	10310	579	10680	360	0.6	2			GA3	1.0	910r01	
-3.083	10900	450			-0.5	2			GA5	1.0	00Sa21	
37Si-C2 082	-7310	305	-7060	180	0.8	2			GA3	1.0	91Or01	
5.085	-6930	150			-0.6	2			TO4	1.5	91Zh24	
$C_2 D_8 - {}^{37}Cl H_3$	123436.51	0.12	123436.54	0.05	0.1	1	8	8 37 Cl	B07	1.5	71Sm01	
$C_{2}H_{e}O_{2}-{}^{37}Cl_{2}$	104974.24	0.08	104974.25	0.10	0.1	1	71	71 ³⁷ Cl	B07	1.5	71Sm01	
$D_{3}^{35}Cl - H_{3}^{37}Cl$	15503.80	0.09	15503.58	0.06	-1.0	1	8	5 ³⁷ Cl	H31	2.5	77So02	
$C_{5}^{2}H_{12}-35\tilde{C}l^{37}Cl$	159145.17	0.12	159145.11	0.07	-0.3	1	13	8 37 Cl	B07	1.5	71Sm01	
${}^{36}S({}^{18}O, {}^{17}F){}^{37}P$	-14410	40	-14400	40	0.2	2			Can		880r.A	
36S(48Ca,47Sc)37P	-11490	120	-11550	40	-0.5	2			Dar		88Fi04	
$^{36}S(n,\gamma)^{37}S$	4303.52	0.12	4303.60	0.06	0.7	2			ORn		84Ra09	
~(,1) ~	4303.61	0.09			-0.1	2			Bdn		03Fi.A	
$^{36}S(d.p)^{37}S$	2079.12	0.13	2079.04	0.06	-0.6	2					84Pi03	
${}^{36}S(p,\gamma){}^{37}Cl$	8386.47	0.23	8386.43	0.19	-0.2	1	66	65 ³⁶ S	Utr		84No05	
${}^{36}Ar(n,\gamma){}^{37}Ar$	8791.1	1.0	8787.44	0.21	-3.7	В					68Wi25	
	8788.8	1.2			-1.1	Ū					70Ha56	
	8789.9	0.9			-2.7	Ũ			Bdn		03Fi.A	
36 Ar(p, γ) ³⁷ K	1857.63	0.09				2			Utr		88De03	
$^{37}Cl(p,n)^{37}Ar$	-1595.4	1.0	-1596.22	0.20	-0.8	Ū			MIT		52Sc09	
(F)	-1596.8	1.0			0.6	Ũ			Duk		66Pa18	
	-1596.22	0.20				2			PTB		98Bo30	
	-1596.3	1.0			0.1	U					01Wa50	
* ³⁶ S(¹⁸ O, ¹⁷ F) ³⁷ P	And Q=-13650(40)	, M=-1975	50(40) if other	peak is g	round-st	ate or	ne				880r.A >	
* ³⁶ S(⁴⁸ Ca, ⁴⁷ Sc) ³⁷ P	And Q=-11569(80)	,M=-1898	0(80) if other	peak due	to ⁴⁷ Sc 8	807.89	9 level				88Fi04 *	
³⁸ Al-C _{2 167}	15240	1500	17230	780	1.3	2			GA4	1.0	00Sa21	
5.107	17980	920			-0.8	2			GA5	1.0	00Sa21	
38Si-C3 167	-4510	180	-4370	150	0.8	2			GA4	1.0	00Sa21	
5.107	-4020	290			-0.8	2			TO4	1.5	91Zh24	
	-4100	320			-0.8	2			GA5	1.0	00Sa21	
³⁸ P-C _{3 167}	-15910	140	-15840	110	0.5	2			GA4	1.0	00Sa21	
5.107	-15530	150			-1.4	2			TO4	1.5	91Zh24	
	-16110	310			0.9	2			GA5	1.0	00Sa21	
38Ar-39K 974	-1917.88	0.37	-1917.9	0.3	-0.1	1	71	69 ³⁸ Ar	MA8	1.0	02He23	
$^{35}Cl(\alpha,n)^{38}K$	-5862.1	1.5	-5859.3	0.4	1.9	U			Mun		76Sh24	
	-5858.7	2.9			-0.2	U			Har		75Sq01	
36S(14C,12C)38S	-781	10	-783	7	-0.2	R			Mun		84Ma49	
${}^{37}Cl(n,\gamma){}^{38}Cl$	6107.84	0.30	6107.88	0.08	0.1	U					73Sp06	
	6107.95	0.10			-0.7	2			MMn		81Ke02	
	6107.73	0.15			1.0	2			Bdn		03Fi.A	
$^{37}\text{Cl}(p,\gamma)^{38}\text{Ar}$	10243.0	1.0	10242.0	0.3	-1.0	1	12	11 ³⁸ Ar			68En01	
$^{38}S(\beta^{-})^{38}Cl$	2947	20	2937	7	-0.5	3					71En01	
	2936	12			0.1	3					72Vi11	
38Ar(p,n)38K	-6695.65	0.70	-6696.21	0.29	-0.8	1	17	17 ³⁸ K			78Ja06	
38Ar(p,n)38Km	-6826.73	0.12	-6826.71	0.12	0.1	1	98	98 ³⁸ K ^m	Auc		98Ha36	
38Km(IT)38K	130.4	0.3	130.50	0.28	0.3	1	85	83 ³⁸ K			90Endt	
$*^{35}Cl(\alpha,n)^{38}K$	Q=-5989.1(2.9,Z) t	$o^{38}K^m$ at 1	30.4(0.3)								90Endt *	

11.11, 11000010001000110000011000001100000110000
--

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig Main flux	Lab	F	Reference
³⁹ Al-Coor		22970	1580				2		GA5	1.0	00Sa21
$^{39}Si-C_{2.25}$		1900	540	2070	360	0.3	2		GA4	1.0	00Sa21
		2210	490			-0.3	2		GA5	1.0	00Sa21
³⁹ P-C ₂ or		-13890	140	-13820	110	0.5	2		GA4	1.0	00Sa21
- 3.25		-13580	160			-1.0	2		TO4	1.5	91Zh24
		-13870	280			0.2	2		GA5	1.0	00Sa21
$^{39}K - ^{36}Ar_{1.002}$		-1144 65	0 44	-1144 67	0.20	-0.1	_		MA8	1.0	02He23
11 1.083		-1144.83	0.40	1111.07	0.20	0.1	_		MA8	1.0	03B11
	ave	-1144 75	0.30			0.3	1	48 47 ³⁹ K		1.0	average
${}^{37}Cl(t n){}^{39}Cl$	uve.	5701.9	2.5	5699 5	17	_1.0	2	40 47 10	Str		844 n03
38 Ar(n x) ³⁹ K		6380.0	1.1	6381 /3	0.20	0.5	2		Su		70Ma31 7
/m(p, j) it		6382.2	0.8	0501.45	0.27	1.0	_				84Ho27 Z
	01/0	6281.8	0.6			-1.0	1	20 10 ³⁸ Ar			0411a27 Z
39 K(n d) 38 K	ave.	10951	0.0	10952 1	0.4	-0.5	1	20 19 AI	MOL		average
K(p, d) = K		-10831	2	-10855.1	0.4	-1.0	2		MSU		74W117
39 K 39 C		505 7202 5	5	7215.0	1.0	0.1	2		T 1		50Broo
K(p,n) Ca		-/302.5	0. 1.0	-/315.0	1.9	-2.1	0		Tai		70Ke08
		-7314.9	1.8				2				78Ra15 Z
40Si-C _{3.333}		5290	1010	5870	600	0.6	2		GA4	1.0	00Sa21
40		6180	740			-0.4	2		GA5	1.0	00Sa21
$^{40}P-C_{3.333}$		-8800	200	-8700	150	0.5	2		GA4	1.0	00Sa21
		-8950	210			0.8	2		TO4	1.5	91Zh24
40		-8200	320			-1.6	2		GA5	1.0	00Sa21
$^{40}S-C_{3.333}$		-24440	190	-24550	150	-0.6	2		GA4	1.0	00Sa21
		-24530	250			0.0	2		TO4	1.5	91Zh24
10		-24910	340			1.1	2	10	GA5	1.0	00Sa21
$C_3 H_4 - {}^{40}Ar$		68917.0053	0.0035	68917.0058	0.0028	0.1	1	66 66 ⁴⁰ Ar	MI1	1.0	95Di08
$C_2 D_8 - {}^{40}Ar$		150431.1045	0.0040	150431.1003	0.0028	-1.1	1	49 24 ⁴⁰ Ar	MI1	1.0	95Di08
$^{20}\text{Ne}_2 - ^{40}\text{Ar}$		22497.2245	0.0042	22497.228	0.003	0.9	1	51 44 ²⁰ Ne	MI1	1.0	95Di08
		22497.2280	0.0060			0.1	1	25 22 ²⁰ Ne	MI1	1.0	95Di08
⁴⁰ Ar-C _{3,333}		-37616.878	0.040	-37616.8775	0.0029	0.0	U		ST2	1.0	02Bf02
⁴⁰ Ca(³ He, ⁸ Li) ³⁵ K		-29693	20				2		MSU		76Be08
${}^{40}\text{Ca}(\alpha, {}^{8}\text{He}){}^{36}\text{Ca}$		-57580	40				2		Tex		77Tr03
40Ca(3He,6He)37Ca		-24270	50	-24348	22	-1.6	2		Brk		68Bu02
		-24368	25			0.8	2		MSU		73Be23 *
${}^{40}Ca(p,t){}^{38}Ca$		-20428	11	-20448	5	-1.8	2		MSU		72Pa02
		-20452	5			0.8	2		MSU		74Se05
⁴⁰ Ar(¹³ C, ¹⁴ O) ³⁹ S		-16760	50				2		Can		89Dr03
⁴⁰ Ar(d, ³ He) ³⁹ Cl- ³⁶ Ar() ³⁵ Cl		-4024.13	2.42	-4021.7	1.7	1.0	R		Hei		93Ma50
39 K(n, γ) 40 K		7799.50	0.08	7799.51	0.07	0.1	_		ILn		84Vo01 Z
		7799.56	0.16			-0.3	_		Bdn		03Fi.A
	ave.	7799.51	0.07			0.0	1	91 51 ⁴⁰ K			average
${}^{39}K(p,\gamma){}^{40}Ca$		8328.24	0.09	8328.23	0.09	-0.1	1	97 94 ⁴⁰ Ca	Utr		90Ki07 Z
40 Ca $(^{7}$ Li 8 He) 39 Sc		-37400	40	-37368	25	0.8	2		MSU		88Mo18
${}^{40}Ca({}^{14}N {}^{15}C){}^{39}Sc$		-27670	30	-27688	24	-0.6	2		Can		88Wo07
${}^{40}\text{Cl}(\beta^{-}){}^{40}\text{Ar}$		7320	80	7480	30	2.0	2		cuii		89Mi03
40 Ar(⁷ Li ⁷ Be) ⁴⁰ Cl		-8375	35	-8340	30	0.9	2				84Fi02
${}^{40}K(n n){}^{40}Ar$		2286 7	10	2287 04	0 19	0.3	-		ш		81We12
$^{40} \Delta r(n n)^{40} K$		_2286.3	1.0	_2287.04	0.19	_0.7	_		Duk		66Pa18 7
, m/b'u) iz		_2286.3	1.0	2207.04	0.19	_0.7	_		Duk		01Wa50
${}^{40}K(n n){}^{40}Ar$	91/2	2286.5	0.6	2287.04	0.10	-0.7	1	11 11 ⁴⁰ ¥			overage
$^{40}C_{2}(n,n)^{40}S_{2}$	ave.	15105 4	2.0	2207.04	0.17	1.0	1 2	IIII K	Ve1		600v01 7
$40C_{0}(\pi^{+},\pi^{-})^{40}T$		24074	2.9 160				2		141		070701 Z
$a(n^{-},n^{-})^{-11}$	A	-249/4	100 uith an - 11	libration	ation		2				02IVI012 *
$*^{40}C_{-}(-+,)^{40}T'$	Averag	e or 2 values w	+ $ >$ 0	moration corre	cuon						AHW **
* $Ca(\pi^{+},\pi^{-})^{10}$ Ii	Recall	brated to $^{10}O(\pi$,π)Q=-2	27704(20)							GAU **

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
⁴¹ Si_C		14560	1980				2			GA5	1.0	005221
$^{41}P-C_{2}$		-5930	300	-5660	230	0.9	2			GA4	1.0	005a21
- 03.417		-5200	500	2000	200	-0.6	2			TO4	1.5	91Zh24
		-5290	420			-0.9	2			GA5	1.0	00Sa21
$^{41}S-C_{2,417}$		-20500	150	-20420	130	0.5	2			GA4	1.0	00Sa21
3.417		-19970	230			-1.3	2			TO4	1.5	91Zh24
		-20430	330			0.0	2			GA5	1.0	00Sa21
⁴¹ Cl-C _{3.417}		-29620	190	-29320	70	1.1	2			TO3	1.5	90Tu01
		-29500	270			0.5	2			TO4	1.5	91Zh24
⁴¹ Ti-C _{3.417}		-16200	390	-16860#	110#	-1.7	D			1.0	1.0	02St.A *
${}^{41}\text{K} - {}^{39}\text{K}_{1.051}$		-30.05	0.32	-29.96	0.11	0.3	1	12	7 ³⁹ K	MA8	1.0	02He23
⁴⁰ Ar(¹⁸ O, ¹⁷ F) ⁴¹ Cl		-10530	83	-10470	70	0.8	R			Can		84Ho.B
40 Ar(n, γ) 41 Ar		6098.4	0.7	6098.9	0.3	0.7	-			D 1		70Ha56 Z
		6099.1	0.4			-0.5	-	01	01 41 4	Bdn		03F1.A
40 A	ave.	6098.9	0.3	7909 15	0.10	-0.1	1	91	91 ··· Ar			average
10 Ar(p, γ) 11 K		/80/.8	0.3	/808.15	0.19	1.2	1	42	42 K	п.,		89Sm06 Z
$K(\mathbf{n},\gamma)$ K		10095.19	0.10	10095.19	0.08	0.0	-			ILN Rdn		84Kr05 Z
	91/4	10095.25	0.20			-0.3	1	86	18 41 K	Bull		03FLA
${}^{40}C_{2}(n_{2}){}^{41}C_{2}$	ave.	8363.0	0.09	8362.80	0.13	-0.2	-	80	40 K			$69\Delta r \Delta = 7$
Ca(ii, j) Ca		8362.5	0.5	0302.00	0.15	0.4	_					70Cr04 Z
		8362.72	0.3			0.3	_			MMn		80Is02 Z
		8362.86	0.17			-0.3	_			Bdn		03Fi.A
	ave.	8362.81	0.14			-0.1	1	93	87 ⁴¹ Ca			average
${}^{40}Ca(p,\gamma){}^{41}Sc$		1085.09	0.09	1085.09	0.08	0.0	1	88	88 ⁴¹ Sc	Utr		87Zi02 *
${}^{41}\text{Cl}(\beta^{-}){}^{41}\text{Ar}$		5670	150	5760	70	0.6	R					74Gu10
${}^{41}\text{Ar}(\beta^{-}){}^{41}\text{K}$		2492.0	1.1	2491.6	0.4	-0.4	1	12	9 ⁴¹ Ar			64Pa03
41 K(p,n) 41 Ca		-1203.8	0.5	-1203.66	0.18	0.3	1	13	11 ⁴¹ Ca	Can		70Kn03 Z
41 Sc ^r (IT) 41 Sc		2882.39	0.10	2882.30	0.05	-0.9	-			Utr		87Zi02 Z
		2882.26	0.06			0.6	-		41	Utr		89Ki11 Z
41	ave.	2882.29	0.05			0.0	1	96	84 41 Sc ^{<i>r</i>}			average
* ⁴¹ Ti-C _{3.417}	Systema	tical trends s	uggest ⁴¹ I	1 610 more b	ound							GAu **
$*^{+\circ}Ca(p,\gamma)^{+1}Sc$	E(p)=64	7.25(0.05,Z)	to 1716.4.	3(0.08,Z) lev	el							8/Z102 **
⁴² Si-C ₃₅		20860	3990	19790#	540#	-0.3	D			GA5	1.0	99Sa.A *
$^{42}P-C_{3.5}$		260	740	1010	480	1.0	2			GA4	1.0	00Sa21
		1550	630			-0.9	2			GA5	1.0	00Sa21
$^{42}S-C_{3.5}$		-18940	150	-18980	130	-0.3	2			GA4	1.0	00Sa21
		-18510	350			-0.9	2			TO4	1.5	91Zh24
42		-19390	350			1.2	2			GA5	1.0	00Sa21
⁴² Cl-C _{3.5}		-27000	190	-26750	150	0.9	2			TO3	1.5	90Tu01
42 • 36 •		-26870	190			0.4	2			104	1.5	91Zh24
$^{42}\text{Ar} - {}^{50}\text{Ar}_{1.167}$		920.6	6.2	17251	~	0.1	2			MA6	1.0	01He29
$40 \text{ A}_{10}(4 \text{ m})^{42} \text{ A}_{10}$		-1/250	13	-1/251	5	-0.1	K			T A 1		/2Z102
$40C_0(3H_0, p)^{42}T_i$		7045	40	7044	0 5	0.0	2			LAI		67M;02
$41 K(p a)^{42} K$		-2003	0 15	-2803	0 11	0.0	2			UI n		85Kr06 7
K (II, <i>Y</i>) K		7522 82	0.15	1555.80	0.11	_0.1	2			Rdn		03Ei A
${}^{41}C_{2}(n x){}^{42}C_{2}$		11480.63	0.13	11480.63	0.06	-0.1	1	95	$93 \ {}^{42}C_{2}$	ORr		80Ki11 7
$^{41}Ca(n \chi)^{42}Sc^r - {}^{40}Ca()^{41}Sc^r$		-6.67	0.00	-6.67	0.00	0.0	1	96	$80^{42}Sc^{r}$	Utr		89Ki11 ×
$^{42}Cl(\beta^{-})^{42}Ar$		9760	220	9510	140	-11	R	70	50 50	<u>u</u>		89Mi03
$^{42}Ca(^{3}He.t)^{42}Sc-^{26}Mg()^{26}A1$		-2421.83	0.23	-2421.56	0.13	1.2	1	32	23 42Sc	CbR		87Ko34 *
42 Sc ^r (IT) 42 Sc		6076.33	0.08	6076.33	0.08	0.0	1	91	71 ⁴² Sc	Utr		89Ki11 Z
* ⁴² Si-C ₂₅	Systema	tical trends s	uggest 42S	i 1000 more	bound	0.0	•					CTh **
$*^{41}Ca(p,\gamma)^{42}Sc^{r}-{}^{40}Ca()$	Calculat	ed from resor	nance ener	gy difference	e = 5.73(0.05)						GAu **
$*^{42}Ca(^{3}He,t)^{42}Sc-^{26}Mg()$	Q=-219	3.52(0.23) to	${}^{26}\mathrm{Al}^m$ at 2	228.305								90Endt **

<i>A</i> .	Н.	Wapstra	et al./	/Nuclear	Physics A	729	(2003)	129–336
------------	----	---------	---------	----------	-----------	-----	--------	---------

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
⁴³ P-C _{3.583}		4220	1620	6190	1040	1.2	U			GA4	1.0	00Sa21
⁴³ S-C _{3.583}		-12810	1040 250	-12850	220	-0.1	2			GA5 GA4	1.0	00Sa21 00Sa21
43Cl-C _{3.583}		-13400 -12900 -26090	900 460 300	-25950	170	0.4 0.1 0.5	2 2 2			GA5 GA4	1.5 1.0 1.0	91Zh24 00Sa21 00Sa21
		-25740 -25970 -26010	200 350 330			-0.7 0.0 0.2	2 2 2			TO3 TO4 GA5	1.5 1.5 1.0	90Tu01 91Zh24 00Sa21
43 Ar $-^{36}$ Ar $_{1.194}$ 40 Ca $(\alpha, n)^{43}$ Ti 42 Ca $(n, \gamma)^{43}$ Ca		4387.2 -11169.9 7933.1	5.7 10. 0.5	-11172	7 0 17	-0.2 -0.4	2 2			MA6 Tal	1.0	01He29 67Al08 69Ar A 7
Cu(ii,7) Cu		7933.1 7933.1 7933.1	0.5 0.4	7752.00	0.17	-0.4 -0.5	_			Ptn		69Gr08 Z 71Bi.A
42 Ca(p, γ) 43 Sc	ave.	7932.73 7932.89 4935	0.23 0.17 5	4929.8	1.9	0.7 0.0 -1.0	- 1 2	99	97 ⁴³ Ca	Bdn		03F1.A average 65Br31
43 K(β^-) 43 Ca		4929 1817 1815	2 20 10	1815	9	$0.4 \\ -0.1 \\ 0.0$	2 2 2					69Wa19 54Li24 59Be72
⁴⁴ S-C _{3.667}		-10510	580	-9790	420	1.2	2			GA4	1.0	00Sa21
⁴⁴ Cl-C _{3.667}		-8960 -21700 -21500	620 130 500	-21720	120	-1.3 -0.1 -0.3	2 2 2			GA5 GA4 TO3	1.0 1.0 1.5	00Sa21 00Sa21 90Tu01
⁴⁴ Ar- ³⁹ K _{1.128}		-21450 -22150 5862.9	270 370 1.7			-0.7 1.2	2 2 2			GA5 MA8	1.5 1.0 1.0	91Zh24 00Sa21 03B1.1
44 Sc-C _{3.667} 44 V-C _{3.667} 40 Ca(α , γ) ⁴⁴ Ti		-40480 -25890 5127.1	410 130 0.7	-40597.2	1.9	-0.2	U 2 2			TO6 1.0	1.5 1.0	98Ba.A * 02St.A * 82Di05
43 Ca(n, γ) 44 Ca		11130.6 11130.1 11131.54	0.5 0.7 0.29	11131.16	0.23	1.1 1.5 -1.3	- -			Bdn		69Ar.A Z 72Wh02 Z 03Fi.A
43 Ca(p, γ) ⁴⁴ Sc 44 K(β^{-}) ⁴⁴ Ca	ave.	11131.17 6694 5580	0.24 2 80	6696.4 5660	1.7 40	0.0 1.2	1 2 2	98	95 ⁴⁴ Ca			average 71Po.A 70Le05
$^{44}Ca(t,{}^{3}He){}^{44}K$ $^{44}Sc(\beta^+){}^{44}Ca$		-5660 3642	40 5	-5640 3652.4	40 1.8	0.5	2 R R			LAI		70Aj01 50Br52
* ⁴⁴ Sc-C _{3.667} * ⁴⁴ V-C _{3.667}	M-A=-3' M-A=-2.	7570(370) ke 3980(80) keV	offor mixtur for mixtur	re gs+m at 270 e gs+m at 270	0.95 keV #100 keV	0.5	к					Ens99 ** Nubase **
⁴⁵ S-C _{3.75}		-3610 -3330	2460	-3490	1870	0.0	2			GA4 GA5	1.0	00Sa21
⁴⁵ Cl-C _{3.75}		-19690 -20300 10850	140 700	-19710	130	-0.2 0.6	2 2 2			GA4 TO3	1.0 1.5	00Sa21 90Tu01 00Sa21
45 Ar 39 K _{1.154} 45 Cr $^{-}$ C _{3.75}		-19850 9922.45 -20360	400 0.55 540	1100	10	0.3	2 2 2			GA5 MA8 1.0	1.0 1.0 1.0	00Sa21 03Bl.1 02St.A *
⁻⁵ Fe(2p) ⁴⁵ Cr ⁴⁴ Ca(n,γ) ⁴⁵ Ca		1140 1100 7414.8	40 100 1.0	1130 7414.79	40 0.17	-0.1 0.3 0.0	3 3 U					02Gi09 02Pf02 69Ar.A Z
	ave.	7414.83 7414.79 7414.80	0.3 0.21 0.17			$-0.1 \\ 0.0 \\ -0.1$	- - 1	99	98 ⁴⁵ Ca	MMn Bdn		80Is02 Z 03Fi.A average

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
44 Ca(p, γ) 45 Sc		6887.8	1.2	6888.3	0.8	0.4	1	46	43 ⁴⁵ Sc			74Sc02 Z
$^{45}Ca(\beta^{-})^{45}Sc$		258	2	255.8	0.8	-1.1	1	17	15 ⁴⁵ Sc			65Fr12
$^{45}\text{Ti}(\beta^+)^{45}\text{Sc}$		2066	5	2062.1	0.5	-0.8	U					66Po04
45Sc(p,n)45Ti		-2844.4	0.5				2			PTB		85Sc16 Z
* ⁴⁵ Cr-C _{3.75}	M-A=-1	18940(500) ke	V for mixt	ure gs+m at 5	0#100 ke	V						Nubase **
⁴⁶ Cl-C _{3.833}		-16000 -14940	860 1730	-15790	770	0.2 - 0.5	2			GA4 GA5	1.0	00Sa21 00Sa21
46 Sc-C _{3.833}		-44650	230	-44828.1	0.9	-0.5	Ũ			TO6	1.5	98Ba.A *
³² S(¹⁰ O,2n) ⁴⁰ Cr		-17422	20	1.7.4.6.6	-	0.0	2					72Zi02
⁴⁶ Ti(³ He, ⁶ He) ⁴⁵ Ti		-17470	12	-1/466	1	0.3	R			MSU		7/Mu03 *
$^{46}Ca(t,\alpha)^{15}K$		5998	10	4127.2	2.2	0.7	2			Ald		68Sa09
$^{46}C_{0}(^{3}H_{2},\alpha)^{45}C_{0}$		-4144	10	-4137.2	2.3	0.7	-			AIG		0/BJ05 71Bo25
$46C_{\alpha}(d t)^{45}C_{\alpha}$	01/0	10194	10	10165.2	2.5	-1.1	1	10	10 46 Co	MIT I		/1Ka55
45 So(n x) ⁴⁶ So	ave.	-4133	0.2	-4137.2	2.5	-0.3	2	10	10 °Ca	DNn		average
Sc(11,7) SC		8760.58	0.5	6700.04	0.10	0.1	2			DINII Utr		82Ti02 7
		8760.58	0.14			-0.6	2			Bdn		03Fi A
⁴⁵ Sc(p,γ) ⁴⁶ Ti		10344.7	0.7	10344.6	0.6	-0.1	1	83	42 45 Sc	Dan		71Gu.A
⁴⁶ Ti(³ He,t) ⁴⁶ V		-7069.0	0.6	1001110	5.0	5.1	2	00		Mun		77Vo02
46Sc-C2 822	M-A=-4	41520(210) ke	V for mixt	ure gs+m at 1	42.528 ke	eV	-					Ens00 **
⁴⁶ Ti(³ He, ⁶ He) ⁴³ Ti	Average	with ref. Q red	luced by 3	for recalibrati	ion ²⁷ Al(³	He, ⁶ He	;)					75Mu09**
⁴⁷ Ar-Caur		-25400	600	-27810	110	-2.7	в			TO3	1.5	90Tu01
5.917		-26570	1360			-0.9	U			GA5	1.0	00Sa21
47Sc-C _{3.917}		-47630	230	-47592.5	2.2	0.1	U			TO6	1.5	98Ba.A *
C ³⁵ Cl- ⁴⁷ Ti		17085.94	0.82	17089.6	0.9	1.8	1	19	18 ⁴⁷ Ti	H32	2.5	79Ko10
⁴⁶ Ti ¹³ C- ⁴⁷ Ti C		4218.03	0.94	4223.3	0.3	2.2	1	2	1 ⁴⁶ Ti	H32	2.5	79Ko10
⁴⁶ Ca(n,γ) ⁴⁷ Ca		7277.4	0.6	7276.36	0.27	-1.7	-					70Cr04 Z
		7276.1	0.3			0.9	-			Bdn		03Fi.A
	ave.	7276.36	0.27			0.0	1	100	90 ⁴⁶ Ca			average
⁴⁶ Ti(n,γ) ⁴⁷ Ti		8875.1	3.0	8880.29	0.29	1.7	U					69Te01 Z
		8880.5	0.3			-0.7	1	93	57 ⁴⁶ Ti	Bdn		03Fi.A
⁴⁶ Ti(d,p) ⁴⁷ Ti		6654.3	1.7	6655.72	0.29	0.8	U			NDm		76Jo01
$^{46}\text{Ti}(p,\gamma)^{47}\text{V}$		5167.60	0.07				2		17	Utr		86De13 *
$^{4/}Ca(\beta^{-})^{4/}Sc$		1991.9	1.2	1992.0	1.2	0.1	1	96	83 ⁴⁷ Ca			87Ju04
$^{4/}Sc(\beta^{-})^{4/}Ti$		600	2	600.3	1.9	0.1	1	88	87 ⁴ /Sc			56Gr12
$^{47}Sc-C_{3.917}$	M-A=-4	44320(210) ke	V for mixt	ure gs+m at 7	66.83 ke	V and						Ens95 **
⁴⁶ Ti(p,γ) ⁴⁷ V	assun E(p)=985	ning ratio R=0 5.94(0.05,Z) to).07(3), fro 6132.39((om half-life=2).04,Z) level	/2 ns and	TOF=1	μs					GAu ** NDS951**
¹³ C ³⁵ Cl- ⁴⁸ Ti		24261.73	0.75	24261.2	0.9	-0.3	1	22	22 ⁴⁸ Ti	H32	2.5	79Ko10
46T; 37 C1 48T; 35 C1		-51480	120	1725.2	0.2	2.2	2	2	1 46	1.0	1.0	02St.A
$^{48}C_{2}(\alpha ^{9}P_{-})^{43}A_{-}$		1/30.29	0.87	1/35.2	0.3	2.2	I	2	1 10 11	H32 D#1-	2.5	74Le01
$48C_0(3H_0, 7B_0)$ 44 A		-21160	70	-2112/	/	0.5	U			DIK		74Je01
$48C_{2}(\alpha^{7}B_{2})^{45}\Lambda r$		-12302	20 60	-12380	4	-0.9	U			IVISU Brlz		741601
$48C_0(61; 8D)$ Ar		-2/040	70	-21189	4	0.9	0			DIK Del-		74Je01
$48_{Ca}(^{14}C_{16})^{16}A^{46}A^{-16}$		-23323	70 50	-25550	40	-0.1	2			DIK		74Je01 80Mo40
$^{48}C_{0}(d \alpha)^{46}K$		-0739	50 15	-0740	40	0.0	2			ANI		65Ma07
46 Ti $(^{3}$ He p $)^{48}$ Cr		5550	10	5556	7	03	∠ P			CIT		67Mi02
$^{48}Ca(^{14}C ^{15}O)^{47} \Delta r$		-18142	100	5550	,	0.5	2			MSU		85Be50
$^{48}Ca(d^{3}He)^{47}K$		-10304	12	-10313	7	-0.8	2			ANI		66Ne01
$^{48}Ca(t,\alpha)^{47}K$		4006	15	4007	7	0.1	2			LAI		66Wi11
		4001	10		,	0.6	$\tilde{2}$			Ald		68Sa09
48Ca(d,t)47Ca		-3699	10	-3688	4	1.1	_			ANL		66Er02
48 Ca $(^{3}$ He, $\alpha)^{47}$ Ca		10630	12	10632	4	0.2	_			ANL		66Er02
(·,··, /		10642	10			-1.0	_			MIT		71Ra35
⁴⁸ Ca(d,t) ⁴⁷ Ca	ave.	-3689	6	-3688	4	0.2	1	45	38 ⁴⁸ Ca			average
												-

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁴⁷ Ti(n,γ) ⁴⁸ Ti		11626.65	0.04	11626.65	0.04	0.0	1	100	56 ⁴⁸ Ti	Ptn		84Ru06 Z
		11626.66	0.23			0.0	U			Bdn		03Fi.A
48Ca(7Li,7Be)48K		-12959	27	-12952	24	0.3	2			Can		78We14
⁴⁸ Ca(¹⁴ C, ¹⁴ N) ⁴⁸ K		-11910	50	-11934	24	-0.5	2			Mun		80Ma40
$^{48}Ca(p,n)^{48}Sc$		-534	15	-500	5	2.2	В					67Mc07 Z
47.7		-506	7			0.8	1	58	42 48Sc			68Mc10
48 Sc(β^{-}) 48 Ti		3986	7	3992	5	0.8	1	58	58 48Sc			57Va08
$^{48}V(\beta^+)^{48}Ti$		4008	5	4012.3	2.4	0.9	2					53Ma64
		4013.6	3			-0.4	2					67Ko01
		4014	7			-0.2	2					74Me15
* ⁴⁸ Ca(³ He, ⁷ Be) ⁴⁴ Ar	M=-32	270(20) Q=-1	2791(20)	for ⁷ Be 429 k	eV level		_					GAu **
48.0 (5146.6	0.7	5146.45	0.10	0.0	2					604 A 7
$4^{\circ}Ca(n,\gamma)^{4}Ca$		5146.6	0.7	5146.45	0.18	-0.2	2					69Ar.A Z
		5146.38	0.30			0.2	2			D 1		70Cr04 Z
48 0 () 49 0		5146.48	0.23	0.07.0	2.0	-0.1	2			Bdn		03F1.A
$^{10}Ca(p,\gamma)^{10}Sc$		9628.7	3.6	9627.2	2.9	-0.4	_					68V101 Z
$^{48}Ca(d,n)^{49}Sc$		7404	7	7402.6	2.9	-0.2	_	~ ~	15 18 0			68Gr09
$^{48}Ca(p,\gamma)^{49}Sc$	ave.	9629	3	9627.2	2.9	-0.5	1	84	45 ⁴ °Ca			average
$(n,\gamma)^{43}$		8142.39	0.03	8142.389	0.029	0.0	-			Ptn		83Ru08 Z
		8142.35	0.16			0.2	_	100	TO 40 T	Bdn		03F1.A
48	ave.	8142.389	0.029			0.0	1	100	79 ⁴⁹ Ti			average
⁴⁸ Π(p,γ) ⁴⁹ V		6756.8	1.5	6758.2	0.8	0.9	R					72K106
49 K(β^{-}) 49 Ca		10970	70				3		10			86Mi08
49 Sc(β^-) 49 Ti		2010	5	2006	4	-0.7	1	61	61 ⁴⁹ Sc			61Re06
⁴⁹ Ti(p,n) ⁴⁹ V		-1383.6	1.0	-1384.2	0.8	-0.6	2			Oak		64Jo11 Z
⁵⁰ K-C		-26100	800	-27220	300	-0.9	R			TO3	1.5	90Tu01
⁵⁰ Sc-C		-47940	250	-47812	17	0.3	U			TO6	1.5	98Ba.A *
50 Cr(p. 6 He) 45 V		-28686	17				2			MSU		75Mu09 *
${}^{50}Cr({}^{3}He {}^{6}He){}^{47}Cr$		-18365	14				2			MSU		77Mu03 *
${}^{48}Ca(t n)^{50}Ca$		3012	15	3018	8	04	2			Ald		66Hi01
Cu(t,p) Cu		3020	10	5010	0	-0.2	2			LAI		66Wi11
$^{48}Ca(^{3}He n)^{50}Sc$		7965	15			0.2	2			ANI		69Oh01
${}^{50}Cr(p t)^{48}Cr$		-15100	8	-15101	7	_0.1	2			Oak		71Do18
49 Ti(n 30 Ti		10030 10	0.04	10030 10	0.04	0.1	1	100	84 ⁵⁰ Ti	Dtn		84Pu06 7
11(11,7) 11		10939.19	0.04	10939.19	0.04	0.0	II.	100	04 11	Rdn		03Ei A
50Cr(d t) ⁴⁹ Cr		6743 1	2.2			0.0	2			NDm		761001
$50 K (B^{-}) 50 C_{2}$		14050	300	14220	280	0.6	3			NDIII		86Mi08
$50 V(p p)^{50} T_{i}$		2084	10	2087 5	1.0	0.0	11			пт		04We17
50 Cr(3112, 4) 50 Mrs		2964	10	2967.3	1.0	0.5	1	22	22 50 Mm	ILL Mue		94 wa17
$50 Cr(311a \pm 50 Mr) = 54 E_0 (54 Ca)$		-/030.3	0.4	-/031.28	0.25	-1.9	1	33	52 50 Mm	ChD		77V002
50 G	M A	44520(220) 1	0.17	010.25	0.10	0.0	1	00	08 111	CIIK		6/K034 *
$50 G_{4.167}$	M-A=	-44330(220)1		ixture gs+m a	1 230.893	ĸev						EIIS93 **
50 G (31 61)47 G	Origina	I Q increase b	y 1 10r rec	calibration								AHW **
50 Cr(3 He, 50 He) 10 Cr	Origina	I Q reduced by	y 3, see	11(⁵ He, ⁶ He)	1							AHW **
$*^{50}$ Cr(⁵ He,t) ⁵⁰ Mn- ⁵⁴ Fe()	Q-Q=2	10.90(0.16) to	650.99(0	.06) level in ⁵⁶	Mn							92Ha.B **
⁵¹ Ca-C _{4 25}		-38800	350	-38500	100	0.6	U			TO3	1.5	90Tu01
- 4.23		-38900	400			0.7	Ū			TO5	1.5	94Se12
49Ti 37Cl-51V 35Cl		956.7	0.7	960.4	1.1	1.3	1	14	9 ⁵¹ V	H18	4.0	64Ba03
⁴⁸ Ca(¹⁴ C, ¹¹ C) ⁵¹ Ca		-15900	150	-15980	90	-0.5	2	-		Mun		80Ma40 *
		-16886	100			9.0	В			MSU		85Be50
⁴⁸ Ca(¹⁸ O, ¹⁵ O) ⁵¹ Ca		-12040	120	-11990	90	0.4	2			Hei		85Br03 *
		-13900	40			47.8	В			Can		88Ca21
48 Ca(α ,p) ⁵¹ Sc		-5860	20				2			ANI		66Er02
${}^{50}\text{Ti}(\mathbf{n},\gamma)^{51}\text{Ti}$		6372.3	1.2	6372.5	0.5	0.2	2					71Ar39 7
(,/)		6372.6	0.6	0012.0	0.0	_0.2	2			Bdn		03Fi A
50 Ti(d p) 51 Ti		4147 7	1.2	4147 9	0.5	0.2	2			NDm		76Io01
50 Ti(n γ) ⁵¹ V		8063 3	2.0	8063 7	1.0	0.2	-			T DII		70K105 7
(P,// ·		8063.6	2.0	0000.7	1.0	0.0	_					70Ma36 Z
	ave	8063.5	14			0.2	1	48	32 ⁵¹ V			average
	ave.	0000.0	1.7			5.2		-10	, <u> </u>			average

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	. Lab	F	Reference
50 V(n γ) ⁵¹ V		11051-18	0.10	11051 15	0.08	-0.3	2			MMn		78Ro03 7
(((,,)))		11051.05	0.17	11001110	0.00	0.6	2			ILn		91Mi08 Z
		11051.14	0.22			0.0	2			Bdn		03Fi A
$50 Cr(n x)^{51} Cr$		0261 71	0.22	9260 62	0.20	3.6	B			MMn		801:02 7
$CI(II,\gamma)$ CI		0260.62	0.30	9200.02	0.20	-3.0	1	00	51 ⁵¹ Cr	Ddn		02E; A
50 Cur(n + + + 51 Ma		9200.05	0.20	5270.91	0.20	0.0	1	99	51 ° Cr	Dun		03FI.A 72E-25 7
50 Cr(p, γ) 51 Min		5270.8	0.5	5270.81	0.30	0.0	1	97	52 5°Cr	DTD		/2F025 Z
³¹ V(p,n) ³¹ Cr		-1534.93	0.24	-1534.92	0.24	0.0	1	98	49 ⁵¹ V	PIB		898c24 Z
* ⁴⁸ Ca(¹⁴ C, ¹¹ C) ⁵¹ Ca	May be a	⁴⁰ Ca contami	nation. 1	here is a -169	00(150)	peak						85Be50 **
* ⁴⁸ Ca(¹⁸ O, ¹⁵ O) ⁵¹ Ca	Proposed	970(90) level	reinterpr	etated as grou	ind-state l	by ref.						85Be50 **
* ⁴⁸ Ca(¹⁸ O, ¹⁵ O) ⁵¹ Ca	Weak M-	-A=-36120(1	20) level	disregarded								AHW **
⁵² Ca-C _{4,222}		-34900	500				2			TO3	1.5	90Tu01
$52Sc-C_{4,333}$		-43500	230	-43320	210	0.5	2			TO3	15	90Tu01
4.333		-43350	250	10020	210	0.1	2			TOS	1.5	94Se12
		-43110	240			_0.1	2			TO5	1.5	98Ba A
50Ti(t p) 52 Ti		5608	10	5600	7	0.0	2			I A1	1.5	66Wi11
11(t,p) 11		5700	10	5099	/	0.1	2			LAI		71Ca19
51 1/1 2052 1/		7211.2	0.5	7211.24	0.12	-0.1	2			LAI		24Da15
$\mathbf{v}(\mathbf{n},\boldsymbol{\gamma})$		7311.2	0.5	/311.24	0.15	0.1	2			Π.,		04De15
		7311.18	0.20			0.2	2			ILII D.1.		91W108 Z
51 11 1 1 52 0		/311.2/	0.15	10504.5	1.0	-0.2	2	10	0.5117	Ban		03F1.A
$V(\mathbf{p},\boldsymbol{\gamma})^{-2}C\mathbf{r}$		10500.7	2.8	10504.5	1.0	1.4	1	13	9 51 0			74R044 Z
$^{52}Ca(\beta^-)^{52}Sc$		5700	200	7850	720	10.7	В					85Hu03
52 Sc(β^-) 52 Ti		8020	250	9110	190	4.4	В					85Hu03
52 Mn(β^+) 52 Cr		4710.9	4.	4711.5	1.9	0.1	R					58Ko57
		4707.9	6.			0.6	R					60Ka20
52 Fe(β^+) 52 Mn		2372	10	2374	6	0.2	3					56Ar33
		2510	100			-1.4	U					95Ir01
${}^{52}\mathrm{Fe}^m(\beta^+){}^{52}\mathrm{Mn}$		9187	130				3					79Ge02
⁵³ Sc-C ₄ 7		-41440	260	-40390#	320#	2.7	D			TO3	1.5	90Tu01 *
4.41/		-41830	280			3.4	D			TO5	1.5	94Se12 *
		-41100	400			1.2	D			TO6	1.5	98Ba.A *
${}^{52}Cr(n \gamma){}^{53}Cr$		7939 52	03	7939 12	0.14	-13	_			MMn		80Is02 Z
01(11,7) 01		7939.01	0.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.1.1	0.6	_			BNn		80Ko01 Z
		7939.10	0.28			0.1	_			Bdn		03Fi A
	21/2	7030.15	0.14			0.1	1	08	76 ⁵² Cr	Dun		0011.11
$52Cr(n_{20})^{53}Mn_{20}$	ave.	6550.1	1.1	6550.0	0.2	-0.2	II.	90	70 CI			70Mo25 7
$Cr(p,\gamma)$ with		6559.1	1.1	0339.9	0.5	0.8	1	07	c7 53 Ma			70Ma25 Z
53 C m() 52 E		0559.72	0.30	1505	21	0.0	1	87	6/ ** Mn			795W01 Z
⁵⁵ Co ^m (p) ⁵² Fe		1600.5	30.	1595	21	-0.2	4					70Ce04
52		1590	30			0.2	4					76V102
$^{53}\text{Ti}(\beta^{-})^{53}\text{V}$		5020	100				3			ANB		77Pa01
⁵⁵ Cr(p,n) ⁵⁵ Mn		-1381.1	1.6	-1379.2	0.4	1.2	U			Oak		64Jo11 Z
* ⁵³ Sc-C _{4,417}	Average 7	FO3+TO5+TO	06 - 4152	0(190)								GAu **
* ⁵³ Sc-C _{4.417}	Systemati	ical trends sug	ggest ⁵³ Sc	1060 less bo	und							CTh **
⁵⁴ Sc-C.		-36060	500	-36740	400	-09	2			TO3	15	90Tu01 *
		-37060	500	207.10		04	2			TOS	15	94Se12 *
		-36960	400			0.4	2			T06	15	98Ba A +
⁵⁴ Ti C		48820	230	48050	130	0.4	ว้			TO2	1.5	00Tp01
$11-C_{4.5}$		-40020	250	-40930	150	-0.4	2			TO5	1.5	04Se12
		-49130	230			0.5	2			105 TO4	1.5	745012
13 0 37 01 54 5 35 01		-40020	200	007465	0.0	-0.3	2		c 54m	100	1.5	70Da.A
54 F G		25/44.46	1.26	23/46.7	0.8	0.7	1	6	6 Fe	H39	2.5	84Ha20
⁵⁴ Fe(p, ^o He) ⁺² Mn		-28943	24				2			MSU		/5Mu09 *
3 Fe(α , $^{\circ}$ He) 50 Fe		-50950	60				2			Tex		77Tr05

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
54 Fe(p, α) 51 Mn		-3146.9	1.1	-3147.1	0.9	-0.1	1	66	55 ⁵¹ Mn	NDm		74Jo14
⁵⁴ Fe(³ He, ⁶ He) ⁵¹ Fe		-18694	15				2			MSU		77Mu03 *
54 Fe(d, α) 52 Mn		5163.3	2.2	5163.8	1.8	0.2	2			NDm		76Jo01
⁵⁴ Fe(p,t) ⁵² Fe		-15584	8	-15582	7	0.3	R					78Ko27 *
54Cr(d, 3He)53V		-6879.2	3.1				2			NDm		79Br.B
${}^{53}Cr(n,\gamma){}^{54}Cr$		9719.30	0.16	9719.12	0.12	-1.1	_					68Wh03 Z
		9718.3	0.4			2.1	-					72Lo26 Z
		9718.91	0.27			0.8	-			MMn		80Is02 Z
		9719.7	0.5			-1.2	-			SAn		89Ho15 Z
		9720.00	0.20			-4.4	В			Bdn		03Fi.A
	ave.	9719.14	0.13			-0.2	1	98	78 ⁵³ Cr			average
53 Cr(p, γ) 54 Mn		7559.6	1.0				2					75We10 Z
54 Fe(d,t) 53 Fe		-7121.5	2.1	-7121.2	1.6	0.1	2			NDm		74Jo14
54 Fe(3 He, α) 53 Fe		7199.6	2.6	7199.2	1.6	-0.2	2			NDm		74Jo14
${}^{54}\text{Ti}(\beta^{-}){}^{54}\text{V}$		4280	160	4300	130	0.1	R					96Do23
⁵⁴ Cr(t, ³ He) ⁵⁴ V		-7023	15				2			LA1		77F103
⁵⁴ Fe(³ He,t) ⁵⁴ Co- ⁴² Ca() ⁴² Sc		-1817.24	0.18	-1817.08	0.17	0.9	1	86	80 ⁵⁴ Co	ChR		87Ko34
$*^{54}$ Sc-C _{4.5}	Original	-36000(500)) or M=-3	3500(470) ke	eV							GAu **
$*^{54}Sc-C_{4.5}$	Original	-37000(500)) or M=-3	34470(470) ke	eV							GAu **
$*^{54}Sc-C_{4.5}$	M-A=-	34370(370)	keV for m	ixture gs+m	at 110(3)	keV						Nubase **
* ⁵⁴ Fe(p, ⁶ He) ⁴⁹ Mn	Q increa	sed 1 for reca	alibration									AHW **
* ⁵⁴ Fe(³ He, ⁶ He) ⁵¹ Fe	Average	with ref. See	e ⁴⁶ Ti(³ He	e, ⁶ He)								75Mu09**
$*^{54}$ Fe(p,t) ⁵² Fe	Q=-212	39(8) to 5655	5.4 level									Ens00 **
⁵⁵ Sc-C		-30600	1100	-31760	790	-07	2			TO3	15	90Tu01
4.585		-32100	600			0.4	2			TO6	1.5	98Ba.A
⁵⁵ Ti-C ₄ 592		-44650	280	-44730	160	-0.2	2			TO3	1.5	90Tu01
4.585		-44880	260			0.4	2			TO5	1.5	94Se12
		-44360	350			-0.7	2			TO6	1.5	98Ba.A
${}^{54}Cr(n,\gamma){}^{55}Cr$		6246.2	0.4	6246.26	0.19	0.2	2					72Wh05 Z
		6246.28	0.21			-0.1	2			Bdn		03Fi.A
${}^{54}Cr(p,\gamma){}^{55}Mn$		8067.2	0.4	8067.0	0.4	-0.5	1	83	80 ⁵⁴ Cr			78We12
54 Fe(n, γ) 55 Fe		9297.91	0.3	9298.23	0.20	1.1	_			MMn		80Is02 Z
		9298.53	0.27			-1.1	-			Bdn		03Fi.A
	ave.	9298.25	0.20			-0.1	1	96	56 ⁵⁴ Fe			average
⁵⁴ Fe(p,γ) ⁵⁵ Co		5064.0	0.7	5064.1	0.3	0.1	-					77Er02 Z
		5063.9	0.4			0.4	-					80Ha36 Z
	ave.	5063.9	0.3			0.4	1	91	69 ⁵⁵ Co			average
${}^{55}\text{Ti}(\beta^{-}){}^{55}\text{V}$		7440	200	7480	180	0.2	R					96Do23
${}^{55}V(\beta^{-}){}^{55}Cr$		5956	100				3			ANB		77Na17
55 Fe(ε) 55 Mn		231.4	0.4	231.21	0.18	-0.5	-					89Z1.A
		231.0	1.0			0.2	U					93Wi05 *
		231.37	0.30			-0.5	-					95Da14 *
		231.0	0.3			0.7	-					95Sy01 *
⁵⁵ Mn(p,n) ⁵⁵ Fe		-1015.7	2.	-1013.56	0.18	1.1	U			Nvl		59Go68 Z
~ ~ ~		-1014.6	0.8			1.3	U			Oak		64Jo11 Z
55 Fe(ε) 55 Mn	ave.	231.23	0.19	231.21	0.18	-0.1	1	97	60 ⁵⁵ Fe			average
$*^{55}$ Fe(ε) 55 Mn	Error est	imate by eva	luator									AHW **
$*^{55}$ Fe(ε) 55 Mn	Original	error 0.10 in	creased by	y evaluator								GAu **
$*^{22}$ Fe(ε) 22 Mn	Original	statistical er	ror 0.10 ir	creased by e	valuator							GAu **
⁵⁶ Ti-C _{4.667}		-41300	350	-41800	210	-1.0	2			TO3	1.5	90Tu01
		-42010	300			0.5	2			TO5	1.5	94Se12
		-41770	270			-0.1	2			TO6	1.5	98Ba.A
⁵⁶ V-C _{4.667}		-49470	250	-49470	220	0.0	2			TO3	1.5	90Tu01
		-49640	260			0.4	2			TO5	1.5	94Se12
		-49310	250			-0.4	2			TO6	1.5	98Ba.A

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
⁵⁶ Cr- ⁸⁵ Rb		-1216.3	2.0				2			MA8	1.0	03Gu A
⁵⁶ Mp ⁸⁵ Pb		-1210.5	2.0	2064 5	0.7	0.4	1	24	24 56 Mp	MAS	1.0	03Gu A
$^{56}\text{Fe}(p, \alpha)^{53}\text{Mp}$		-2905.1	0.8	-1053.4	0.7	1.4	1	35	24 Mn	NDm	1.0	74Io14
$^{54}Cr(t n)^{56}Cr$		-1052.5	30	-1053.4	2.0	-1.4	II.	55	55 IVIII	Ald		68Cb20
CI(i,p) CI		6024	10	0009.5	2.0	-14	U			Τ Δ1		71Ca19
⁵⁴ Ee(³ He n) ⁵⁶ Ni		4513	14	4511	11	_0.1	2			CIT		67Mi02
$55Mn(n v)^{56}Mn$		7270 53	03	7270.45	0.13	_0.1	-			MMn		80Is02 7
win(ii, j) win		7270.33	0.15	1210.45	0.15	0.3	_			Rdn		03Fi A
	ave	7270.42	0.13			0.0	1	99	76 ⁵⁶ Mn	Dun		average
⁵⁵ Mn(n v) ⁵⁶ Fe	<i>uve</i> .	10183 80	0.15	10183 74	0.17	-0.3	1	95	61 ⁵⁶ Fe	Utr		92Gu03 Z
${}^{56}\text{Ti}(\beta^{-}){}^{56}\text{V}$		7030	330	7140	280	0.3	R	15	01 10	ou		96Do23
${}^{56}\text{Co}(\beta^+){}^{56}\text{Fe}$		4566.0	2.0	,110	200	010	2					65Pe18
⁵⁷ Ti-C		-35700	1000	-36010	490	-0.2	2			TO3	15	90Tu01
4.75		-36200	400	20010	.,,,	0.3	2			TO6	1.5	98Ba.A
57V-C		-47300	400	-47440	250	-0.2	2			TO3	15	90Tu01
4.75		-47640	270	.,	200	0.5	2			TO5	1.5	94Se12
		-47320	250			-0.3	2			TO6	1.5	98Ba.A
57Cr-C4 75		-56240	250	-56387.0	2.0	-0.4	U			TO3	1.5	90Tu01
4.75		-56300	260			-0.2	U			TO5	1.5	94Se12
		-56170	270			-0.5	U			TO6	1.5	98Ba.A
57Cr-85Rb 671		2802.1	2.0				2			MA8	1.0	03Gu.A
⁵⁷ Mn- ⁸⁵ Rb _{.671}		-2525.1	2.3	-2525.5	2.0	-0.2	1	75	75 ⁵⁷ Mn	MA8	1.0	03Gu.A
⁵⁷ Ni- ⁸⁵ Rb _{.671}		-1019.8	2.7	-1017.4	1.9	0.9	1	52	52 ⁵⁷ Ni	MA8	1.0	03Gu.A
${}^{54}Cr(\alpha,p){}^{57}Mn$		-4308	8	-4309.8	1.9	-0.2	U			NDm		76Ma03
		-4302	8			-1.0	U			Can		78An10
54 Fe(α ,p) 57 Co		-1770.3	1.8	-1772.3	0.6	-1.1	U			NDm		74Jo14
⁵⁵ Mn(t,p) ⁵⁷ Mn		7438.2	3.6	7437.1	1.9	-0.3	1	28	25 ⁵⁷ Mn	NDm		77Ma12
56 Fe(n, γ) 57 Fe		7646.10	0.17	7646.096	0.029	0.0	0			BNn		76Al16 Z
		7645.96	0.20			0.7	U			BNn		78St25 Z
		7646.13	0.21			-0.2	U			MMn		801s02 Z
		7645.93	0.15			1.1	U			Ptn		80Ve05 Z
		7646.0956	0.0300			0.0	-			PIB		9/R026 *
		7646.10	0.13			0.0	1	100	80 57 Ee	Bull		03FI.A
56Eo(n 2057Co	ave.	6027.7	1.0	6027.8	0.5	0.0	1	100	60 Fe			700b02 Z
$\operatorname{re}(\mathbf{p}, \boldsymbol{\gamma})$ Co		6029.3	1.0	0027.8	0.5	1.0	_					71Le21 Z
	91/0	6029.3	0.8			-1.0	1	13	24 57 Co			JUC21 Z
$57 \text{Ti}(B^{-})^{57} \text{V}$	ave.	11020	950	10640	510	-0.4	R	45	24 00			96Do23
${}^{57}Cr(\beta^{-}){}^{57}Mn$		5100	100	4962 7	2.6	_14	II.			ANB		78Da04
${}^{57}\text{Fe}(p n){}^{57}\text{Co}$		-16194	2.0	-1618.3	0.5	0.5	_			Oak		64Io11 Z
10(p,ii) 00		-1618.2	2.0	101010	012	0.0	_			Can		70Kn03
	ave.	-1618.8	1.4			0.4	1	15	9 ⁵⁷ Co	eun		average
$*^{56}$ Fe(n, γ) ⁵⁷ Fe	Original	error 0.0005 inc	creased for c	alibration								GAu **
59												
³⁶ V-C _{4.833}		-43210	280	-43170	270	0.1	2			TO3	1.5	90Tu01
		-43350	280			0.4	2			TO5	1.5	94Se12
580 0		-42/00	400		220	-0.8	2			106	1.5	98Ba.A
$^{50}Cr - C_{4.833}$		-55680	230	-55650	220	0.1	2			103	1.5	90Tu01
		-55/50	260			0.3	2			105	1.5	94Se12
58Ni(n 611-)53Ca		-33490	270			-0.4	2			MOU	1.5	70Da.A
$58Ni(\alpha, 8H_{0})54Ni$		-2/009	10 50				2			Toy		75WI009 *
58 Ni(n, me) 55 Co		1225 1	0.0	1226 1	0.6	1.1	2	42	21 55 Co	NDm		741614
⁵⁸ Ni(³ He, ⁶ He) ⁵⁵ Ni		-1355.1 -17556	11	-1330.1	0.0	-1.1	2	42	51 0	MSU		77Mu03 *

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁵⁸ Ni(n t) ⁵⁶ Ni		-13987	18	-13985	11	0.1	R			Bld		65Ho07
${}^{57}\text{Fe}(n \ \gamma){}^{58}\text{Fe}$		10044 60	03	10044 60	0.18	0.0	_			MMn		80Is02 Z
10(1,7) 10		10044.65	0.24	10011100	0.10	-0.2	_			Bdn		03Fi.A
	ave.	10044.63	0.19			-0.1	1	96	84 ⁵⁸ Fe			average
57 Fe(p, γ) 58 Co		6952	3	6954.7	1.2	0.9	1	16	14 ⁵⁸ Co			70Er03
${}^{58}\text{Ni}({}^{3}\text{He},\alpha){}^{57}\text{Ni}$		8360.3	4.	8360.6	1.8	0.1	1	21	19 ⁵⁷ Ni	MSU		76Na23
58Ni(7Li,8He)57Cu		-29613	17	-29608	17	0.3	2			Tex		86Ga19
⁵⁸ Ni(¹⁴ N, ¹⁵ C) ⁵⁷ Cu		-19900	40	-19928	16	-0.7	2			Ber		87St04
58Fe(t,3He)58Mn		-6228	30				2			LAI		77Fl03 *
${}^{58}\text{Co}(\beta^+){}^{58}\text{Fe}$		2305	6	2307.5	1.2	0.4	U					52Ch31
		2307	4			0.1	U					63Rh02
58Ni(p,n)58Cu		-9351	5	-9348.0	1.4	0.6	2			Mar		64Ma.A
		-9352.6	3.4			1.3	2			Ric		66Bo20 Z
50		-9346.6	1.7			-0.8	2			Yal		690v01 Z
$^{58}\text{Ni}(\pi^+,\pi^-)^{58}\text{Zn}$		-16908	50				2					86Se04
* ⁵⁸ Ni(p, ⁶ He) ⁵³ Co	Q increas	sed 1 for recal	libration									AHW **
* ⁵⁸ Ni(³ He, ⁶ He) ⁵⁵ Ni	Average	with ref. See	⁴⁶ Ti(³ He	,⁰He)								75Mu09**
* ³ Fe(t, ³ He) ³ Mn	Q=-6300	(30) to ³⁸ Mn	^m at 71.73	8(0.05)								92Sc.A **
⁵⁹ V-C _{4.917}		-38500	400	-39790	330	-2.2	2			TO3	1.5	90Tu01
4.917		-40700	350			1.7	2			TO5	1.5	94Se12
		-39900	400			0.2	2			TO6	1.5	98Ba.A
⁵⁹ Cr-C _{4.917}		-51490	290	-51410	260	0.2	2			TO3	1.5	90Tu01 *
		-51640	310			0.5	2			TO5	1.5	94Se12 *
		-51100	310			-0.7	2			TO6	1.5	98Ba.A *
59 Co(p, α) 50 Fe		3240.4	1.4	3241.0	0.5	0.4	1	15	10 ⁵⁶ Fe	NDm		74Jo14
⁵⁹ Ni(p,t) ⁵⁷ Ni		-12738.2	3.3	-12734.5	1.8	1.1	1	30	29 ⁵⁷ Ni	MSU		76Na23
58 Fe(n, γ) 59 Fe		6581.15	0.30	6581.01	0.11	-0.5	2			Ptn		73Sp06 Z
		6580.94	0.20			0.4	2			Ptn		80Ve05 Z
58E-(6581.02	0.14	1226.1	0.5	0.0	2	4.4	21 57 0-	Bdn		03F1.A
59Co(d t) 58 Co		1330.5	0.7	1330.1	0.5	-0.5	1	44 62	51 ⁵⁰ Co	NDm		75Br29
58 Ni (m. a) 59 Ni		-4196.0	1.4	-4190.0	1.1	-0.4	1	02	01 C0	NDIII		74J014
$\operatorname{INI}(\Pi,\gamma)$ INI		8000 38	0.50	6999.27	0.05	-0.5	U			MMn		771c01 Z
		8999.10	0.20			-0.5	U U			II n		93Ha05 Z
		8999.28	0.05			-0.1	_			ORn		02Ra.A
		8999.15	0.18			0.7	_			Bdn		03Fi.A
	ave.	8999.27	0.05			0.1	1	100	88 ⁵⁸ Ni			average
58 Ni(p, γ) 59 Cu		3418.5	0.5				2					63Bo07 Z
G / / /		3419	2	3418.5	0.5	-0.3	U					70Fo09
		3416.7	2.0			0.9	U					75K106 Z
58 Ni(p, π^{-}) 59 Zn		-144735	40	-144740	40	-0.1	R					83Sh31
${}^{59}\text{Mn}(\beta^{-}){}^{59}\text{Fe}$		5200	100	5180	30	-0.2	U			ANB		77Pa18
⁵⁹ Ni(ε) ⁵⁹ Co		1074.5	1.3	1072.76	0.19	-1.3	U					76Be02 *
59Co(p,n)59Ni		-1855.8	2.0	-1855.11	0.19	0.3	U			MIT		51Mc48 Z
		-1854.3	4.0			-0.2	U					57Bu37 Z
		-1855.8	1.6			0.4	U		50	Oak		64Jo11 Z
50		-1855.33	0.20			1.1	1	89	70 ⁵⁹ Co	PTB		98Bo30
$^{59}Zn(\beta^+)^{59}Cu$		9120	100	9100	40	-0.2	3					81Ar13
$*^{59}Cr - C_{4.917}$	Original	-51220(240)	or M=-4	7710(230) keV	/							GAu **
$*^{59}Cr - C_{4.917}$	Original	-51370(270)	or M=-4	7850(250) keV								GAu **
$*^{59}$ Cr $-C_{4.917}$ $*^{59}$ Ni $(\varepsilon)^{59}$ Co	M-A=-4 Authors	47350(250) ko add B(K)=8.3	eV for m of Ni, cl	ixture gs+m at nanged in 7.7 c	503.0(1. of Co	7) keV						Nubase ** AHW **
⁶⁰ V-C ₅		-33860	700	-34970	510	-1.1	2			TO3	1.5	90Tu01 *
5		-35560	600			0.7	2			TO5	1.5	94Se12 *
		-35140	510			0.2	2			TO6	1.5	98Ba.A *
60Cr-C5		-49680	240	-49920	230	-0.7	2			TO3	1.5	90Tu01
		-50270	280			0.8	2			TO5	1.5	94Se12
		-49910	280			0.0	2			TO6	1.5	98Ba.A

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
⁶⁰ Mn–C _e		-56550	240	-57090	90	-1.5	U			TO3	1.5	90Tu01 *
		-56810	290	27070	,,,	-0.6	Ŭ			TO5	1.5	94Se12 *
		-56530	280			-1.3	U			TO6	1.5	98Ba.A *
60Co-C5		-66380	280	-66182.9	0.7	0.5	U			TO6	1.5	98Ba.A *
${}^{60}\text{Ni} - {}^{85}\text{Rb}_{706}$		-6937.8	1.6	-6937.2	0.7	0.4	1	17	17 ⁶⁰ Ni	MA8	1.0	03Gu.A
${}^{60}\text{Ni}(p,\alpha){}^{57}\text{Co}$		-263.6	0.7	-263.8	0.5	-0.3	1	43	36 ⁵⁷ Co	NDm		74Jo14
58Fe(t,p)60Fe		6907	15	6919	3	0.8	2			LAI		71Ca19
		6947	10			-2.8	2			MSU		76St11
		6913	4			1.6	2			LAl		78No05
60 Ni(d, α) ⁵⁸ Co		6084.5	2.2	6084.6	1.1	0.0	1	25	25 ⁵⁸ Co	NDm		74Jo14
⁵⁸ Ni(³ He,n) ⁶⁰ Zn		818	18	820	11	0.1	2			CIT		67Mi02
5 0 6 0		821	13			-0.1	2			Oak		72Gr39
⁵⁹ Co(n,γ) ⁶⁰ Co		7491.88	0.08	7491.92	0.07	0.5	2			BNn		84Ko29 Z
50 C0		7492.05	0.15			-0.9	2			Bdn		03Fi.A
$^{59}Ni(n,\gamma)^{60}Ni$		11387.6	0.4	11387.75	0.05	0.4	U		50			75Wi06 Z
60		11387.73	0.05			0.3	1	99	67 ⁵⁹ Ni	ORn		02Ra.A
⁶⁰ Ni(d,t) ³⁹ Ni		-5130.2	2.1	-5130.51	0.05	-0.1	U			NDm		74Jo14
60 Mn(β^-) 60 Fe		8234	86				3			ANB		78No03 *
$^{60}Co(\beta)^{00}N_1$		2823.6	1.0	2823.07	0.21	-0.5	U					68Wo02
⁶⁰ Ni(p,n) ⁶⁰ Cu	<u></u>	-6910.3	1.6	00/0501 11			2			Yal		690v01 Z
$*^{60}V - C_5$	Original -	-33800(700) o	r M=-315	00(650) keV								GAu **
$*^{60}V - C_5$	Original -	-35500(600) 0	r M=-330	/0(560) keV	0//150	1 101/1	1 17					GAu **
$*^{60}V - C_5$	M-A=-3	2/00(4/0) ke	v for mixt	ure gs+m+n at	10#150 ar	nd 101(1) keV					Nubase **
$*^{60}M_{P} = C_{5}$	M-A=-5	2540(250) ke	V IOF mixt	ure gs+m at 2	/1.90 KeV	,						Nubase **
$*^{60}M_{P} = C_{5}$	M = A = -3	2780(200) Ke	V IOI IIIXt	ure gs+m at 2	71.00 keV	,						Nubase **
$*^{60}C_{2}$	M = A = -3	(2320(230)) ke	V for mixt	ure gs+m at 2	71.90 Ke V 2 50 koV							FreeOO with
$*^{60}$ Mn $(\beta^{-})^{60}$ Fe	$E^{-}=5714$	(86) from 60 M	n^m at 271.	9(0.1) to 2792	2.4 level							NDS935**
flor o		44500	400	45280	270	1.2	2			TO2	1.5	007-01
$-C_{5.083}$		-44500	200	-45280	270	-1.5	2			TO5	1.5	901001
		-45120	280			-0.4	2			TO5	1.5	98Ba A
⁶¹ Mn–C		-55160	300	-55350	240	-0.4	2			TO3	1.5	90Tu01
-5.083		-55540	280			0.5	2			TO5	1.5	94Se12
		-55320	270			-0.1	2			TO6	1.5	98Ba.A
58Ni(6Li,t)61Zn		-4736	23	-4745	16	-0.4	R			LAI		78Wo01
60Ni(n,γ)61Ni		7820.22	0.40	7820.13	0.05	-0.2	U					75Wi06 Z
		7819.96	0.20			0.8	U			MMn		77Is01 Z
		7820.02	0.20			0.5	U			ILn		93Ha05 Z
		7820.12	0.05			0.2	-			ORn		02Ra.A
		7820.06	0.16			0.4	-			Bdn		03Fi.A
	ave.	7820.11	0.05			0.3	1	100	55 ⁶¹ Ni			average
$^{61}\text{Ga}(\beta^+)^{61}\text{Zn}$		9255	50				3					02We07
62Cr-C5 167		-42400	600	-43390	360	-1.1	2			TO3	1.5	90Tu01
5.107		-44200	400			1.4	2			TO5	1.5	94Se12
		-43100	350			-0.5	2			TO6	1.5	98Ba.A
62Mn-C5.167		-51510	270	-51570	240	-0.2	2			TO3	1.5	90Tu01
		-52030	280			1.1	2			TO5	1.5	94Se12
62 50		-51180	280			-0.9	2			TO6	1.5	98Ba.A
$^{02}Ni(p,\alpha)^{59}Co$		343.3	0.7	346.4	0.3	4.4	1	22	14 ⁵⁹ Co	NDm		74Jo14
$^{39}Co(\alpha,p)^{62}Ni$		-346.5	2.3	-346.4	0.3	0.1	U			NDm		74Jo14
⁰¹ Ni(n,γ) ⁰² Ni		10596.2	1.5	10596.52	0.29	0.2	-					70Fa06
		10595.8	0.7			1.0	-			Ъź		75Wi06 Z
62 NI(A +)61 NI:		10395.6	0.4	4220.20	0.20	2.5	-			Ban NDm		03F1.A 74 Io14
61 Ni(n γ) 62 Ni	91/6	10595 8	03	10596 52	0.29	2.0	1	78	45 61 NG	TADIII		average
	ave.	10575.0	0.5	10570.52	5.27	4.4	1	10	-10 111			average

A.II. Wubsitu et ul. / Ivulleut I fivsils $A / 22 / 2003 / 122 - 3$	A.H.	Wapstra	et al.	/Nuclear	Physics A	729	(2003)) 129–33
---	------	---------	--------	----------	-----------	-----	--------	----------

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
62 Ni(t, {}^{3}He) {}^{62}Co 62 Cu(β^+) {}^{62}Ni		-5296 3932 3942	20 10 10	3948	4	1.6 0.6	2 2 2			LAI		76Aj03 54Nu27 64Sa32
⁶² Ni(p,n) ⁶² Cu		3956 -4733	7 10	-4731	4	-1.1 0.2	2 2			Bar		67An01 61Ri02
62 Zn(β^+) 62 Cu		-4/34.8 1682 1607	10. 10 10	1626	11	-5.6 7.1	2 B P			Ric		50Ha65
62 Ga(β^+) 62 Zn		9171	26			-7.1	3			ANB		79Da04
⁶³ Mn-C _{5.25}		-49300 -50190 -49600	400 300 290	-49760	280	$-0.8 \\ 1.0 \\ -0.4$	2 2 2			TO3 TO5 TO6	1.5 1.5 1.5	90Tu01 94Se12 98Ba.A
⁶³ Fe-C _{5.25}		-59190 -59570 -58990	240 290 300	-59630	180	$-1.2 \\ -0.1 \\ -1.4$	2 2 2			TO3 TO5 TO6	1.5 1.5 1.5	90Tu01 94Se12 98Ba.A
 ⁶³Ga-⁸⁵Rb₇₄₁ ⁶³Cu(p,α)⁶⁰Ni ⁶²Ni(n,γ)⁶³Ni 		4658.0 3754.9 6838.04 6837.88 6837.89	1.4 1.5 0.20 0.18 0.14	3756.60 6837.78	0.30 0.06	$1.1 \\ -1.3 \\ -0.6 \\ -0.8$	2 U - -			MA8 NDm MMn ILn Bdn	1.0	03Gu.A 76Jo01 77Is01 Z 92Ha21 Z 03Fi.A
${}^{62}\text{Ni}(p,\gamma){}^{63}\text{Cu}$ ${}^{63}\text{Ni}(\beta^{-}){}^{63}\text{Cu}$	ave.	6837.92 6122.30 66.9459 66.980	0.10 0.08 0.0054 0.015	6122.41 66.975	0.06 0.015	-1.5 1.3 5.3 -0.4	1 1 F 1	41 60 98	21 ⁶² Ni 31 ⁶² Ni 61 ⁶³ Ni	Utr		average 86De14 Z 93Oh02 *
⁶³ Cu(p,n) ⁶³ Zn		-4146.5 -4139.5 -4150.1	4. 8. 4.4	-4148.9	1.6	-0.6 -1.2 0.3	- U -	20	07 63 <i>7</i>	Ric Oak Tkm		55Br16 55Ki28 Z 63Ok01
63 Ga(β^+) 63 Zn * 63 Ni(β^-) 63 Cu	r: excita	-4148.1 5520 tion of atomic e	100 lectron not	5665.9 taken into acco	2.1 Dunt	-0.2	U U	28	27 ** Zn			average 72Fi.A 99Ho09**
⁶⁴ Mn-C _{5.333}		-45340 -46340 -45620	350 350 300	-45750	290	-0.8 1.1 -0.3	2 2 2			TO3 TO5 TO6	1.5 1.5	90Tu01 * 94Se12 * 98Ba A *
⁶⁴ Fe-C _{5.333}		-58600 -59130 -58500	400 300 350	-58800	300	-0.3 0.7 -0.6	2 2 2 2			TO3 TO5 TO6	1.5 1.5 1.5	90Tu01 94Se12 98Ba.A
⁶⁴ Ni- ⁸⁵ Rb _{.753}		-5609.2	1.4	-5611.7	0.7	-1.8	1	22	22 ⁶⁴ Ni	MA8	1.0	03Gu.A
$^{64}Ga - ^{63}Rb_{.753}$		3261.3	2.5	3261.1	2.2	-0.1	1	75	75 ⁶⁴ Ga	MA8	1.0	03Gu.A
⁶⁴ Ni(³ He ⁸ B) ⁵⁹ Mp		-57090 -58347 19610	34 30	-58350	30	-1.8	2			CP1 MSU	1.0	02L124 03Sh.A 76Ka24
⁶⁴ Ni(α , ⁷ Be) ⁶⁰ Fe ⁶⁴ Ni(α , ⁷ Be) ⁶¹ Fe ⁶⁴ Ni(α , ⁶¹ Co		-6511 -21523 663.2	10 20 0.7	-6526	3	-1.5	R 2 2			MSU Tex NDm		76St11 77Co08 74Jo14
⁶⁴ Zn(³ He, ⁶ He) ⁶¹ Zn ⁶⁴ Ni(¹⁴ C, ¹⁶ O) ⁶² Fe ⁶⁴ Ni(¹⁸ O, ²⁰ Ne) ⁶² Fe		844.1 -12331 -501 -1915	0.7 23 40 50	-12322 -442 -1938	16 14 14	$0.4 \\ 1.5 \\ -0.5$	2 2 2 2			NDm MSU Ors Can		76J001 79We02 81Be40 76Hi14
64 Zn(d, α) 62 Cu		-1920 -1947 7508	21 26 15	7505	4	$-0.9 \\ 0.3 \\ -0.2$	2 2 U			Hei Hei MIT		77Bh03 * 84Ha31 67Sp09
⁶⁴ Ni(³⁴ S, ³⁵ Ar) ⁶³ Fe		-12493 -17931	10 260	-18440	170	-1.9	2 R			Bld Hei		72Fa08 83Wi.B

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	. Lab	F	Reference
64 Ni(t α) 63 Co		7266	20				2			LAI		66B115
63 Ni(n, γ) ⁶⁴ Ni		9657.58	0.24	9658.04	0.19	1.9	1	63	45 ⁶⁴ Ni	ILn		92Ha21
$^{63}Cu(n \gamma)^{64}Cu$		7916.07	0.12	7916.03	0.09	-0.3	_	00	10 10	BNn		83De28 Z
eu(ii,j) eu		7916.14	0.16	1910100	0.07	-0.7	_			Bdn		03Fi.A
	ave.	7916.10	0.10			-0.7	1	94	68 ⁶⁴ Cu			average
64 Zn(d,t) 63 Zn		-5604.9	1.7	-5604.7	1.5	0.1	1	76	73 ⁶³ Zn	NDm		76Jo01
64Ni(t,3He)64Co		-7288	20				2			LAI		72Fl17
${}^{64}Cu(\beta^+){}^{64}Ni$		1673.4	1.0	1675.03	0.20	1.6	U					83Ch47
64Ni(p,n)64Cu		-2458.22	0.31	-2457.38	0.20	2.7	1	40	26 ⁶⁴ Ni	PTB		92Bo02 Z
${}^{64}Cu(\beta^-){}^{64}Zn$		577.8	1.0	579.4	0.7	1.6	1	47	29 ⁶⁴ Zn			83Ch47
⁶⁴ Zn(p,n) ⁶⁴ Ga		-7951	4	-7951.6	2.1	-0.2	1	27	25 ⁶⁴ Ga	Tex		72Da.A
⁶⁴ Zn(³ He,t) ⁶⁴ Ga		-7168	8	-7187.9	2.1	-2.5	U			MSU		74Ro16
${}^{64}\text{Ge}(\beta^+){}^{64}\text{Ga}$		4410	250	4480	30	0.3	U					73Da01
* ⁶⁴ Mn-C _{5.333}	Original -	45270(350) a	or M=-42	170(330) keV								GAu **
$*^{64}$ Mn $-C_{5,333}$	Original -	-46270(350) c	or M=-43	100(330) keV								GAu **
* ⁶⁴ Mn-C _{5.333}	M-A=-4	2430(280) ke	V for mix	ture gs+m at	135(3) ke'	V						Nubase **
* ⁶⁴ Ni(¹⁸ O, ²⁰ Ne) ⁶² Fe	Q-Q(⁶² N	(i(¹⁸ O, ²⁰ Ne))=	=-2843(20)),Q(62)=923((4)							AHW **
⁶⁵ Mn-C _{5,417}		-43900	600	-43660	580	0.3	2			TO5	1.5	94Se12
		-43500	500			-0.2	2			TO6	1.5	98Ba.A
65Fe-C _{5.417}		-54520	270	-54620	260	-0.2	2			TO3	1.5	90Tu01 *
		-55110	300			1.1	2			TO5	1.5	94Se12 *
(E		-54120	350			-1.0	2		0 (5) 11	TO6	1.5	98Ba.A *
⁶⁵ Ni- ⁸⁵ Rb.765		-2438.0	2.4	-2434.8	0.7	1.3	1	8	8 ⁶⁵ Ni	MA8	1.0	03Gu.A
⁶⁵ Cu- ⁸⁵ Rb _{.765}		-4730.6	1.2	-4729.7	0.7	0.8	1	37	37 ⁶⁵ Cu	MA8	1.0	03Gu.A
⁶⁵ Ga- ⁶⁵ Rb _{.765}		215.4	1.5	215.6	0.9	0.1	1	36	36 ⁶⁵ Ga	MA8	1.0	03Gu.A
$^{65}\text{Ge}-\text{C}_{5.417}$		-60080	270	-60560	110	-1.8	U		0.650	GA6	1.0	02L124
$^{63}Cu(p,\alpha)^{62}Ni$		4344.6	1.8	4346.5	0.7	1.0	1	15	9 ^{co} Cu	NDm		76Jo01
$^{04}Ni(n,\gamma)^{05}Ni$		6097.86	0.20	6098.09	0.14	1.2	-			MMn D.1.		//Is01 Z
		6098.28	0.19			-1.0	1	100	02 6511:	Ban		03F1.A
6470 (0 0) 6570	ave.	0098.08	0.14	7070 22	0.17	0.1	I	100	92 ^{ar} N1			average
$\Sigma \Pi(\Pi,\gamma)^* \Sigma \Pi$		7979.5	0.8	1919.32	0.17	0.0	U					75De A Z
		7979.2	0.5			0.2	1	90	51 657n	Bdn		OSELA
64 Zn(n $\gamma)^{65}$ Ga		3942.0	1.0	3942.5	0.6	0.2	-	90	51 211	Duii		75We24 7
$\operatorname{Zn}(p,p)$ Ga		3943.0	1.0	5742.5	0.0	-0.5	_					87Vi01
	ave	3942.5	0.7			0.1	1	83	64 ⁶⁵ Ga			average
⁶⁵ Ge(£p) ⁶⁴ Zn		2300	100			0.1	2					81Ha44
${}^{65}Cu(p,n){}^{65}Zn$		-2134.6	0.8	-2134.4	0.3	0.2	_			Yal		690v01 Z
		-2133.55	0.43			-2.0	_			PTB		89Sc24
	ave.	-2133.8	0.4			-1.7	1	79	43 ⁶⁵ Zn			average
* ⁶⁵ Fe-C _{5.417}	M-A=-5	0740(250) ke	V for mix	ture gs+m at 3	364(3) ke'	V						Nubase **
* ⁶⁵ Fe-C _{5.417}	M-A=-5	1290(280) ke	V for mix	ture gs+m at 1	364(3) ke	V						Nubase **
* ⁶⁵ Fe-C _{5.417}	M-A=-5	0370(330) ke	V for mix	ture gs+m at 1	364(3) ke'	V and						Nubase **
*	assum	ning ratio R=0	0.13(6), fro	om half-life=4	30 ns and	I TOF=1	l μs					GAu **
⁶⁶ Fe-C _{5 5}		-52300	700	-53220	320	-0.9	2			TO3	1.5	90Tu01
2.2		-54020	350			1.5	2			TO5	1.5	94Se12
		-52800	300			-0.9	2			TO6	1.5	98Ba.A
66Co-C5.5		-60470	300	-60240	270	0.5	2			TO5	1.5	94Se12 *
<i>((</i>))7		-59870	290			-0.8	2			TO6	1.5	98Ba.A *
⁰⁰ Ni- ⁸⁵ Rb.776		-2409.5	1.5				2			MA8	1.0	03Gu.A
⁰⁰ Cu- ⁸⁵ Rb _{.776}		-2680.6	2.2	-2680.0	0.7	0.3	1	11	11 ººCu	MA8	1.0	03Gu.A
⁰⁰ As-C _{5.5}		-55290	730		<i></i>		2		an 66-	GA6	1.0	02Li24
00 Zn(p, α) 05 Cu		1544.3	0.8	1544.2	0.8	-0.2	1	89	83 ⁰⁰ Zn	NDm		76Jo01

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
⁶⁴ Ni(t,p) ⁶⁶ Ni		6559	25	6567.8	1.5	0.4	U			Ald		71Da16
${}^{65}Cu(n,\gamma){}^{66}Cu$		7065.80	0.12	7065.93	0.09	1.1	_			BNn		83De29 Z
		7066.13	0.15			-1.3	_			Bdn		03Fi.A
	ave.	7065.93	0.09			0.0	1	100	89 ⁶⁶ Cu			average
${}^{66}\text{Co}(\beta^{-}){}^{66}\text{Ni}$		9700	500	9890	250	0.4	R					88Bo06
${}^{66}\text{Ni}(\beta^-){}^{66}\text{Cu}$		200	30	252.0	1.6	1.7	В					56Jo20
${}^{66}\text{Ga}(\beta^+){}^{66}\text{Zn}$		5175.0	3.0				2					63Ca03
${}^{66}\text{Ge}(\beta^+){}^{66}\text{Ga}$		2100	30				3					70De39
66 As(β^+) 66 Ge		9550	50	10120	680	11.4	С			ANB		79Da.A
* ⁰⁰ C0-C _{5.5}	Original	-60160(300)	or M=-56	5040(280) ke	V							GAu **
* ⁰⁰ Co-C _{5.5}	M-A=-	55480(270) k	eV for mi	xture gs+m+r	1 at 175(3)	3) and 6	42(5) keV				Nubase **
*	and a	assuming for	first isome	er a ratio $R=0$.5(0.2) to	ground	1-stat	e,				GAu **
*	Iron	nair-me=1.2	$1 \ \mu s$ and	$10F=1 \ \mu s$								GAU **
⁶⁷ Fe-C _{5 583}		-50190	500	-49050	450	1.5	2			TO5	1.5	94Se12 *
5.565		-48430	370			-1.1	2			TO6	1.5	98Ba.A *
⁶⁷ Co-C _{5.583}		-59390	300	-59110	340	0.6	2			TO5	1.5	94Se12
5.505		-58730	350			-0.7	2			TO6	1.5	98Ba.A
67Ni-C _{5.583}		-68370	430	-68431	3	-0.1	U			TO5	1.5	94Se12 *
<7 05		-68090	470			-0.5	U			TO6	1.5	98Ba.A *
⁶⁷ Ni- ⁸⁵ Rb.788		1079.1	3.1				2			MA8	1.0	03Gu.A
⁶⁷ Cu- ⁶³ Rb _{.788}		-2760.0	1.3				2			MA8	1.0	03Gu.A
⁶⁷ As-C _{5.583}		-60500	260	-60810	110	-1.2	U		10 67 77	GA6	1.0	02L124
$^{67}Zn N - ^{60}Zn ^{15}N$		4060.21	0.25	4059.03	0.23	-1.9	1	14	12 ⁻⁰⁷ Zn	H30	2.5	77Ba10
$^{\circ}Zn(\alpha,n)^{\circ}Ge$		-8987.5	12.	-8992	5	-0.4	2			ANL		/8Mu05 70A104
$667n(n y)^{67}7n$		-8993	0.6	7052 33	0.22	_0.2	2					79A104 71Ot01 7
$\Sigma_{II}(II, \gamma) = \Sigma_{II}$		7052.5	0.0	1052.55	0.22	-0.3	_					75De A Z
		7052.5	0.3			-0.6	_			Bdn		03Fi.A
	ave.	7052.50	0.24			-0.7	1	85	70 ⁶⁷ Zn			average
${}^{67}Cu(\beta^{-}){}^{67}Zn$		577	8	561.7	1.5	-1.9	U					53Ea11
67Zn(p,n)67Ga		-1783.3	1.4	-1783.1	1.2	0.2	1	71	55 ⁶⁷ Ga	Oak		64Jo11 Z
67 As $(\beta^+)^{67}$ Ge		6010	100				3			ANB		80Mu12
* ⁶⁷ Fe-C _{5.583}	Original	-50000(500)	or -46570	(470) keV								GAu **
* ⁶⁷ Fe-C _{5.583}	M-A=-	44930(330) k	eV for mi	xture gs+m at	t 367(3) k	κeV						Nubase **
* ⁶⁷ Ni-C _{5.583}	Original	-67840(300)	or M=-63	8190(280) ke	V							GAu **
* ⁶⁷ Ni-C _{5.583}	M-A=-	62930(330) k	eV for mi	xture gs+m at	t 1007(3)	keV						Nubase **
⁶⁸ Fe-C		-46300	500				2			T06	15	98Ba A
⁶⁸ C0-C5.667		-55640	350	-55130	340	1.0	2			TOS	1.5	94Se12
5.667		-54750	300	00100	5.0	-0.8	2			TO6	1.5	98Ba.A
⁶⁸ Ni-C ₅ (67		-68030	930	-68131	3	-0.1	Ū			TO5	1.5	94Se12 *
- 5.867		-67530	930			-0.4	U			TO6	1.5	98Ba.A *
⁶⁸ Ni- ⁸⁵ Rb 800		2437.0	3.2				2			MA8	1.0	03Gu.A
⁶⁸ Cu-C _{5.667}		-70570	440	-70389.1	1.7	0.3	U			TO6	1.5	98Ba.A *
⁶⁸ Cu- ⁸⁵ Rb _{.800}		179.1	1.7				2			MA8	1.0	03Gu.A *
⁶⁸ Ga- ⁸⁵ Rb _{.800}		-1484	37	-1451.7	1.6	0.9	U			MA8	1.0	03Gu.A
⁶⁸ As-C _{5.667}		-63221	107	-63230	50	-0.1	R			GT1	1.0	01Ha66
⁰⁸ Se-C _{5.667}		-56197	86	-58200	40	-9.3	F			~ .	2.5	01La31 *
		-57560	1070			-0.6	U			GA6	1.0	02L124
66NI: (4 -) 68NI: 687 0707		-58202	35	2100	,	0.7	2			CPI	1.0	03Sh.A
67 Zn(n a) 68 Z ⁻		-2110	21	-2100	4	0.5	U			Hei		//Bn03
$\Sigma n(n,\gamma)^{}\Sigma n$		10198.2	0.4	10198.10	0.19	-0.3	-			Rdn		/10t01 Z
	91/2	10198.00	0.22			0.2	1	100	08 687.	Duii		ouerage
	ave.	10120.09	0.19			0.0	1	100	20 Lil			average

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
68 Cu(β^-) 68 Zn		4580	60	4440.2	1.8	-2.3	В					64Ba13
(0) 2) (0)		4590	50			-3.0	В					72Sw01
⁶⁸ Zn(t, ³ He) ⁶⁸ Cu		-4410	20	-4421.6	1.8	-0.6	U			LAI		77Sh08
$^{68}Ga(\beta^+)^{68}Zn$		2921.1	1.2	0000	10		2					72S103
08 As $(\beta^+)^{08}$ Ge		8100	100	8080	40	-0.2	2			ANB		77Pa13
	M A- 6	0075 1050(280) 1/2	J4 V for mix	turo col n ot '	2840 1 kg	V 0.1	2					02CI.A *
$*^{68}$ Ni - C	M = A = -6	51480(280) ke	V for mix	ture gs+n at .	2049.1 KC 28/10 1 kg	v						Ens02 **
$*^{68}Cu = C$	M = A = -6	5380(350) ke	V for mix	ture gs+n at	721.6 keV	v						Ens02 **
$*^{68}Cu = ^{85}Rb$	Also 948	6(1.6) µµ for	⁶⁸ Cu ^m _ ⁸⁵	Rh vield	ing Exc -	71670	2 2) k	еV				03Gu A **
* ⁶⁸ Se-C	F: other re	esults of same	e work not	trusted, see	³⁰ Y	/10./(2	2.2) K					GAu **
$*^{68}$ As $(\beta^+)^{68}$ Ge	From mas	ss difference 8	8667(64)	uu	-							02Cl.A **
⁶⁹ C0-Ce -		-54800	400	-53680	360	1.9	2			TO5	1.5	94Se12
		-53050	300			-1.4	2			TO6	1.5	98Ba.A
69Ni-C5 75		-64600	400	-64390	4	0.4	U			TO5	1.5	94Se12 *
5.75		-64250	450			-0.2	U			TO6	1.5	98Ba.A *
69Ni-85Rb 812		7237.0	4.0				2			MA8	1.0	03Gu.A
69Cu-85Rb 812		1056.0	1.5				2			MA8	1.0	03Gu.A
69Zn-C5.75		-73580	400	-73449.7	1.0	0.2	U			TO6	1.5	98Ba.A *
$C_5 H_9 - {}^{69}Ga$		144852.7	2.4	144851.7	1.3	-0.2	В			M15	2.5	63Ri07
⁶⁹ Ga- ⁸⁵ Rb _{.812}		-2799.8	1.6	-2799.7	1.3	0.1	1	65	65 ⁶⁹ Ga	MA8	1.0	03Gu.A
68 Zn(n, γ) 69 Zn		6482.3	0.8	6482.07	0.16	-0.3	U					710t01 Z
		6481.8	0.5			0.5	U					75De.A Z
69 0 () 68 0		6482.07	0.16	2200	20		2			Bdn		03Fi.A
⁶⁵ Se(<i>ɛ</i> p) ⁶⁶ Ge		3390	50	3390	30	0.0	-					76Ha29
		3370	/0			0.5	1	71	70 695 .			//Ma24
$697n(B^{-})69Co$	ave.	3380 807	40	000 8	15	2.6	D	/1	70 ··· 3e			52Du02
${}^{69}G_{2}(p, n){}^{69}G_{2}$		3009.50	0.55	3009.5	1.5	2.0	1	100	100 ⁶⁹ Ge	DTR		02Bo B 7
$^{69}\Delta s(B^+)^{69}Ge$		3970	50	4010	30	0.0	-	100	100 00	IID		70Bo19
713(p)) Ge		4067	50	4010	50	-11	_					77Ma24
	ave.	4020	40			-0.1	1	78	78 ⁶⁹ As			average
69 Se(β^+) 69 As		6795	52	6790	40	-0.2	1	52	30 ⁶⁹ Se			77Ma24
* ⁶⁹ Ni-C _{5.75}	M-A=-5	9940(330) ke	V for mix	ture gs+m+n	at 321(2)	and 27	01(10)) keV				Nubase **
* ⁶⁹ Ni-C _{5.75}	M-A=-5	9620(380) ke	V for mix	ture gs+m+n	at 321(2)	and 27	01(10) keV				Nubase **
*	and as	ssuming for s	econd ison	mer a ratio R	=0.13(0.0	6) to gs,						GAu **
*	from	half-life=439	ns and TO	DF=1 μs								GAu **
* ⁶⁹ Zn-C _{5.75}	M-A=-6	58320(350) ke	V for mix	ature gs+m at	438.6361	keV						Ens00 **
⁷⁰ Co-C _{5.833}		-49000	600				2			TO6	1.5	98Ba.A
⁷⁰ Ni-C _{5.833}		-63980	350	-63500	370	0.9	2			TO5	1.5	94Se12 *
0.000		-63020	350			-0.9	2			TO6	1.5	98Ba.A *
⁷⁰ Cu- ⁸⁵ Rb _{.824}		5077.6	1.7				2			MA8	1.0	03Gu.A
70 Cu ^m $-^{85}$ Rb _{.824}		5185.7	2.2				2			MA8	1.0	03Gu.A
70 Cu ⁿ $-^{85}$ Rb _{.824}		5337.4	2.3				2		50	MA8	1.0	03Gu.A
$^{70}Ga - {}^{85}Rb_{.824}$		-1293.0	2.3	-1292.8	1.3	0.1	1	32	32 ⁷⁰ Ga	MA8	1.0	03Gu.A
$C_5 H_{10} - {}^{\prime 0}Ge$		154001.3	2.2	154002.9	1.1	0.3	1	4	4 70Ge	M15	2.5	63Ri07
$C_4 H_6 O^{-10}Ge$		117616.1	1.8	117617.4	1.1	0.3	1	6	6 ⁷⁰ Ge	M15	2.5	63Ri07
⁷⁰ Se-C _{5.833}		-66890	490	-66610	70	0.6	U			GA6	1.0	98Ch20
		-00035	/5			0.3	2			GIT	1.0	01Ha66
707n 35C1 687n 37C1		-00320 3420 5	140	3175 7	2.2	-0.0	2	11	0 70 7-	UA0 H10	1.0	02L124 64Ba02
$707n(^{3}He^{8}R)^{65}Cc$		_18385	1.7	5425.2	2.5	-0.0	1 2	11	> Zn	Dri	4.0	78Ko24
70 Z n(α ⁷ B e) ⁶⁷ N ;		-10305	36	-19167	3	-03	∠ ∐			Tev		78Co A
$\Sigma_{\rm H}(\alpha, D_{\rm C})$ 141		-19164	22	17107	5	-0.1	Ŭ			Pri		78Ko28
						0.1	0					

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference	e
70 Ge(p $\alpha)^{67}$ Ga		1180.9	15	1180.6	12	-0.2	1	65	45 ⁶⁷ Ga	NDm		76Jo01	
70 Zn(14 C 16 C)) 68 Ni		1727	30	1656	4	-2.4	Ū	05	45 Ou	Ors		88Gi04	
70 Zn(18 O 20 Ne) 68 Ni		172	26	160	4	-0.5	U			Hei		84Ha31	
70 Ge(n t) 68 Ge		-11251	13	-11244	6	0.5	_			ChR		72Hs01	
00(0,0) 00		-11242	7		0	-0.3	_			Ors		77Gu02	
	ave.	-11244	6			0.0	1	99	99 ⁶⁸ Ge	0.15		average	
⁷⁰ Zn(¹⁴ C, ¹⁵ O) ⁶⁹ Ni		-8936	150	-9422	4	-3.2	В			Ors		84De33	
70 Zn(d. ³ He) ⁶⁹ Cu		-5605	10	-5623.9	2.4	-1.9	U			ANL		78Ze04	
		-5622	13			-0.1	Ũ			Hei		84Ha31	
70 Zn(t, α) ⁶⁹ Cu		8682	20	8696.5	2.4	0.7	Ū			LAI		81Ai02	
69 Ga(n, γ) ⁷⁰ Ga		7654.0	1.0	7653.65	0.17	-0.4	Ū					71Ar12	Z
		7653.65	0.17			0.0	1	100	65 ⁷⁰ Ga	Bdn		03Fi.A	
⁷⁰ Ge(d. ³ He) ⁶⁹ Ga		-3030	7	-3030.8	1.6	-0.1	U			Ors		78Ro14	
$^{70}Cu(\beta^{-})^{70}Zn$		6310	110	6588.5	2.5	2.5	Ū					75Re09	*
		5928	110			6.0	U					75Re09	*
⁷⁰ Zn(t, ³ He) ⁷⁰ Cu		-6559	20	-6569.9	2.5	-0.5	U			LAI		77Sh08	
		-6602	20			1.6	U			LAI		87Aj.A	
70 Zn(p,n) 70 Ga		-1436.1	2.0	-1436.9	1.6	-0.3	_			Nvl		59Go68	Ζ
4777		-1439.1	3.0			0.8	_			Oak		64Jo11	Ζ
	ave.	-1437.2	1.6			0.2	1	94	91 ⁷⁰ Zn			average	
70 Ga(β^{-}) 70 Ge		1650	10	1653.0	1.6	0.3	U					57Bu41	
70 As(β^+) 70 Ge		6220	50				2					63Bo14	
70 Se(β^+) 70 As		2736	85	2300	80	-5.2	В					01To06	
70 Br(β^+) 70 Se		9970	170	10620#	300#	3.8	D			ANB		79Da.A	*
* ⁷⁰ Ni-C _{5 833}	Original	-63860(350)) or M=-	59490(330)	κeV							GAu >	**
* ⁷⁰ Ni-C _{5,833}	M-A=-	58590(330)	keV for r	nixture gs+m	at 2860	(2) keV	and					Nubase >	**
*	assu	ming ratio R	=0.04(2)	, from half-lif	fe=210ns	and T	OF=	1 μs				GAu >	**
$*^{70}Cu(\beta^{-})^{70}Zn$	E=4550	(120), 3370(1	70) to 1'	786.5, 3038.2	level			-				NDS931*	**
$*^{70}Cu(\beta^{-})^{70}Zn$	E ⁻ =617	0(110) from	1+242 16	evel								02We03 >	**
$*^{70}$ Br(β^+) ⁷⁰ Se	Systema	tical trends s	uggest 70	Br 650 less b	ound							CTh *	**
⁷¹ Co - C		47100	600				2			т06	15	08Ba A	
$^{71}Ni-C$		-60000	400	-59260	400	12	2			TO5	1.5	90Da.A 94Se12	
5.917		-58700	350	37200	400	_1.2	2			TO5	1.5	98Ba A	
$^{71}Cu = {}^{85}Bb =$		6332.4	16			1.1	2			MA8	1.0	03Gu A	
71 Zn $-$ Ca		-72080	380	-72278	11	-0.3	ũ			TO6	1.0	98Ba A	*
$C_{2}H_{12} = -\frac{71}{7}G_{2}$		161370.2	32	161374.0	11	0.5	Ŭ			M15	2.5	63Ri07	
71 Ga $-^{85}$ Rh		-1641.6	3.0	-1643.1	1.1	-0.5	1	13	13 ⁷¹ Ga	MA8	1.0	03Gu A	
⁷¹ Se-C		-68160	340	-67760	30	1.2	Ū.	15	15 00	GA6	1.0	98Ch20	
50 05.917		-67687	75	07700	50	-0.9	R			GT1	1.0	01Ha66	
		-67830	120			0.6	U			GA6	1.0	02Li24	
⁷¹ Br-Ccorr		-61260	610				2			GA6	1.0	02Li24	
70 Zn(18 O, 17 F) 71 Cu		-9529	35	-9586.7	2.5	-1.6	Ū			Ber		89Bo.A	
70 Zn(d,p) 71 Zn		3609	10				2			ANL		67Vo05	
70 Ge(n, γ) ⁷¹ Ge		7415.95	0.15	7415.94	0.11	0.0	_			MMn		91Is01	Z
		7415.93	0.15			0.1	_			Bdn		03Fi.A	
	ave.	7415.94	0.11			0.0	1	100	64 ⁷⁰ Ge			average	
70 Ge(p, γ) 71 As		4619	5	4620	4	0.2	R					75Li14	
$^{71}\text{Ge}(\varepsilon)^{71}\text{Ga}$		233.0	0.5	232.51	0.22	-1.0	_			Hei		84Ha.A	
		229.3	1.0			3.2	F					91Z101	*
		232.1	0.5			0.8	_					93Di03	*
		232.71	0.29			-0.7	_					95Le19	
	ave.	232.65	0.22			-0.6	1	94	61 ⁷¹ Ge			average	
⁷¹ Ga(³ He,t) ⁷¹ Ge- ⁶⁵ Cu() ⁶⁵ Zn		1122.0	0.9	1119.6	0.4	-2.7	1	18	7 ⁶⁵ Zn	Pri		84Ko10	
71 As(β^+) 71 Ge		1997	20	2013	4	0.8	U					53St31	
•		2010	10			0.3	2					54Th36	
		2012	10			0.1	2					55Gr08	

Item	Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux Lab	F	Reference
71 Se(β^+) 71 As	4428	125	4780	30	2.8	В				73Sc17
71	4762	35			0.5	3				01To06
$^{/1}$ Kr(ε) $^{/1}$ Br	10140	320		5771W		3				970101 E==02
17 Zn – C _{5.917}	M - A = -6 / 060 (350) KeV	v for mixt	ure gs+m at 1:	5/./ kev						Ens93 *
$*^{71}$ Ge(ε) ⁷¹ Ga	Original error 0.1 increa	used for ca	libration unce	rtainty						GAu *
⁷² Ni-C	58700	500	-57910	470	11	2		TO5	15	94Se12
C_6	-57400	400	57910	470	-0.8	2		TO6	1.5	98Ba.A
$^{72}Cu - C_{6}$	-64250	510	-64179.7	1.5	0.1	U		TO6	1.5	98Ba.A
⁷² Cu- ⁸⁵ Rb ₈₄₇	10534.4	1.5				2		MA8	1.0	03Gu.A
⁷² Ga- ⁸⁵ Rb _{.847}	1079.5	1.5	1080.4	1.1	0.6	1	53	53 ⁷² Ga MA8	1.0	03Gu.A
$C_4 H_8 O^{-72}Ge$	135438.4	2.1	135439.1	1.8	0.1	1	11	11 ⁷² Ge M15	2.5	63Ri07
⁷² Kr- ⁸⁵ Rb _{.847}	16806.5	8.6	16806	9	0.0	1	100	100 ⁷² Kr MA8	1.0	02Ro.A
70 Ge H ₂ $-^{72}$ Ge	17821.3	1.7	17821.6	2.0	0.1	1	22	16 ⁷² Ge M15	2.5	63Ri07
70 Zn(t,p) 72 Zn	6231	20	6228	6	-0.2	U		Ald		72Hu06
$^{\prime 1}$ Ga(n, γ) $^{\prime 2}$ Ga	6521.1	1.0	6520.45	0.19	-0.6	U		710 51		70Li04 2
720 (1311)710	6520.44	0.19	42.41.2	1.0	0.1	1	99	52 'Ga Bdn		03Fi.A
$7^{2}Ge(d, ^{3}He)^{12}Ga$	-4241		-4241.2	1.8	0.0	0		Ors		/8R014
$72 \operatorname{Ag}(\mathcal{B}^+)^{72} \operatorname{Ga}$	438	0	1256	4	0.5	2				031003 50Ma55
As(p) de	4301	10	4350	4	-0.5	2				68Vi05
⁷² Ge(n n) ⁷² As	-5140	5	-5138	4	0.3	2		Kyu		76Ki12
$^{72}Br(\beta^+)^{72}Se$	8869	95	8880	60	0.5	1	40	39 ⁷² Br		01To06
72 Kr(β^+) 72 Br	5040	80	5070	60	0.4	1	55	55 ⁷² Br		73Sc17
$*^{72}Cu-C_{6}$	M-A=-59710(470) keV	V for mixt	ure gs+m at 2'	70(3) keV	7					Nubase *
⁷³ Ni-C ₆₀₈₂	-52500	500	-53530#	320#	-1.4	D		TO6	1.5	98Ba.A
$^{73}Cu - C_{6.083}$	-62740	350	-63325	4	-1.1	U		TO6	1.5	98Ba.A
⁷³ Cu- ⁸⁵ Rb 859	12447.9	4.2				2		MA8	1.0	03Gu.A
73 Zn $-C_{6.083}$	-70100	380	-70220	40	-0.2	U		TO6	1.5	98Ba.A
⁷³ Ga- ⁸⁵ Rb _{.859}	947.3	1.8				2		MA8	1.0	03Gu.A
$C_4 H_9 O^{-73}Ge$	141878.4	2.1	141881.0	1.8	0.5	1	11	11 ⁷³ Ge M15	2.5	63Ri07
$^{73}Br - C_{6.083}$	-68428	97	-68310	50	1.2	1	32	32 ⁷³ Br GT1	1.0	01Ha66
⁷³ Kr- ⁸⁵ Rb _{.859}	15062.8	9.7	15062	7	-0.1	2		MA8	1.0	02He23
73 p 72 p	15060.7	10.3	10.50	00	0.1	2		MA8	1.0	02Ro.A
⁷⁵ Br- ⁷² Br	-4610	330	-4950	80	-0.4	0	11	CRI	2.5	89Sh10
$72C_{2}(n,n)^{73}C_{2}$	-4709	100	6782.04	0.05	-1.0	1	11	72^{72} Co MM	1.5	915019
$Ge(\Pi,\gamma)$ Ge	6783.12	0.05	0782.94	0.05	_1.2	II.	98	72 Ge MMII Bdn		03Ei Δ
72 Ge(³ He d) ⁷³ As	160	4	166	4	-1.2	1	80	80 ⁷³ As Hei		76Sc13
73 Kr(ϵ n) 72 Se	3700	150	4054	14	2.4	B	00	00 713 1101		81Ha44
73 Se(β^+) 73 As	2740	10	2739	10	-0.1	1	99	99 ⁷³ Se		56Ha10
		400	4590	50	-0.1	Ū				74Ro11
$^{73}Br(\beta^+)^{73}Se$	4648	400	-1570							0711 01
$^{73}\mathrm{Br}(\beta^+)^{73}\mathrm{Se}$	4648 4688	400 140	1590		-0.7	-				8/He21
$^{73}\mathrm{Br}(\beta^+)^{73}\mathrm{Se}$	4648 4688 4610	140 70	1000		$-0.7 \\ -0.3$	_				8/He21 01To06
$^{73}\mathrm{Br}(\beta^+)^{73}\mathrm{Se}$	4648 4688 4610 ave. 4630	400 140 70 60	-1590		$-0.7 \\ -0.3 \\ -0.6$	- 1	65	64 ⁷³ Br		8/He21 01To06 average
73 Br $(\beta^+)^{73}$ Se 73 Kr $(\beta^+)^{73}$ Br	4648 4688 4610 ave. 4630 6790	140 70 60 350	7080	50	-0.7 -0.3 -0.6 0.8	- 1 U	65	64 ⁷³ Br		87He21 01To06 average 73Sc17
73 Br(β^+) 73 Se	4648 4688 4610 ave. 4630 6790 6860	140 70 60 350 220	7080	50	-0.7 -0.3 -0.6 0.8 1.0	- 1 U U	65	64 ⁷³ Br		87He21 01To06 average 73Sc17 97Oi01
73 Br(β^+) 73 Se 73 Kr(β^+) 73 Br 73 Kr(β^+) 73 Br	4648 4688 4610 ave. 4630 6790 6860 Systematical trends sugg	140 70 60 350 220 gest ⁷³ Ni 9	7080 960 more bour	50 nd	-0.7 -0.3 -0.6 0.8 1.0	- 1 U U	65	64 ⁷³ Br		87He21 01To06 average 73Sc17 97Oi01 GAu *
73 Br(β^+) 73 Se 73 Kr(β^+) 73 Br $*^{73}$ Ni-C _{6.083} $*^{73}$ Zn-C _{6.083} 73 De-C _{6.083}	4648 4688 4610 ave. 4630 6790 6860 Systematical trends sugg M-A=-65200(350) keV	140 70 60 350 220 gest ⁷³ Ni 9	7080 960 more bour ure gs+m at 19	50 nd 95.5 keV	-0.7 -0.3 -0.6 0.8 1.0	- 1 U U	65	64 ⁷³ Br		87He21 01To06 average 73Sc17 97Oi01 GAu * Ens93 *
73 Br(β^+) 73 Se 73 Kr(β^+) 73 Br $*^{73}$ Ni-C _{6.083} $*^{73}$ Zn-C _{6.083} $*^{73}$ Zn-C _{6.083} $*^{73}$ Br - 72 Br 73 Pr	$\begin{array}{r} 4648\\ 4688\\ 4610\\ ave. 4630\\ 6790\\ 6860\\ \text{Systematical trends sugg}\\ M-A=-65200(350) \text{ keV}\\ D_{M}=-4660(330) \text{ uu com}\\ \text{Ecom} \ ^{7}2\text{Pr}^{/3}\text{Pr}_{-}0.022\\ \text{Com} \ ^{7}2\text{Pr}_{-}0.022\\ Co$	140 140 70 60 350 220 gest 73 Ni 9 V for mixt rected for 5312(227)	7080 960 more bour ure gs+m at 19 ⁷² Br gs+m mi	50 nd 95.5 keV xture at 1	-0.7 -0.3 -0.6 0.8 1.0	- 1 U U	65	64 ⁷³ Br		87He21 01To06 average 73Sc17 97Oi01 GAu * Ens93 * Ens95 *
73 Br(β^+) 73 Se 73 Kr(β^+) 73 Br 73 Ni-C _{6.083} 73 Zn-C _{6.083} 73 Br $^{-72}$ Br 73 Br $^{-72}$ Br 73 Br $^{(\beta^+,\gamma^3)}$ Sa	$\begin{array}{r} 4648\\ 4688\\ 4610\\ ave. 4630\\ 6790\\ 6860\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	140 140 70 60 350 220 gest ^{73}Ni 9 V for mixt rected for 5312(227) " at 25.71	7080 960 more bour ure gs+m at 19 ⁷² Br gs+m mi)	50 nd 95.5 keV xture at 10	-0.7 -0.3 -0.6 0.8 1.0	- 1 U U	65	64 ⁷³ Br		8/He21 01To06 average 73Sc17 97Oi01 GAu * Ens93 * Ens95 * AHW *

A.11. wupshu ei ul./ wulleur 1 hysics $A / 22 (2003) 122 - 330$	A.H.	Wapstra e	et al./Nuclear	Physics A 729	(2003) 129-330
---	------	-----------	----------------	---------------	----------------

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
⁷⁴ Cu-C _{6.167}		-59400	400	-60125	7	-1.2	U			TO6	1.5	98Ba.A
⁷⁴ Cu- ⁸⁵ Rb _{.871}		16706.0	6.6				2			MA8	1.0	03Gu.A
⁷⁴ Ga- ⁸⁵ Rb _{.871}		3777.1	22.6	3777	4	0.0	U			MA8	1.0	02Ke.A *
		3776.9	4.0				2			MA8	1.0	03Gu.A
$C^{32}S_2 - {}^{/4}GeH_2$		7314.0	1.4	7314.2	1.8	0.0	1	25	25 /4Ge	M15	2.5	63Ri07
$C_6 H_2 - {}^{/4}Se$		93173.8	3.8	93173.6	1.8	0.0	U			M15	2.5	63Ri07
⁷⁴ Kr- ⁶³ Rb _{.871}		9916.8	2.6	9915.5	2.2	-0.5	-			MA8	1.0	02He23
		9909.7	4.4			1.3	-	0.0	oc 7417	MA8	1.0	02Ro.A
74 01 85 01	ave.	9915.0	2.2	21006		0.2	1	96	96 / Kr		1.0	average
KD-55 KD_871		21109	19	21096	4	-0.7	0	0.4	04 74 D L	MA8	1.0	02He25
74Ph C		21097.9	4.5	55725	4	-0.5	I II	64	64 · KU	DA0	1.0	03Ne.A
$^{74}Co^{35}Cl^{-72}Co^{37}Cl$		-33770	0.26	-33733	4	0.3	1	7	2 74 Co	F40 H44	1.0	02 VI.A
74 So(n t) ⁷² So		2032.01	12	2032.04	12	0.1	1	00	00^{72} So	П44 Win	1.5	74Do21
74 Ge(d 3 He) 73 Ga		-5515	7	-5518.6	23	-0.5	ц П	,,,	<i>yy</i> 30	Ors		78Ro14
00(u, 110) 0a		-5509	13	5510.0	2.5	-0.7	U			Hei		84Ha31
73 Ge(n, γ) ⁷⁴ Ge		10195.90	0.15	10196.22	0.06	2.1	_			ILn		85Ho.A Z
00(11,7) 00		10196.31	0.07	10120.22	0.00	-1.3	_			MMn		91Is01 Z
		10196.06	0.20			0.8	_			Bdn		03Fi.A
	ave.	10196.22	0.06			0.0	1	97	62 73Ge			average
74Se(d,3He)73As		-3027	8	-3052	4	-3.1	1	20	20 73As	Ors		83Ro08 *
74 Zn(β^-) 74 Ga		2350	100	2340	50	-0.1	U					72Er05
74 Ga(β^-) 74 Ge		5400	100	5373	4	-0.3	U					62Ei02
74 As $(\beta^+)^{74}$ Ge		2558	4	2562.5	1.7	1.1	_					71Bo01 *
⁷⁴ Ge(p,n) ⁷⁴ As		-3343.5	5.6	-3344.8	1.7	-0.2	-			Tkm		63Ok01
		-3348.3	5.			0.7	-			Oak		64Jo11 Z
		-3346	5			0.2	-					70Fi03 Z
74		-3347	3			0.7	_		o.e. 74 .	Kyu		73Ki11
74 As(β^+) 74 Ge	ave.	2562.9	1.9	2562.5	1.7	-0.2	1	82	82 /4 As			average
$^{7}As(p)^{7}Se$		1351	4	1352.8	1.8	0.4	1	19	18 / As			/1B001 *
$^{74}S_{2}(p -)^{74}D_{2}$		0857	100	6907	15	0.5	2					09La15 *
$74 \mathbf{V}_r(\mathbf{\beta}^+)$		- /089	200	2075	15	0.1	2 11					73Lu02 *
$\mathbf{KI}(p^{-})$ BI		3327	125	2913	15	-0.1	U					74K011 75Sc07
74 Rb(B^+) 74 Kr		10405	0	10414	4	-2.8	1	20	16 ⁷⁴ Rb			03Pi08 *
$*^{74}Ga = {}^{85}Rb =$	D3780	1(22 5) uu co	orrected _2	28(1.6) keV f	or os+m	mixtur	• R<() 1	10 10			02Ke A **
$*^{74}$ Se(d ³ He) ⁷³ As	$D_M = 3700$	8) for $O(^{76}Se$	$(d^{3}He)) =$	-40207(2.0)	now 40	14.5		<i>J</i> .1				AHW **
$*^{74}$ As $(\beta^+)^{74}$ Ge	Q= 5055(Original e	rror increased	1 E(0) = E	(2)=593 1(1 + 1)	5) but	14.5						AHW **
*	E(2)=	595.88(0.04).	see also 8	4 Rb(β^{+})	,							AHW **
$*^{74}$ As $(\beta^{-})^{74}$ Se	Original v	alue 1350.1(0).7), error	increased, see	e^{84} Rb(β	+)						AHW **
$*^{74}Br(\beta^+)^{74}Se$	$E^+ = 5200$	(100), 4500(100) to 63	4.76, 1363.21	levels							69La15 **
*	from 7	⁴ Br ^m at 13.80	(0.5)									93Do05**
* ⁷⁴ Se(p,n) ⁷⁴ Br	T=7868(1	5) to 72.65 (n	ot 63) lev	el								AHW **
$*^{74}$ Rb(β^+) ⁷⁴ Kr	Deduced f	rom measure	d half-life	and branchin	g ratio							GAu **
⁷⁵ Cu-C		-58100	700				2			TO6	15	98Ba 4
$^{75}Ga^{85}Bh$		4301 7	26				2			MA8	1.0	03Gu A
C_{2} H ₂ $O_{2} - \frac{75}{4}$ As		123009.8	2.0	123008.0	2.0	-0.3	1	9	9 75 Ac	M15	2.5	63Ri07
$^{75}As - {}^{85}Rb$		-601 3	7.6	-602.1	2.0	-0.1	Ū		/ 110	MA8	1.0	02Ke A
75 Kr $-^{85}$ Rb and		8747.2	8.7	00211	2.0	0.1	2			MA8	1.0	02He23
⁷⁵ Rb-C _{6.882}		-61430	8				2			MA2	1.0	94Ot01
74 Ge(n, γ) 75 Ge		6505.26	0.08	6505.31	0.07	0.6	2			MMn		91Is01 Z
		6505.45	0.14			-1.0	2			Bdn		03Fi.A
74 Ge(p, γ) 75 As		6901.6	5.	6898.9	1.0	-0.5	U					74Wa08
⁷⁴ Ge(³ He,d) ⁷⁵ As		1414	4	1405.5	1.0	-2.1	U			Hei		76Sc13
74 Se(n, γ) 75 Se		8027.60	0.08	8027.60	0.07	0.0	-			ILn		84To11 Z
		8027.59	0.16			0.1	-			Bdn		03Fi.A
	ave.	8027.60	0.07			0.0	1	100	99 ⁷⁴ Se			average
75 Zn(β^{-}) 75 Ga		6060	80	6000	70	-0.8	3			Stu		86Ek01
⁷⁵ As(p,n) ⁷⁵ Se		-1647.2	2.0	-1645.7	0.8	0.7	-			Nvl		59Go68 Z
		-1647.3	1.1			1.5	-	-	75	Oak		64Jo11 Z
	ave.	-1647.3	1.0			1.6	1	71	63 ⁷³ As			average

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{75}\mathrm{Br}(\beta^+)^{75}\mathrm{Se}$		3010 3030 3050	20 50 20	3030	14	$1.0 \\ 0.0 \\ -1.0$	2 U 2					52Fu04 61Ba43 69Ra24
75 Sr(ε) 75 Rb		10600	220				3					03Hu01
⁷⁶ Cu- ⁸⁵ Rb _{.894}		24135.0	7.2				2			MA8	1.0	03Gu.A
⁷⁶ Ga- ⁸⁵ Rb _{.894}		7687.6	2.1				2			MA8	1.0	03Gu.A
$C^{32}S_2 - {}^{76}Ge$		22741.6	1.5	22739.4	1.8	-0.6	U			M15	2.5	63Ri07
$^{76}\text{Ge-C}_{6333}$		-78597.242	0.096	-78597.4	1.8	-2.1	U			ST2	1.0	01Do08
⁷⁶ Kr- ⁸⁵ Rb 894		4774.3	4.7	4770	4	-0.9	1	85	85 ⁷⁶ Kr	MA8	1.0	02He23
⁷⁶ Rb-C _{6.333}		-64929	8	-64927.8	2.0	0.2	U			MA2	1.0	94Ot01
⁷⁶ Rb- ⁸⁵ Rb ₈₉₄		13932.2	2.0				2			MA8	1.0	02He23
⁷⁶ Sr-C _{6 333}		-58813	107	-58230	40	2.2	F				2.5	01La31 *
⁷⁶ Sr ¹⁹ F-C _{7 917}		-59830	40				2			MA8	1.0	01Si.A
⁷⁶ Ge ³⁵ Cl- ⁷⁴ Ge ³⁷ Cl		3174.61	0.41	3174.9	0.5	0.4	1	69	43 ⁷⁶ Ge	H44	1.5	91Hy01
⁷⁶ Se ³⁵ Cl- ⁷⁴ Ge ³⁷ Cl		986.30	0.65	985.9	0.5	-0.4	1	28	17 ⁷⁶ Se	H44	1.5	91Hy01
⁷⁶ Ge- ⁷⁶ Se		2188.60	0.42	2188.96	0.05	0.6	U			H44	1.5	91Hy01
		2188.963	0.054			0.0	1	100	53 ⁷⁶ Ge	ST2	1.0	01Do08
⁷⁵ Rb- ⁷⁶ Rb 402 ⁷⁴ Rb 507		-1140	170	-1083	8	0.1	U			P20	2.5	82Au01
⁷⁶ Ge(¹⁴ C, ¹⁷ O) ⁷³ Zn		-3974	40				2			Ors		84Be10
⁷⁶ Ge(¹⁴ C, ¹⁶ O) ⁷⁴ Zn		163	40	250	50	2.2	2			Ors		84Be10
⁷⁶ Ge(¹⁸ O, ²⁰ Ne) ⁷⁴ Zn		-1219	21	-1240	50	-1.2	2			Hei		84Ha31
⁷⁶ Ge(¹⁴ C, ¹⁵ O) ⁷⁵ Zn		-10354	150	-10580	70	-1.5	R			Ors		84De33
⁷⁶ Ge(d ³ He) ⁷⁵ Ga		-6545	7	-6544.0	2.9	0.1	U			Ors		78Ro14
		-6536	22			-0.4	Ũ			Hei		84Ha31
75 As(n γ) ⁷⁶ As		7328 421	0 075	7328 41	0.07	-0.1	1	100	84 ⁷⁶ As	ILn		90Ho10 Z
110(11,7) 110		7328.81	0.15	1020111	0.07	-2.7	В	100	0. 115	Bdn		03Fi.A
75 Se(n, γ) ⁷⁶ Se		11154.15	0.30	11154.35	0.29	0.7	1	97	91 ⁷⁵ Se	ILn		83To20 Z
$^{76}Zn(\beta^{-})^{76}Ga$		4160	80				3			Stu		86Ek01
$^{76}Ga(\beta^{-})^{76}Ge$		7010	90	69164	2.6	-1.0	Ū			Stu		86Ek01
$^{76}As(\beta^{-})^{76}Se$		2970	2	2962.5	0.8	-37	1	17	16 ⁷⁶ As	bru		69Na11
$^{76}Br(\beta^+)^{76}Se$		5002	20	4963	9	-2.0	2	.,	10 110			71Dz08
$^{76}Br(n n)^{76}Se$		5730	15	5745	9	1.0	2			ILL.		78An14
76 Se(n n) 76 Br		-5738.6	15	-5745	9	-0.4	2			122		75Lu02
⁷⁶ Sr-C _{6.333}	F: other r	results of same	work not	trusted, see 80	Y		_					GAu **
77		107 00		620.40	100		••			TO		
$2n - C_{6.417}$		-62790	/80	-63040	130	-0.2	U			106	1.5	98Ba.A *
⁷⁷ Ka ⁸⁵ Nl.906		90/2.8	2.6				2			MA8	1.0	03Gu.A
⁷⁷ Kr ⁻⁰⁵ Rb _{.906}		4588.5	2.1				2			MA8	1.0	02He23
77 Rb-C _{6.417}		-69592	8				2			MA2	1.0	94Ot01
⁷⁵ Sr ¹⁷ F–C ₈		-63652	10	1050		0.0	2			MA8	1.0	01S1.A
⁷⁵ Rb- ⁷⁷ Rb _{.325} ⁷⁴ Rb _{.676}		-1340	380	-1058	11	0.3	U			P20	2.5	82Au01
76 Ge(n, γ) 77 Ge		6072.5	1.0	6072.3	0.4	-0.2	U					72Gr34 Z
		6071.7	1.2			0.5	U					72Ha/4 Z
76 - 277 - 277 -		6072.3	0.4				2		77 .	Bdn		03F1.A
⁷⁶ Ge(³ He,d) ⁷⁷ As		2497	3	2499.0	1.8	0.7	1	34	31 ′′ As	Hei		76Sc13
10 Se(n, γ) 17 Se		7418.87	0.20	7418.86	0.06	0.0	-			BNn		81En07
		7418.85	0.07			0.1	-			ILn		85To10 Z
		7418.85	0.15			0.1	_	~~	77 -	Bdn		03Fi.A
77	ave.	7418.85	0.06			0.1	1	99	72 ′′Se			average
$^{\prime\prime}$ Sr(ε p) $^{\prime 0}$ Kr		3850	200	3921	10	0.4	U					76Ha29
$^{\prime\prime}Zn(\beta^{-})^{\prime\prime}Ga$		7270	120			<i></i>	3			Stu		86Ek01
$^{\prime\prime}$ Ga(β^-) $^{\prime\prime}$ Ge		5340	60	5221.7	3.0	-2.0	U		10 77	Stu		77A117
$^{\prime\prime}$ As(β^{-}) $^{\prime\prime}$ Se		679	4	683.0	1.8	1.0	1	19	18 //As	. ·		51Je01
''Se(p,n)''Br		-2147	4	-2147.0	2.8	0.0	2			Oak		58Jo01
		-2147.0	4.			0.0	2			Tkm		63Ok01

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
77 Kr(β^+) 77 Br 77 Rb(β^+) 77 Kr		3012 5272	30 26	3065 5345	4	1.8	U B					55Th01 82Mo10
Ko(p) Ki		5113	69	5545	0	3.4	В			BNL		83Li11
77 Sr(β^+) 77 Rb		6986	227	7020	12	0.2	U			BNL		83Li11
* ⁷⁷ Zn-C _{6.417}	M-A=-5	8100(700) ke	eV for mi	xture gs+m at	772.39 k	eV						Ens97 **
⁷⁸ Ga- ⁸⁵ Rb 018		12585.2	2.6				2			MA8	1.0	03Gu.A
$C_6 H_6 - \frac{78}{5} Se^{-78}$		129642.6	2.2	129641.1	1.8	-0.3	1	10	10 ⁷⁸ Se	M15	2.5	63Ri07
$C_{6}^{0}H_{6}^{0}-^{78}Kr$		126548.3	3.6	126585.4	1.2	4.1	в			M15	2.5	63Ri07
⁷⁸ Kr- ⁸⁵ Rb _{.918}		1342.3	1.4	1341.8	1.2	-0.4	-			MA8	1.0	02He23
		1338.9	2.2			1.3	-		70	MA8	1.0	02Ro.A
78	ave.	1341.3	1.2			0.4	1	95	95 ⁷⁸ Kr			average
78 Rb-C _{6.5}		-71859	8				2			MA2	1.0	94Ot01
70 Sr-C _{6.5}		-67820	8	1112.00	0.00		2		a 78 c	MA2	1.0	94Ot01
⁷⁸ Se ³⁵ Cl – ⁷⁶ Ge ³⁷ Cl		-1143.57	0.72	-1143.38	0.20	0.2	1	3	2 ⁷⁸ Se	H44	1.5	91Hy01
77 DL 78 DLx 76 DL		1044.58	0.45	1045.59	0.19	1.5	I	8	5 ⁷⁰ Se	H44	1.5	91Hy01 82 Au01
78 Kr(α 8 Ho) 74 Kr		-1192	19 75	41021	7	0.8	U			P20 Toy	2.3	82Mo22
78 Se(p, q) ⁷⁵ As		-41080	23	-41021	0.8	0.8	1	13	12 75 A 6	NDm		82101023 *
$78 Kr(^{3}H_{e} ^{6}H_{e})^{75} Kr$		12581	14	12520	0.0 Q	-0.2	B	15	12 13	NDIII		82Zu04
76 Ge(t n) 78 Ge		6310	5	6310	4	0.0	2			LA1		78Ar12
00((i,p) 00		6310	5	0510	-	0.0	2			Phi		81St18
78 Kr(α , 6 He) 76 Kr		-20351	10	-20336	4	1.5	R			Tex		82Mo23 *
78 Kr(p,t) 76 Kr		-12840	15	-12826	4	0.9	U			Tky		81Ma30
78Se(d, 3He)77As		-4904	4	-4905.0	1.8	-0.3	1	19	18 77 As	Ors		83Ro08 *
77 Se(n, γ) 78 Se		10497.7	0.3	10497.81	0.16	0.4	_			BNn		81En07 Z
		10497.75	0.21			0.3	_			Bdn		03Fi.A
	ave.	10497.73	0.17			0.4	1	90	64 ⁷⁸ Se			average
78 Kr(d,t) 77 Kr		-5804	7	-5824.4	2.2	-2.9	в					87Mo06
$^{/8}$ Zn(β^-) $^{/8}$ Ga		6440	140	6360	90	-0.5	0			Stu		86Ek01
78 0 (0-)78 0		6364	90	01.54	-	0.5	3			Stu		00Me.A
"Ga(p)"Ge		8200	80	8156	5	-0.6	0			Stu		86EKUI
$78C_{0}(B-)78\Lambda_{0}$		067	45	055	10	2.4	D			Stu		65Er04
OC(p) As		987	20	955	10	-1.6	R					65Kv01
⁷⁸ Se(n n) ⁷⁸ Br		-4344	10	-4356	4	-1.2	2			Bar		61Ri02
be(p,ii) Bi		-4370	10	1000	•	1.4	2			LAI		61Sc11
		-4355.5	7.4			-0.1	2			Tkm		630k01 Z
		-4356	5			0.0	2					70Fi03 Z
⁷⁸ Rb ^x (IT) ⁷⁸ Rb		74	12				3					82Au01 *
$*^{78}$ Kr(α , ⁸ He) ⁷⁴ Kr	Original -	-41120(75) fo	or 4 event	s included 1 t	ackgrour	nd event						GAu **
$*^{78}$ Kr(α , He) Kr	Replaced	by calibration	n free ⁸⁰ K	$r(\alpha, {}^{\circ}\text{He})^{/8}\text{Ki}$	$r - {}^{/8}Kr()$	°Kr						GAu **
* ⁷⁸ Se(d, ⁵ He) ⁷⁷ As	Original	value –4910(4	 correcte 	ed, see / ⁴ Se(d	,°He)							AHW **
'°Rb(II)'°Rb	Corrected	l; using ⁷⁸ Rb [#]	°(IT)=111	.2								GAu **
$C_{6} H_{7} - {}^{79}Br$		136444.3	2.4	136438.1	2.2	-1.0	U			M15	2.5	63Ri07
⁷⁹ Kr-C _{6.583}		-79981	52	-79918	4	1.2	U			GS2	1.0	03Li.A *
⁷⁹ Rb-C _{6.583}		-76013	8	-76011	6	0.3	1	65	65 ⁷⁹ Rb	MA2	1.0	94Ot01
79 Sr-C _{6.583}		-70292	9				2			MA2	1.0	94Ot01
78 Se(n, γ) 79 Se		6962.6	0.3	6962.83	0.13	0.8	2					79Br.A Z
		6962.2	0.3			2.1	2			BNn		81En07 Z
78Kr/340 d)79DL		0903.11	0.17	1501	e	-1.6	2	26	25 7904	Bdn Bdn		03F1.A
$797n(B^{-})^{79}Ga$		-1385 8550	240	-1381	240#	0.4	I D	30	55 KD	riil Stu		0/3111 86Eb01
$^{79}\text{Ga}(B^{-})^{79}\text{Ge}$		7000	80	6980	240# 40	-0.3	0			Stu		86Ek01 *
$\operatorname{Ga}(p)$		6979	40	0200	-10	0.5	4			Stu		00Me.A
$^{79}\text{Ge}(\beta^{-})^{79}\text{As}$		4300	200	4150	90	-0.8	3			2.0		70Ka04
4- 7 -		4110	100			0.4	3			Stu		81A120
79 Kr(β^+) 79 Br		1612	10	1626	3	1.4	4					52Be55
		1620	5			1.2	4					54Th39
		1635	5			-1.8	4					64Bo25

Item	Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference	e
79 V (β^+) 79 Sr	7120	450				3					92Mu12	
$*^{79}$ Kr-C	M = A = -74437(30) k	eV for mi	xture os+m a	t 129 77 1	keV	5					NDS025	k sk
$*^{79}$ T n(β^{-}) ⁷⁹ G a	Systematical trends s	uggest 797	$Z_n 540 \log b$	ound	KC V						GAu A	~~
$\pi \operatorname{En}(\mathcal{P})$ Ga	Systematical trends s	uggest z	211 5 40 1033 0	ound							Onu 🤊	
$C_{6} H_{8}^{-80} Se$	146068.5	2.9	146079.0	2.1	1.4	U			M15	2.5	63Ri07	
$C_6 H_8 - {}^{80}Kr$	146225.7	4.6	146221.3	1.6	-0.4	U			M15	2.5	63Ri07	
80 Kr $-^{85}$ Rb _{.941}	-614.5	1.7	-615.2	1.6	-0.4	1	86	86 ⁸⁰ Kr	MA8	1.0	02He23	
⁸⁰ Rb-C _{6.667}	-77478	8	-77481	7	-0.3	1	88	88 ⁸⁰ Rb	MA2	1.0	94Ot01	
⁸⁰ Sr-C _{6.667}	-75475	8	-75479	7	-0.5	2			MA2	1.0	94Ot01	
	-75493	15			0.9	2			MA8	1.0	01Si.A	
⁸⁰ Y-C _{6.667}	-65720	190				2			1.0	1.0	98Is06	
0.007	-66664	86	-65720	190	4.4	F				2.5	01La31	*
80 Zr-C _{6.667}	-59600	1600				2			1.0	1.0	98Is06	
0.007	-59740	161	-59600	1600	0.3	F				2.5	01La31	*
80 Se(p, α) ⁷⁷ As	1020.0	2.8	1020.7	2.0	0.2	1	49	33 ⁷⁷ As	NDm		82Zu04	
80 Kr(³ He, ⁶ He) ⁷⁷ Kr	-10398	24	-10386.9	2.6	0.5	Ū	.,				87Mo06	
80 Se(d α) ⁷⁸ As	5755	12	5768	10	1 1	2			Phi		77Mo13	
80 Se(n t) ⁷⁸ Se	-8395 1	3.0	-8394 7	16	0.1	-			NDm		827u04	
56(p,t) 56	ave 8304.1	2.1	0574.7	1.0	0.1	1	58	13 80 Se	1 Dill		average	
$80 \mathbf{V}_{\pi}(\alpha, 6 \mathbf{U}_{2})^{78} \mathbf{V}_{\pi} = 78 \mathbf{V}_{\pi}()^{76} \mathbf{V}_{\pi}$	ave0394.1	10	1452	5	-0.3	D I	50	45 50			average	
$KI(\alpha, He)$ $KI = KI()$ KI	1452	10	1435	3	2.1	K	0.1	15 7617			/0NI-2	
80 0 (131) 70 1	1432	10	5010	-	2.1	1	21	15 ⁷⁰ Kr	~		82M023	
³⁰ Se(d, ³ He) ⁷⁹ As	-5921	1	-5919	5	0.3	2			Ors		83R008	*
80 70	-5921	13			0.2	2			Hei		83Wi14	
80 Se(t, α)/ 9 As	8407	10	8401	5	-0.6	2			Phi		83Mo09	
⁸⁰ Se(p,d) ⁷⁹ Se	-7687.6	3.0	-7689.1	1.6	-0.5	R			NDm		82Zu04	
79 Br(n, γ) 80 Br	7892.11	0.20	7892.28	0.13	0.8	3			ILn		78Do06	Ζ
	7892.41	0.18			-0.7	3			Bdn		03Fi.A	
80 Zn(β^{-}) 80 Ga	7540	200	7290	120	-1.2	3			Stu		86Ek01	
-	7150	150			0.9	3			Trs		86Gi07	
${}^{80}\text{Ga}(\beta^{-}){}^{80}\text{Ge}$	10380	120				2			Stu		86Ek01	
${}^{80}\text{Ge}(\beta^{-}){}^{80}\text{As}$	2630	20	2644	19	0.7	1	91	78 ⁸⁰ Ge	Trs		86Gi07	
80 Se(t, ³ He) ⁸⁰ As	-5560	25	-5582	23	-0.9	1	86	86 ⁸⁰ As	LA1		79Ai02	
80 Se(n n) 80 Br	-2652.81	0.31				2			PTB		92Bo02	7
${}^{80}\text{Br}(\beta^-){}^{80}\text{Kr}$	1970	30	2003.0	24	1.1	ũ			110		52Eu04	-
$\mathbf{D}(\mathbf{p})$ Ki	2040	20	2005.0	2.7	1.1	U					541 ;10	
	2040	10			-1.6	U					54L119	
80 K	1997	10	(502	7	0.0	1	12	12 80 DL			09Ka00	
⁸⁰ Kr(p,n) ⁸⁰ Kb	-6484.0	20.	-6502	100	-0.9	1	13	12 °°Rb			/2Ja.A	
$^{\circ\circ}$ Y (β +) $^{\circ\circ}$ Sr	6952	152	9090	180	14.1	D			BNL		81L112	*
80	6934	242			8.9	D					82De36	*
$*^{60}Y - C_{6.667}$	F: above lower limit	M=-6589	0(90) uu –61	376(83)	ceV det	erm	ined	by ref			03Ba18 >	۴*
$*^{80}$ Zr-C _{6.667}	F: other results of sar	ne work n	ot trusted, se	e ⁸⁰ Y and	1 º8 Se						GAu 🛛	**
* ⁸⁰ Se(d, ³ He) ⁷⁹ As	Originally -5927(7),	see 74 Se(o	1, ³ He)								AHW *	**
$*^{80}$ Y(β^+) 80 Sr	Systematical trends s	uggest 80	Y 2200 less t	ound							GAu *	**
$C_{c}H_{o}-^{81}Br$	154135 3	38	154134 7	2.1	-01	U			M15	25	63Ri07	
⁸¹ Rb-C	-81001	8	-81004	6	-0.4	1	65	65 ⁸¹ Rb	MA2	1.0	940t01	
6.75	_\$0958	41	5100+	0	_1 1	Π.	05	05 KU	GS2	1.0		¥
⁸¹ Sr C	76786	۲1 و	76788	7	0.2	2			MA2	1.0	040±01	Ť
51-C _{6.75}	-/0/00	12	-10100	/	-0.5	2			MA2	1.0	015: 4	
79 Dh 81 Dh 78 Dh r	-/0/95	12	1140	15	0.4	2 1			MA8	1.0	0151.A	v
⁸⁰ RD - ⁸¹ RD 325 ⁷⁰ RD 675	-1130	30	-1149	15	-0.2	U			P20	2.5	62AU01	1 V
⁸⁰ KD- ⁶¹ Kb _{.494} / ⁷ Kb _{.506}	927	29	928	8	0.0	U			P20	2.5	82Au01	Y
$^{\circ\circ}$ Se(n, γ) $^{\circ1}$ Se	6700.9	0.5	6700.9	0.4	0.0	2			BNn		81En07	Z
90	6700.9	0.5	-		0.0	2			Bdn		03Fi.A	
° Kr(d,p)° Kr	5646	4	5648.3	2.3	0.6	1	32	21 ⁸¹ Kr	Oak		86Bu18	

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{80}K_{r}(^{3}H_{e}d)^{81}Pb$		637	10	642	6	0.5	1	37	35 ⁸¹ Pb	Dhi		87S+11
81 Z r(cp) ⁸⁰ S r		4700	200	4530	170	-0.5	3	57	55 KU	1 111		00Hu05
$^{81}\text{Ga}(\beta^{-})^{81}\text{Ga}$		\$320	150	4550	170	-0.8	4			Stu		81 4120
$^{81}Ge(\beta^-)^{81}Ae$		6230	120				3			Stu		81 A120 *
81 Kr(c) ⁸¹ Br		280.7	0.5	280.8	0.5	0.2	1	94	74 ⁸¹ Kr	Stu		884x01 *
$^{81}V(\beta^{+})^{81}Sr$		5408	86	5510	60	1.2	3	77	/ 11	BNI		811 ;12
1(p) 51		5620	89	5510	00	-1.2	3			DILL		82De36
81 Zr(β^+) 81 Y		7160	290	7530	180	1.2	R					82De36
* ⁸¹ Rb-C	M - A = -7	(5369(29) ke	V for mix	ture gs+m at	86.31 ke	V						NDS96b**
$*^{81}\text{Ge}(\beta^{-})^{81}\text{As}$	$0^{-}=6230$	(120): and 6	930(280)	from ⁸¹ Ge ^m	at 679.13							NDS936**
$*^{81}$ Kr $(\varepsilon)^{81}$ Br	Q(ε)=4.7	(0.5) to 275.9	99 level									AHW **
C H ⁸² 0		161545.0	1.6	161550.0		0.5				1415	2.5	cap.:07
$C_6 H_{10} - {}^{-52}Se$		161545.0	4.6	161550.9	2.2	0.5	U			M15	2.5	63Ri07
$C_6 H_{10} - {}^{52}Kr$		164/69.8	3.4	164/66./	1.9	-0.4	1	5.4	5 4 82 W	MIS	2.5	63Ri07
⁸² Kr- ⁶⁵ Kb _{.965}		-1394.9	2.6	-1393.5	1.9	0.5	1	54	54 °2 Kr	MA8	1.0	02He23
$-RD - C_{6.833}$		-81/90	20	-81/91.4	3.0	-0.2	1	11	11 °-KD	MA2	1.0	940101 *
82pt m 85pt		-61/75	39	2405 7	2.0	-0.4	1	00	00 82 DL m	U52	1.0	03LI.A *
⁸² Sm C		3406.0	2.8	3405.7	2.0	-0.1	1	88 56	56 82 Sm	MA8	1.0	03Gu.A
$SI = C_{6.833}$		-81600	63	-81398	0	1.0	I II	50	30 31	CS2	1.0	940101
82 So 35 C1 80 So 37 C1		2128.02	0.62	2128.2	1.2	0.1	1	61	22 8280	U32 U40	2.5	05ELA 85EL01
Se CI - Se CI		2216.1	1.6	2215.8	2.0	-0.4	1	70	14 82 So	H40	2.5	02Ny01
79 Ph 82 Ph 78 Ph ^x		1536	20	1627	15	-0.1	I	70	44 50	P20	2.5	82Au01 V
81 Pb 82 Pb 78 Pb 78 Pb 78 Pb 78		-1530	40	-1027	15	-1.5	U			F 20 P20	2.5	82Au01 1
80 Pb 82 Pb 79 Pb		-1080	40	-1013	13	0.0	U			F 20 P20	2.5	82Au01 1
$^{82}Se(^{14}C ^{16}O)^{80}Ge$		_440	40 60	_322	28	-0.0	1	22	22 80Ge	Ors	2.5	83Be C
82 Se(18 O 20 Ne) 80 Ge		-2020	40	-1818	28	5.0	R	22	22 00	Hei		83Wi14 *
$^{82}Se(n t)^{80}Se$		-7496 1	3.0	_7494.9	11	0.4	5			NDm		827u04
56(p,t) 56	ave	-7495.8	2.1	/4/4./	1.1	0.4	1	30	17 ⁸² Se	T(D)III		average
82Se(d 3He)81As	uve.	-6864	10	-6856	5	0.4	2	50	17 50	Ors		83Ro08 *
$^{82}Se(t \alpha)^{81}As$		7467	6	7464	5	-0.5	2			Phi		82Mo04
82 Se(n d) 81 Se		-7051.8	2.8	-7051.2	12	0.2	R			NDm		82Zu04
${}^{81}Br(n \gamma){}^{82}Br$		7592.80	0.20	7592.94	0.12	0.2	_			ILn		78Do06 Z
		7593.02	0.15		0.12	-0.5	_			Bdn		03Fi.A
	ave.	7592.94	0.12			0.0	1	100	80 ⁸¹ Br			average
${}^{82}\text{Ge}(\beta^{-}){}^{82}\text{As}$		4700	140				3			Stu		81A120
82 As $(\beta^{-})^{82}$ Se		7270	200				2					70Va31
4		7740	30	7270	200	-15.7	в			Stu		00Me.A
82 As ^m (β^{-}) 82 Se		6600	200	7519	25	4.6	F					70Ka04
		7625	22			-4.8	В			Stu		00Me.A
82Se(t,3He)82Asm		-7500	25				2			LAI		79Aj02
82 Br(β^{-}) 82 Kr		3092.9	1.0	3093.0	1.0	0.1	1	96	80 ⁸² Br			56Wa24
82 Rb(β^+) 82 Kr		4400	15	4401	3	0.1	-					69Be74 *
⁸² Kr(p,n) ⁸² Rb		-5161	20	-5184	3	-1.1	-					72Ja.A
82 Rb(β^+) 82 Kr	ave.	4392	12	4401	3	0.7	1	7	5 ⁸² Rb			average
$^{82}\text{Rb}^m(\text{IT})^{82}\text{Rb}$		69.0	1.5	69.1	1.5	0.1	1	96	84 ⁸² Rb			Ens03
82 Y(β^+) 82 Sr		7868	185	7820	100	-0.3	2			BNL		81Li12
8282		7793	123			0.2	2					82De36
$^{\circ 2}$ Zr(β^+) $^{\circ 2}$ Y		4000	500	4000#	200#	0.0	F					82De36 *
*° ² Rb-C _{6.833}	M=-8171	6(9) µu for 8	$^{\sim}$ Rb ^m at	68.9(1.5) keV	,							NDS95c**
* ^{°2} Rb-C _{6.833}	M-A=-7	6138(30) ke	V for mix	ture gs+m at	69.1(1.5)	keV						Ens95 **
* ⁰² Se(¹⁰ O, ²⁰ Ne) ⁰⁰ Ge	Recalibra	ted to ⁰⁴ Ni()	~Fe=-19	38(15)								AHW **
$*^{52}$ Se(d, ⁵ He) ⁵¹ As	Originall	y -6870(10),	see /4 Se(d, 'He)								AHW **
$*^{2}Kb(\beta^{+})^{2}Kr$	E' =335	U(60); and 8(JU(15) of	"- Kb" at 68.9	$\frac{1.5}{20(5)}$ to 2	2648.36	level					NDS95c**
*Zr(p ') Y	For 2.5(0	.1) m activity	, but Ens	ar ₂₀₀₃ adopts	52(5) s							inubase **

Item		Input value		Adjusted	value	v _i	Dg	Sig	Main flux	. Lab	F	Reference
$C_{c}H_{u}=^{83}Kr$		171946.8	3.4	171939	3	-0.9	1	13	13 ⁸³ Kr	M15	2.5	63Ri07
83 Rb-C _{6.017}		-84886	8	-84890	6	-0.5	1	65	65 ⁸³ Rb	MA2	1.0	94Ot01
83 Sr $-^{83}$ Rb		2447	9				2			MA2	1.0	94Ot01
⁸³ Kr- ⁸² Kr		648	12	652	3	0.1	U			M15	2.5	63Ri07
⁸¹ Rb- ⁸³ Rb _{.488} ⁷⁹ Rb _{.513}		-529	26	-544	7	-0.2	U			P20	2.5	82Au01 Y
81 Rb $-{}^{83}$ Rb $_{.325}$ 80 Rb $_{.675}$		-1054	27	-1039	8	0.2	U			P20	2.5	82Au01 Y
⁸² Rb- ⁸³ Rb _{.659} ⁸⁰ Rb _{.342}		627	24	605	5	-0.4	U			P20	2.5	82Au01 Y
⁸² Rb- ⁸³ Rb _{.494} ⁸¹ Rb _{.506}		1098	23	1055	5	-0.7	U			P21	2.5	82Au01 Y
62 Se(d,p) 63 Se		3593.4	3.0	2210	4	0.5	2	50	50 83D -	NDm		78Mo12
82 Se(8 He,d) 83 Br		3207.4	5.0 10	3210	4	0.5	1	20	25 83 Ph	NDM Dhi		83ZU01 87St11
83 Zr(cn) 82 Sr		200	100	281	100	-0.7	I B	57	55 KU	PIII		83Ha06
$^{83}As(B^{-})^{83}Se$		5460	220	2200	100	ч. <i>)</i>	3			Stu		77A117
${}^{83}\text{Br}(\beta^{-}){}^{83}\text{Kr}$		982	10	973	4	-0.9	_			otu		51Du03
(-)		967	15			0.4	U					63Pa09
		966	6			1.1	_					69Ph03
	ave.	970	5			0.5	1	63	50 ⁸³ Br			average
83 Sr(β^+) 83 Rb		2264	10				2					68Et01
83 Y(β^+) 83 Sr		4509	85	4470	40	-0.5	3			BNL		81Li12 *
837 (0+)837		4455	50			0.3	3					82De36 *
$^{83}Zr(\beta^+)^{83}Y$		5868	85				4					82De36 *
$(83 \text{ ND}(p^+))^{33} \text{ Zr}$	E+ 2060	/500 (85) from 8	300	2 0 40 691 11	larval		5					88Ku14
$*^{83}\mathbf{V}(B^+)^{83}\mathbf{Sr}$	$E^+ = 2800$ $E^+ = 3353$	(63) from (50) to $35/$	1 al 0 17 Iovol	2.0 10 081.11	level							NDS920**
* 1(p) 51	and E	$^+ = 2941(84)$	1) from 8	${}^{3}\mathbf{Y}^{m}$ at 62.0 to	681 11	level						NDS926**
$*^{83}$ Zr(β^+) 83 Y	$O^+ = 5806$	$5(85)$ to 83 Y	m at 62.0)	5 001.11							NDS926**
$*^{83}Zr(\beta^{+})^{83}Y$	Recalcula	ed value 58	802(50) o	of ref. not acc	epted							87Ra06 **
С Ц 84 Иг		182200 4	25	182204	2	0.0	1	22	22 84 Vr	M15	25	62 P ;07
$C_6 \Pi_{12} - K_1$		162399.4 85616	2.3	85615	3	-0.9	1	25	25 NI 14 ⁸⁴ Ph	MAD	2.5	03K107
$C H = -\frac{84}{5}r$		180470.8	26	-85015	3	0.1	1	28	28^{84} Sr	M15	2.5	63Ri07
82 Se(t.p) ⁸⁴ Se		6016	15	6019	14	0.2	1	92	92 ⁸⁴ Se	LAI	2.0	74Kn02
84 Sr(p,t) 82 Sr		-12310	10	-12296	6	1.4	_			Oak		73Ba56
477		-12295	12			-0.1	_			Win		74De31
	ave.	-12304	8			1.0	1	53	44 ⁸² Sr			average
83 Kr(n, γ) 84 Kr		10519.5	1.8	10520.60	0.30	0.6	U					72Ma42 Z
94 92		10520.6	0.3			0.0	1	100	75 ⁸³ Kr	Bdn		03Fi.A
⁸⁴ Sr(d,t) ⁸⁵ Sr		-5720	30	-5662	11	1.9	В			-		70Be24 *
$^{64}As(\beta^{-})^{64}Se$		7195	200	9870#	300#	13.4	F		0.841	Trs		94G107 *
$\operatorname{Se}(p)$) Br		1818	50 100	1848	20	0.6	I	16	8 ° Br			68Re12
$84 \mathbf{Br}(\mathbf{\beta}^{-}) \cdot 84 \mathbf{Kr}$		1606	100	4632	14	0.4	1	02	02 84Br			70El02 70Ha21 *
$^{84}Br^m(\beta^-)^{84}Kr$		4029	100	4032	14	0.2	2	92	92 · DI			70Ha21 *
84 Rb(β^+) 84 Kr		2679	3	2681.0	23	0.7	_					64La03
1000 / 11		2682	5	200110	210	-0.2	_					71Bo01 *
	ave.	2679.8	2.6			0.5	1	80	40 ⁸⁴ Rb			average
${}^{84}\text{Rb}(\beta^{-}){}^{84}\text{Sr}$		892	4	894	3	0.5	1	63	39 ⁸⁴ Sr			71Bo01 *
${}^{84}Y(\beta^+)^{84}Sr$		6499	135	6490	90	-0.1	2			BNL		81Li12
		6475	124			0.1	2					82De36
84 Y ^m (β^+) 84 Sr		6409	170				2			BNL		81Li12
* ⁸⁴ Sr(d,t) ⁸³ Sr	Q=-5755(30) to 35.47	7 level									NDS **
$*^{84}$ As $(\beta^{-})^{84}$ Se	Observed	$(\beta^{-}n)$ deca	y implies	s Q β > 8681((15)							93Ru01 **
$*^{84}Br(\beta^{-})^{84}Kr$	E ⁻ =4626(15),3810(5	0),2700(.	50) to ground	-state, 88	1.615, 1	897.7	84				NDS976**
$*^{6+}Br^{m}(\beta^{-})^{8+}Kr$	E ⁻ =2200(100) to 277	0.95 5-	level								NDS976**
$*^{\circ}Kb(\beta^+)^{\circ}Kr$	Original e	rror increas	ed: E_0	$E(2^+)=877.2($	(1.5) but							AHW **
* 84 D1 (0-)84 C	E(2 ⁺)	=881.56(0.0	18), see a	uso ' $As(\beta^+)$	D1 (0+)							NDS **
* κb(β) ^{o+} Sr	Originally	891.8(2.0),	error in	creased see ⁸⁴	κb(β ')							AHW **

Item		Input val	ue	Adjusted v	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
$C_{c}H_{12} - {}^{85}Rb$		189927.6	3.9	189935.679	0.012	0.8	U			M15	2.5	63Ri07
${}^{85}Y-C_{7.082}$		-83559	31	-83567	20	-0.3	2			GS2	1.0	03Li.A *
$C_{6} H_{14} - {}^{85}Rb$		197760.706	0.014	197760.711	0.012	0.4	_			MI2	1.0	99Br47
⁸⁵ Rb-C ₆ H ₁₂		-182110.662	0.024	-182110.647	0.012	0.6	_			MI2	1.0	99Br47
$C_{6} H_{14} - {}^{85}Rb$	ave.	197760.711	0.012	197760.711	0.012	0.0	1	100	100 ⁸⁵ Rb			average
⁸³ Rb- ⁸⁵ Rb 488 ⁸¹ Rb 512		-351	22	-344	7	0.1	U			P21	2.5	82Au01 Y
84 Kr(d,p) 85 Kr		4895	8	4896	3	0.1	1	17	12 ⁸⁴ Kr	MIT		63Ho.A
⁸⁵ Rb(p,d) ⁸⁴ Rb		-8275	6	-8264.1	2.8	1.8	1	22	22 ⁸⁴ Rb	Bld		78Sh11
⁸⁴ Sr(d,p) ⁸⁵ Sr		6303	8	6305	4	0.3	1	25	14 ⁸⁴ Sr			71Mo02
85 Mo(εp) 84 Zr		5100	200				3					99Hu05
85 Se(β^{-}) 85 Br		6182	23				3			Bwg		92Gr.A
$^{85}Br(\beta^{-})^{85}Kr$		2870	19				2			Stu		79A105
85 Kr(β^{-}) 85 Rb		687	2	687.1	1.9	0.0	1	95	95 ⁸⁵ Kr			70Wo08
⁸⁵ Rb(³ He,t) ⁸⁵ Sr		-1083	3	-1083.3	2.8	-0.1	1	89	89 ⁸⁵ Sr	Pri		82Ko06
85 Y(β^+) 85 Sr		3255	25	3260	19	0.2	R					63Do07 *
85 Zr(β^+) 85 Y		4693	99				3					82De36
$^{85}Nb(\beta^+)^{85}Zr$		6000	200				4					88Ku14
* ⁸⁵ Y-C	M - A = -7	7824(28) keV	for mixtu	e øs+m at 198	keV							Ens94 **
$*^{85}Y(\beta^+)^{85}Sr$	$E^+ = 154$	0(20) to 743 13	level	e go in at 1910	ne (NDS912**
* 1(p) 51	and F	$k^+ = 2240(10)$ f	From $^{85}Y^m$	at 19.8 (discre	nant – >	outer	erro	used)			NDS912**
		22.0(10)1		at 1910 (albert	pun >	outer		used	,			1120712
C ₆ H ₁₄ - ⁸⁶ Kr		198936.7	2.7	198939.72	0.11	0.4	U			M15	2.5	63Ri07
⁸⁶ Kr-C _{7,167}		-89389.271	0.110				2			ST2	1.0	02Bf02
$C_6 H_{14} - {}^{86}Sr$		200264.9	3.6	200290.2	1.2	2.8	В			M15	2.5	63Ri07
⁸⁶ Sr ¹⁹ F-C _{8 75}		-92332	12	-92336.6	1.2	-0.4	U			MA8	1.0	01Si.A
${}^{86}Y-C_{7,167}$		-85019	75	-85114	15	-1.3	U			GS2	1.0	03Li.A *
86 Kr $-^{85}$ Rb _{1.012}		-120.3	3.6	-120.49	0.11	-0.1	U			MA8	1.0	02Ro.A
⁸⁶ Sr(p,t) ⁸⁴ Sr		-11535	10	-11541	3	-0.6	1	11	10 ⁸⁴ Sr	Oak		73Ba56
85 Rb(n, γ) 86 Rb		8651.1	1.0	8651.00	0.20	-0.1	U					69Da15 Z
		8651.3	1.5			-0.2	U					70Or.A
		8650.98	0.20			0.1	1	99	99 ⁸⁶ Rb	Bdn		03Fi.A
86 Se(β^{-}) 86 Br		5099	11				4			Bwg		92Gr.A
${}^{86}\text{Br}(\beta^{-}){}^{86}\text{Kr}$		7626	11				3			Bwg		92Gr.A
86 Rb(β^{-}) 86 Sr		1774	5	1776.6	1.1	0.5	_			0		64Da16
4 /		1770	3			2.2	_					66An10
		1779.2	2.5			-1.1	_					75Be21
		1775	3			0.5	_					75Ra09
	ave.	1775.2	1.5			0.9	1	49	48 ⁸⁶ Sr			average
86 Y(β^+) 86 Sr		5220	20	5240	14	1.0	2					62Ya01
		5260	20			-1.0	2					65Va02
86 Nb(β^+) 86 Zr		7978	80				3					82De43
${}^{86}Mo(\beta^+){}^{86}Nb$		5270	430				4					94Sh07 *
* ⁸⁶ Y-C _{7 167}	M-A=-7	79086(29) keV	for mixtur	e gs+m at 218.	30 keV							NDS018**
$*^{86}$ Mo(β^+) ⁸⁶ Nb	$E^{+} = 400$	$0(400)$ to $(0^+, 1)$	$^{+},2^{+})$ lev	el at estimated	250(160))						94Sh07 **
87 V. C		86633	20	966AE 1 A	0.20	0.0	ŢŢ			CER	1.0	021: 4
с и о ⁸⁷ рь		-80022	30	-80045.14	0.29	-0.8	U			GS2	1.0	03L1.A
$C_4 H_7 U_2 - KD$		133417.8	2.1	135423.937	0.013	0.9	U			M15	2.5	03KIU/
с и О ⁸⁷ с		-90817	9	-90819.473	0.013	-0.3	U			MA2	1.0	94Ut01
$C_4 H_7 O_2 - Sr$		135/22.2	3.5	135/27.3	1.2	0.6	U			M15	2.5	03K1U/
$1 - C_{7.25}$		-89153	30 20	-89124.3	1./	1.0	U			GS2	1.0	03L1.A *
$2r - C_{7.25}$		-85222	50	-85184	9	1.3	U			G82	1.0	03L1.A
$C_6 H_{16} - Kb$		216019.966	0.023	216019.986	0.013	0.9	-			MI2	1.0	99Br4/
$Kb - C_6 H_{14}$		-200369.931	0.015	-200369.922	0.013	0.6	-	100	100 87	MI2	1.0	99Br47
$C_6 H_{16} - {}^{\circ'} Kb$	ave.	216019.986	0.013	216019.986	0.013	0.0	1	100	100 °'Rb	Dat	a -	average
^{o+} Kb ⁻ ^o 'Kb _{.241} ^{o-} Rb _{.759}		850	72	656	5	-1.1	U			P21	2.5	82Au01 *

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
⁸⁷ Sr(p,t) ⁸⁵ Sr		-11440	10	-11439	3	0.1	U			Oak		73Ba56
${}^{87}Br(\beta^{-}n){}^{86}Kr$		1335	25	1337	18	0.1	R					84Kr.B
86 Kr(n. γ) 87 Kr		5515.04	0.6	5515.17	0.25	0.2	3					77.Je03
(-,1)/		5515.20	0.27			-0.1	3			Bdn		03Fi.A
86 Sr(n, γ) ⁸⁷ Sr		8428.12	0.17	8428.15	0.12	0.2	_			ILn		86Wi16
		8428.17	0.17			-0.1	_			Bdn		03Fi.A
	ave.	8428.15	0.12			0.1	1	100	51 ⁸⁶ Sr			average
86 Sr(p, γ) ⁸⁷ Y		5785.4	3.3	5784.1	1.1	-0.4	R					71Um03
$^{87}Mo(\varepsilon p)^{86}Zr$		3700	300	2820	230	-2.9	В					83Ha06
87 Se(β^{-}) 87 Br		7275	35				5			Bwg		92Gr.A
${}^{87}\text{Br}(\beta^{-}){}^{87}\text{Kr}$		6855	25	6852	18	-0.1	4			Bwg		92Gr.A
87 Kr $(\beta^{-})^{87}$ Rb		3888	7	3888.37	0.27	0.1	U			-		73Wo01
$^{87}\text{Rb}(\beta^-)^{87}\text{Sr}$		272	3	282.6	1.1	3.5	В					59F140
		274	3			2.9	В					61Be41
⁸⁷ Rb(³ He,t) ⁸⁷ Sr- ⁸¹ Br() ⁸¹ Kr		564.0	1.5	563.4	1.1	-0.4	1	51	46 87 Sr	Pri		82Ko06
⁸⁷ Sr(p,n) ⁸⁷ Y		-2644.2	1.2	-2644.0	1.1	0.1	2					71Um03
$^{87}Nb(\beta^+)^{87}Zr$		5165	60				3					82De43
$^{87}Mo(\beta^{+})^{87}Nb$		6382	308	6490	210	0.3	4					82De43
		6589	300			-0.3	4					91Mi15
$^{87}Y-C_{7,25}$	M-A=-	-82665(28) ke	V for 87 Y	m at Eexc=38	80.82 ke	v						NDS023*
84 Rb $-^{87}$ Rb ₂₄₁ 83 Rb ₇₅₀	$D_{M} = 108$	30(40) keV co	rrected -2	230(60) for m	nixture g	s+m at	464.	62 ke	V			GAu *
$^{87}\text{Nb}(\beta^+)^{87}Zr$	$0^{+}_{+}=51$	69(60) from 8	³⁷ Nb ^m at 3	3.9(0.1)	0							91Ju05 *
$^{87}Mo(\beta^{+})^{87}Nb$	$\dot{0}^{+} = 63$	78(308)) to 8	Nb ^m at 3	.9(0.1)								91Ju05 *
87 Mo(β^+) 87 Nb	E ⁺ =530	00(300) to lev	vel 262.7 a	above ⁸⁷ Nb ^m	at 3.9(0.	1)						91Ju05 *
С Ц О 885-		146780-1	47	146917 4	1.2	2.4	D			M15	25	62D:07
$C_4 \Pi_8 O_2 = 51$		0/386	11	0/387.0	1.2	0.2	U D			MAS	1.0	
⁸⁸ Y-C		-90500	31	-90498.9	2.0	-0.2	U			GS2	1.0	
¹ C _{7.333} ⁸⁸ Rh – ⁸⁵ Rh		2615	9	2613.21	0.17	_0.2	U U			MΔ4	1.0	028923
⁸⁸ Sr ⁸⁵ Pb		3108	20	3000.3	1.2	0.2	U U			MAS	1.0	02Ka25
86 Kr(t p) ⁸⁸ Kr		4001	15	-3090.3	13	0.9	3			I AI	1.0	76F102
87 Pb(n x) ⁸⁸ Pb		6082 52	0.16	4087	15	-0.2	2			EA1 Bdn		03Ei A
$^{87}Sr(n x)^{88}Sr$		11112.62	0.10	11112 64	0.16	0.1	2			II n		03FLA 97W/15
31(11,7) 31		11112.03	0.22	11112.04	0.10	0.1	_			Bdn		03Ei A
	01/0	11112.04	0.22			0.0	1	100	05 88 Cr	Bull		05FLA
$88 c_0 (B^-) 88 D_r$	ave.	6854	21			0.1	5	100	95 51	Dura		average
$^{88}\text{Dr}(\beta^{-})^{88}\text{Vr}$		8060	26				3			Dwg		9201.A
BI(p) NI $88V_{\pi}(\rho =)$ 88 ph		8900 2020	20	2017	12	0.4	4 D			Бwg Treo		920I.A 79Wo15
10 KI(p) KU 10 KI(p) KU		2930	50	2917	15	-0.4	K			Com		78W015
RD(p) Sr		5212	9	5512.7	1.1	-0.0	U			USII Tro		80De02
88 V(Q+)88 C.		2622.6	15			-0.1	2			115		70 4 = 26
$1(p^{+})^{-}$ SI 88 NIL (p^{+})88 7.		3022.0	1.0				2					79AII50 84Ox01
$^{88}NLm(\rho^{+})^{88}Zr$		7550	100				3					840x01
88 T (β^+) 88 L		/590	100	00001	2001		5					840x01
$1c(\beta^+)^{so}Mo$		8600	1300	9990#	200#	1.1	D					960001
$88 \text{ pt} (\theta =) 88 \text{ c}$	0.1.1.1	/800	600	c		3.6	D					96Sh27
88 Tc(β^+) ⁸⁸ Mo	Systema	tical trends su	iggest 887	1 C 2050 less b	ound							94Ha.A * CTh *
	-											
C ₇ H ₅ - ⁸⁹ Y		133247.0	3.4	133276.9	2.7	3.5	В			M15	2.5	63Ri07
⁸⁹ Nb-C _{7.417}		-86588	34	-86582	29	0.2	2			GS2	1.0	03Li.A
89 Rb $-^{85}$ Rb $_{1.047}$		4628	9	4634	6	0.7	1	42	42 ⁸⁹ Rb	MA4	1.0	02Ra23
88 Sr(n, γ) 89 Sr		6358.70	0.13	6358.72	0.09	0.1	_			ILn		89Wi05
•		6358.73	0.13			-0.1	-			Bdn		03Fi.A
	ave.	6358.71	0.09			0.0	1	100	95 ⁸⁹ Sr			average
88 Sr(p, γ) 89 Y		7078	4	7069.0	2.6	-2.3	В					75Be.B

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{89}Br(\beta^{-})^{89}Kr$		8155	30				3			Bwg		92Gr.A
89 Kr(β^{-}) 89 Rb		4970	60	4990	50	0.3	2			Trs		78Wo15
<i>v. 7</i>		5030	100			-0.4	2			Stu		81Ho17
89 Rb(β^{-}) 89 Sr		4486	12	4497	5	0.9	_					66Ki06
		4510	9			-1.5	-			Gsn		80De02 *
	ave.	4501	7			-0.7	1	57	56 ⁸⁹ Rb			average
89 Sr(β^{-}) 89 Y		1488	4	1492.6	2.6	1.2	1	42	38 ⁸⁹ Y			70Wo05
89 Zr(β^+) 89 Y		2841	10	2832.9	2.8	-0.8	U					51Hy24
		2832	10			0.1	U					53Sh48
20 x x () 20 -		2828	7		• •	0.7	-					60Ha26
69 Y(p,n) 69 Zr		-3612.8	4.	-3615.2	2.8	-0.6	-			Tkm		63Ok01 2
897 (0+)8937		-3619.4	6.	2022.0	2.0	0.7	-	06	00 897	Oak		64J011 Z
$^{69}Zr(p^+)^{69}Y$	ave.	2832	3	2832.9	2.8	0.4	I D	86	82 ⁶⁵ Zr			average
$^{89}Nb(p^+)^{89}Zr$		4340	50	4218	27	-2.4	В					/4 V008
69 Ic(β^+) 69 Mo		/510	210	/160#	200#	, -1./	D					91He04 >
$*^{9}$ ND- $U_{7.417}$	M-A=-0	80656(28) Ke	V IOF mix	ture gs+m at	0#30 Kev							Nubase **
$*^{0}$ KD(β) 0 Sr	Original	error 8 correc	ted by rei									94Ha.A **
$*^{1} (p +)^{0} M0$	E = = 637	0(210) to 118	.8 level; 1	no Fermi-Ku	irie plot							91He04 **
* ⁶⁹ Ic(β ⁺) ⁶⁹ Mo	Systemat	ical trends su	ggest ^{og} I	c 350 more bo	ound							GAu **
$C_4 H_{10} O_2 - {}^{90}Zr$		163377	6	163375.1	2.5	-0.1	U			M15	2.5	63Ri07
⁹⁰ Nb-C ₇₅		-88872	50	-88735	5	2.7	U			GS2	1.0	03Li.A >
90 Rb $-^{85}$ Rb _{1.059}		8211	9	8216	7	0.6	1	61	61 ⁹⁰ Rb	MA4	1.0	02Ra23 *
89 Rb $-^{90}$ Rb $^{x}_{791}$ ⁸⁵ Rb $_{209}$		-1826	24	-1821	14	0.1	U			P21	2.5	82Au01
90 Zr(α , ⁸ He) ⁸⁶ Zr		-40136	30				2			INS		90Ka01
90Zr(3He,6He)87Zr		-12083	8				2			MSU		78Pa11
90Zr(p,t)88Zr		-12805	10				2			Oak		71Ba43
89 Y(n, γ) 90 Y		6857.26	0.30	6857.03	0.10	-0.8	_					83De17
		6856.98	0.17			0.3	-			ILn		93Mi04 Z
		6857.01	0.14			0.1	-			Bdn		03Fi.A
80	ave.	6857.03	0.10			0.0	1	100	52 ⁹⁰ Y			average
89 Y(p, γ) 90 Zr		8351	4	8354.5	1.7	0.9	1	17	12 ⁸⁹ Y			75Be.B
90 Zr(p,d) 89 Zr		-9728	10	-9745	3	-1.7	U			Oak		71Ba43
90 Zr(d,t) 89 Zr		-5719.2	7.1	-5712	3	0.9	1	19	18 ⁸⁹ Zr	SPa		79Bo37
$^{90}Br(\beta^{-})^{90}Kr$		9800	400	10350	80	1.4	В			Stu		81Ho17
90xx (0-)90x1		10350	75	1202	17	0.6	3			Bwg		92Gr.A
Kr(p)/Kb		4410	30	4392	1/	-0.6	2			T		70Ma11
		4390	40			0.0	2			ITS		/8W015
90 Phx/IT)90 Ph		4380	12			0.5	2			ъwg		8701.A
90 pb(B-)90 sr		6597	12	6580	7	0.7	1	44	20 90 Ph	Gan		02Pr02
$90 \mathbf{Sr}(\mathbf{R}^{-}) 90 \mathbf{V}$		546	2	545.9	1.4	-0.7	1	44	39 KU	USII		64Da16
SI(p) I		546	2	545.9	1.4	-0.1	_					83Ha35
	ave	546.0	14			_0.1	1	99	95 ⁹⁰ Sr			average
$90 \mathbf{V} (\beta^{-}) 90 \mathbf{7r}$	ave.	2271	2	2279.8	17	4.4	B	,,	<i>)5</i> 51			61Ni02
$\Gamma(p) \Sigma_1$		2284	5	2219.0	1.7	-0.8	-					64Da16
		2273	5			14	_					64La13
		2280	5			0.0	_					66Ri01
		2279.5	2.9			0.1	_					83Ha35
	ave.	2279.2	2.0			0.3	1	66	44 ⁹⁰ Y			average
90 Nb(β^+) 90 Zr		6111	4				2		-			68Pe01
$^{90}Mo(\beta^{+})^{90}Nb$		2489	4				3					66Pe10
${}^{90}\text{Tc}(\vec{\beta}^+){}^{90}\text{Mo}$		9130	410	8960	240	-0.4	4					74Ia01 >
ч <i>i</i> .		8870	300			0.3	4					81Ox01
90 Tc ^{<i>m</i>} (β^+) 90 Mo		9270	300				4					81Ox01
		22221(20) 11	I for mix	tama agi m at 1	24 67 10	v						NDS97b*s
* ⁹⁰ Nb-C ₇₅	M-A=-8	82721(29) Ke	V IOI IIIIA	ture gs+n at i	24.07 KC	v						1100770**
$*^{90}$ Nb $-C_{7.5}$ $*^{90}$ Rb $-^{85}$ Rb _{1.050}	M - A = -8 $D_M = 8320$	6(9) uu for ⁹⁰ l	$\mathbf{R}\mathbf{b}^m$ at Ee	xc=106.90 ke	24.07 Ke eV; M–A	• .=-7926	50(9)	keV				Ens98 **

Item		Input va	ilue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
⁹¹ Rb-C _{7,582}		-83532	21	-83463	9	1.3	U			Pb1	2.5	89A133
$C_7 H_7 - {}^{91}Zr$		149143.1	4.4	149129.5	2.5	-1.2	U			M15	2.5	63Ri07
⁹¹ Nb-C _{7 583}		-93064	46	-93004	4	1.3	U			GS2	1.0	03Li.A *
91 Rb $-^{85}$ Rb $_{1.071}$		11003	10	11010	9	0.7	1	75	75 ⁹¹ Rb	MA4	1.0	02Ra23
91 Sr $-^{85}$ Rb _{1.071}		4702	9	4676	5	-2.9	1	29	29 91 Sr	MA4	1.0	02Ra23
${}^{90}\text{Rb}^{x} - {}^{91}\text{Rb}_{.824} {}^{85}\text{Rb}_{.176}$		-686	24	-767	15	-1.4	U			P21	2.5	82Au01
90 Zr(n, γ) 91 Zr		7194.4	0.5	7194.5	0.5	0.1	1	99	70 ⁹⁰ Zr			81Lo.A Z
00 01		7192.7	0.8			2.2	В			Bdn		03Fi.A
90 Zr(p, γ) 91 Nb		5167	5	5154.1	3.0	-2.6	0					71Ra08
91 D m(- >90) (5167	4			-3.2	B					75Be.B Z
11 Ru ^m (ε p)) ¹⁰ Mo		4300	500	0000	40	0.1	4			Deres		83Ha06
$\operatorname{Br}(p)$ Kr		9790	50	9800	40	0.1	2			Bwg		89Gr03
91 Kr(R-)91 Pb		9803	30 80	6440	60	-0.1	2			Бwg Tre		9201.A 78Wo15
$\mathbf{R}(p)$ \mathbf{R}_{0}		6450	80	0440	00	_0.2	2			Bwg		89Gr03
91 Rb $(\beta^{-}){}^{91}$ Sr ^x		5850	20	5853	8	0.2	-			McG		831a02
R0(p) 51		5860	10	5055	0	-0.7	_			Gsn		92Pr03
	ave.	5858	9			-0.5	1	86	73^{91} Sr ^x			average
91 Sr ^x (IT) ⁹¹ Sr		70	20	47	11	-1.2	1	31	27 91 Sr ^x			AHW *
91 Sr(β^{-}) 91 Y		2669	10	2700	4	3.1	_					53Am08
		2684	10			1.6	_					73Ha11 *
		2704	8			-0.5	-			Gsn		80De02 *
		2709	15			-0.6	-		01	McG		83Ia02
01001	ave.	2691	5			1.8	1	71	60^{-91} Sr			average
91 Y(β^{-}) 91 Zr		1545	5	1545.4	1.8	0.1	-					64La13
		1544	2			0.7	-	0.0	00.9137			75Ra08
917r(n n)91Nth	ave.	1544.1	1.9	2040.2	2.0	0.7	1	96	89 ⁷ Y	Oalr		average
Zr(p,n) ² Nb		-2045	0	-2040.3	3.0	0.8	2			Оак Кулу		70K101 71Mo47
$^{91}Mo(B^+)^{91}Nb$		-2038.8	30	4428	12	-0.4	R			Кyu		56Sm96
$MO(p^{-})$ MO		4435	23	4420	12	-0.3	R					930s06
91 Tc(β^+) 91 Mo		6220	200			0.5	3					74Ia01
* ⁹¹ Nb-C _{7,592}	M-A=-8	36636(30) ke	for mix	ture gs+m at	104.601	κeV						NDS991**
$*^{91}$ Sr ^x (IT) ⁹¹ Sr	β feeding	g in 91 Sr: <89	6 of grou	nd-state and 2	25% of 9	93.6281	evel					NDS908**
$*^{91}$ Sr(β^{-}) ⁹¹ Y	Original	error 4 increa	sed: disci	. with other r	esults							AHW **
$*^{91}\mathrm{Sr}(\beta^{-})^{91}\mathrm{Y}$	Original	error 3 correc	ted by ref	ſ								94Ha.A **
⁹² Rh–C		-80323	32	-80271	7	0.6	П			Ph1	25	894133
$C_{7.667}$ $C_{7.667}$		157569.4	3.8	157559.4	2.5	-1.1	Ŭ			M15	2.5	63Ri07
⁹² Nb-C ₇ (c7		-92851	56	-92806	3	0.8	Ũ			GS2	1.0	03Li.A *
$C_7 H_8 - \frac{92}{Mo}$		155790.0	3.2	155789	4	-0.1	1	26	26 92Mo	M15	2.5	63Ri07
$^{92}Rb^{-85}Rb_{1.082}$		15176	9	15172	7	-0.4	1	53	53 ⁹² Rb	MA4	1.0	02Ra23
92 Sr $-^{85}$ Rb _{1.082}		6482	9	6481	4	-0.1	_			MA4	1.0	02Ra23
		6484.0	4.3			-0.6	-			MA8	1.0	03Gu.A
	ave.	6484	4			-0.6	1	89	89 ⁹² Sr			average
⁸⁹ Rb- ⁹² Rb _{.553} ⁸⁵ Rb _{.449}		-3457	24	-3470	6	-0.2	U			P21	2.5	82Au01
91 Rb $-{}^{92}$ Rb $_{.848}$ 85 Rb $_{.153}$		-1703	25	-1767	10	-1.0	U			P21	2.5	82Au01
${}^{90}\text{Rb}^{x} - {}^{92}\text{Rb}_{.699} {}^{85}\text{Rb}_{.303}$		-2059	24	-2128	14	-1.2	U			P21	2.5	82Au01
${}^{90}\text{Rb}^{x} - {}^{92}\text{Rb}_{.326} {}^{89}\text{Rb}_{.674}$		209	24	159	14	-0.8	U			P21	2.5	82Au01
$^{\sim}$ Mo(α , $^{\circ}$ He) $^{\circ\circ}$ Mo		-43278	20	1201	27	0.0	2			INS		90Ka01
22 Mo(p, α) ⁶⁵ Nb		-1306	50	-1291	27	0.3	R			ANL		75Se.A
$^{-1}$ MO($^{-1}$ He, $^{-1}$ He) $^{-1}$ MO 92 Pb(β - α) 91 S-		-14465	15	000	7	1 1	2	22	15 9204	MSU		80Pa02
$80(p-1)^{-5}$ Sr 9^{1} Zr(p-2) 9^{2} Zr		180	1.5	0U2 8621 90	0.11	1.1	1	23	13 -KO	Πп		04NI.D 70Br25 7
$\Sigma_{I}(\Pi,\gamma)$ Σ_{I}		8634.64	0.20	0034.80	0.11	-0.0	_			шп		81Su A 7
		8635.00	0.15			-0.8	_			Bdn		03Fi A
	ave	8634 79	0.11			0.1	1	100	64 ⁹¹ Zr	Dan		average
⁹² Mo(p,d) ⁹¹ Mo		-10446	15	-10448	11	-0.1	2	100	J. 24	Tex		73Ko03
		-10432	25			-0.6	2			Grn		73Mo03
$^{92}Br(\beta^{-})^{92}Kr$		12155	100	12200	50	0.5	3			Bwg		89Gr03
-		12220	55			-0.3	3			Bwg		92Gr.A

Item		Input va	llue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
92 Kr(β^{-}) 92 Rb		5987	10				2			Bwg		92Gr.A
92 Rb $(\beta^{-})^{92}$ Sr		8080	30	8096	6	0.5	_			McG		83Ia02
		8096	16			0.0	_			Bwg		92Gr.A
		8107	15			-0.8	_			Gsn		92Pr03
	ave.	8099	10			-0.4	1	39	31 92Rb			average
$^{92}Sr(\beta^{-})^{92}Y$		1929	50	1946	9	0.3	U					57He39
4 /		1930	30			0.5	_			Trs		78Wo15
		1920	20			1.3	-			McG		83Ia02
	ave.	1923	17			1.4	1	33	30 ⁹² Y			average
${}^{92}Y(\beta^{-}){}^{92}Zr$		3640	20	3641	9	0.0	-					62Bu16
		3630	15			0.7	-			McG		83Ia02
	ave.	3634	12			0.6	1	58	57 ⁹² Y			average
92Zr(p,n)92Nb		-2790.7	2.3	-2787.9	1.8	1.2	-			Kyu		74Ku01
		-2792	5			0.8	-					75Ke12
	ave.	-2790.9	2.1			1.5	1	74	65 ⁹² Nb			average
⁹² Mo(p,n) ⁹² Tc		-8672	50	-8653	26	0.4	2			Tal		66Mo06 *
⁹² Mo(³ He,t) ⁹² Tc		-7882	30	-7889	26	-0.2	2			ChR		73Ha02
* ⁹² Nb-C _{7.667}	M-A=-8	86422(34) keV	/ for mix	ture gs+m at 1	135.5 ke	V						NDS00b**
$*^{92}$ Mo(p,n) ⁹² Tc	T=9040(5	50) to 270.15	level									NDS **
⁹³ Rh_C		-78036	21	_77958	8	15	IJ			Ph1	25	894133
$C H = -9^{3}Nb$		164046.9	35	164047.2	26	0.0	U			M15	2.5	63Ri07
$^{93}M_{0}-C$		_93194	30	_93187	4	0.0	U			GS2	1.0	03Li A *
$^{93}T_{C} - C$		_89729	31	_89751	4	-0.7	U			GS2	1.0	03Li A
⁹³ Ph ⁸⁵ Ph		18540	10	18544	4 9	-0.7	1	66	66 ⁹³ Ph	MA4	1.0	022023
⁹³ Sr ⁸⁵ Ph		10526	10	10528	0	-0.3	1	65	65 93 Sr	MA4	1.0	02Ra23
⁹¹ Ph ⁹³ Ph ⁸⁹ Ph		471	0	10528	0	0.2	1	16	12 ⁹¹ Ph	D21	2.5	86Au02
91 Rb 93 Rb 90 Rb 90 Rb x		-656	23	-630	15	0.4	1 1	10	12 KU	P21	2.5	82Au01
92 Rb 93 Rb 91 Rb		465	23	435	8	-0.5	U			P21	2.5	82Au01
93 Rb $(\beta^{-}n)^{92}$ Sr		2220	30	2179	8	_1.4	1	8	6 ⁹³ Rh	121	2.5	84Kr B
92 7 r(n v) ⁹³ 7 r		6733 7	11	6734.5	0.4	0.7	-	0	0 10			72Gr23 7
$\Sigma_1(n, j) \Sigma_1$		6734.0	0.7	0754.5	0.4	0.7	_					79KeD Z
		6735.3	0.7			-1.2	_			Bdn		03Fi A
	ave	6734 5	0.5			0.0	1	98	55 ⁹² Zr	Dun		average
93 Nb(γ n) 92 Nb		-8825	3	-8831.3	2.0	-2.1	1	46	35 ⁹² Nb	McM		79Ba06
$^{92}Mo(n \gamma)^{93}Mo$		8069.81	0.09	8069.81	0.09	0.0	1	100	52 92 Mo	MMn		91Is02 Z
		8070.0	0.3			-0.6	Ū			Bdn		03Fi.A
$^{92}Mo(p,\gamma)^{93}Tc$		4086.5	1.0				2					83Av01
93 Kr(β^{-}) 93 Rb		8600	100				2			Bwg		87Gr.A
93 Rb(β^{-}) 93 Sr		7440	30	7467	9	0.9	_			McG		83Ia02
		7455	35			0.3	_			Bwg		87Gr.A
		7456	15			0.7	_			Gsn		92Pr03
	ave.	7453	13			1.1	1	49	25 93Rb			average
93 Sr(β^{-}) 93 Y		4110	20	4139	12	1.4	1	35	24 93 Y	McG		83Ia02
$^{93}Y(\beta^{-})^{93}Zr$		2890	20	2894	10	0.2	-					59Kn38
		2880	15			0.9	-			McG		83Ia02
	ave.	2884	12			0.9	1	76	76 ⁹³ Y			average
93 Zr(β^{-}) 93 Nb		93.8	2.	91.2	1.6	-1.3	1	63	37 ⁹³ Nb			53G1.A
⁹³ Nb(p,n) ⁹³ Mo		-1188	10	-1187	4	0.1	_					68Fi01
		-1190	5			0.6	_					75Ch05
	ave.	-1190	4			0.6	1	62	52 93Mo			average
93 Ru(β^+) 93 Tc		6337	85				3					83Ay01
* ⁹³ Mo-C _{7.75}	M-A=-8	84385(28) keV	/ for ⁹³ M	o ^m at Eexc=2	424.891	κeV						Ens97 **
94 P b 85 P b		22059	10	22045	0	0.7	1	00	90 94 DL	MA4	1.0	020.22
94 Sr 85 Ph		23930	10	20900	9	0.7	1	50	50 94 C.	MA4	1.0	02Ra23
$C H \frac{94}{7r}$		12724	3.0	12722	26	-0.2	1	59	7 94 7 .	M15	2.5	63Pi07
$C_7 \Pi_{10} = Z_1$		1/1949.4	3.9	1/1755.1	2.0	0.0	1	/	/ 21	14113	2.5	05K107

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$C_7 H_{10} - {}^{94}Mo$		173159.6	3.2	173162.1	2.1	0.3	1	7	7 ⁹⁴ Mo	M15	2.5	63Ri07
94 Tc $-C_{7,822}$		-90362	39	-90343	5	0.5	U			GS2	1.0	03Li.A *
⁹⁴ Mo ³⁵ Cl- ⁹² Mo ³⁷ Cl		1234.0	2.	1227	4	-0.8	1	24	22 ⁹² Mo	H11	4.0	63Bi12
⁹² Rb- ⁹⁴ Rb cor ⁸⁹ Rb		-764	24	-784	8	-0.3	U			P21	2.5	82Au01 Y
92 Rb $-^{94}$ Rb $_{400}^{587}$ 90 Rb $_{500}^{413}$		-717	23	-732	14	-0.3	Ū			P21	2.5	82Au01 Y
$^{93}\text{Rb} - ^{94}\text{Rb}_{742} \stackrel{90}{_{72}}\text{Rb}_{742}^{x}$		-1296	25	-1294	16	0.0	Ū			P21	2.5	82Au01 Y
94 Zr(d, α) 92 Y		8278	25	8257	9	-0.8	1	14	13 ⁹² Y	Grn		74Gi09
94 Zr(d,t) 93 Zr		-1960.2	2.4	-1963.9	1.9	-1.5	1	66	36 ⁹⁴ Zr	SPa		79Bo37
93 Nb(n γ) ⁹⁴ Nb		7227 51	0.09	7227 54	0.08	0.3	_	00	20 21	MMn		88Ke09 Z
110(11,7) 110		7227.63	0.15	/22/10	0.00	-0.6	_			Bdn		03Fi A
	ave	7227.54	0.08			0.0	1	100	57 ⁹⁴ Nb	Bui		average
94 Rb $(\beta^{-})^{94}$ Sr	u.e.	10335	45	10287	10	-11	Ū	100	0, 10	Bwg		82Pa24 *
110(p) 51		10312	20	10207	10	-1.2	1	26	15 ⁹⁴ Rb	Gsn		92Pr03
94 Sr(β^{-}) 94 Y		3512	10	3508	8	-0.4	1	59	30 ⁹⁴ Sr	Gsn		80De02 *
94 Y(β^{-}) 94 Zr		4920	9	4918	7	-0.2	1	61	58 ⁹⁴ Y	Gsn		80De02 *
$^{94}Nb(\beta^{-})^{94}Mo$		2043 3	6	2045.2	20	0.2	_	01	50 1	Com		66Sn02
110(p) 1110		2046.3	3	2013.2	2.0	-0.4	_					68Ho10
	ave	2045.7	27			-0.2	1	55	43 ⁹⁴ Nh			average
$^{94}Tc(B^+)^{94}Mo$	uve.	4261	5	4256	4	-1.1	2	55	45 110			64Ha29
$^{94}M_0(n n)^{94}T_c$		-5027.8	7	-5038	4	_1.1	2					73Mc04 *
$^{94}\text{Rh}^{m}(\beta^{+})^{94}\text{Ru}$		9930	400	5050	7	1.5	3					800x01
$*^{94}T_{C} - C$	M	24133(29) keV	for mive	ture os⊥m at ′	75 5(1 9) keV	5					NDS925**
* 10 - 0.833 $* 94 Pb (B^{-}) 94 Sr$	As correc	rad by ref	V IOI IIIA	ture gs+m at	15.5(1.9) KC V						87Gr A **
$* R0(p^{-}) 31$ $* 94 Sr(B^{-}) 94 V$	Original	arror 6 correct	ted by ref									0/Ha A **
* 31(p) 1 $*^{94}V(B^{-})^{94}7r$	Original	error 5 correct	ted by ref									94Ha.A **
* 1(p) Zi	T=5158(7)	7) to 94Te^m at	75 5(1 0)									ND\$857**
* W0(p,n) IC	1-5156()	<i>i)</i> io ie at	75.5(1.9)									1103032**
⁹⁵ Sr- ⁸⁵ Rb _{1.118}		17987	10	17978	8	-0.9	1	64	64 ⁹⁵ Sr	MA4	1.0	02Ra23
$C_7 H_{11} - {}^{95}Mo$		180236.5	3.5	180233.2	2.1	-0.4	U			M15	2.5	63Ri07
⁹⁵ Tc-C _{7.917}		-92417	32	-92343	6	2.3	U			GS2	1.0	03Li.A *
⁹³ Rb- ⁹⁵ Rb _{.653} ⁸⁹ Rb _{.348}		-1323	25	-1179	16	2.3	U			P21	2.5	82Au01
93 Rb $-^{95}$ Rb $_{.587}$ 90 Rb $_{.413}^{x}$		-1376	24	-1214	19	2.7	U			P21	2.5	82Au01
94 Rb $-^{95}$ Rb $_{.792}$ 90 Rb $_{.209}^{x}$		-16	28	175	22	2.7	U			P21	2.5	82Au01 Y
⁹² Rb- ⁹⁵ Rb 242 ⁹¹ Rb 758		80	23	96	10	0.3	U			P21	2.5	82Au01
⁹³ Rb- ⁹⁵ Rb ₄₈₉ ⁹¹ Rb ₅₁₁		-654	12	-687	13	-1.1	В			P31	2.5	86Au02 *
⁹⁴ Rb- ⁹⁵ Rb ₆₆₀ ⁹² Rb ₃₄₁		433	15	408	16	-0.7	1	18	13 ⁹⁵ Rb	P31	2.5	86Au02
1000 1011		462	28			-0.8	U			P31	2.5	86Au02
94 Zr(n, γ) 95 Zr		6461.6	1.0	6462.2	0.9	0.6	-					79Ke.DZ
		6357.8	0.3			348.2	F			Bdn		03Fi.A
94Zr(d,p)95Zr		4237.4	2.0	4237.7	0.9	0.1	-			SPa		79Bo37
94 Zr(n, γ) 95 Zr	ave.	6461.7	0.9	6462.2	0.9	0.6	1	95	54 94Zr			average
$^{94}Mo(n,\gamma)^{95}Mo$		7369.10	0.10	7369.10	0.10	0.0	1	100	79 ⁹⁴ Mo	MMn		91Is02 Z
		7368.4	0.5			1.4	U			Bdn		03Fi.A
$^{95}Pd^m(\varepsilon p)^{94}Ru$		6991	300				3					82Ku15 *
95 Rb(β^{-}) 95 Sr		9280	45	9263	21	-0.4	_			Bwg		87Gr.A
		9272	35			-0.3	_			Gsn		92Pr03
	ave.	9275	28			-0.4	1	57	54 ⁹⁵ Rb			average
95 Sr(β^{-}) 95 Y		6082	10	6090	8	0.8	1	61	32 95Sr	Gsn		84B1.A
4		6052	25			1.5	U					90Ma03
95 Y(β^{-}) 95 Zr		4445	9	4451	7	0.6	1	61	59 ⁹⁵ Y	Gsn		80De02 *
$^{95}Zr(\beta^{-})^{95}Nb$		1125	8	1124.1	1.8	-0.1	U					54Za05
м / ···		1119	5			1.0	_					55Dr43
		1122.7	3.			0.5	_					74An22
	ave.	1121.7	2.6			0.9	1	51	40 95Zr			average
95 Nb(β^{-}) 95 Mo		925.5	0.5	925.6	0.5	0.2	1	98	89 ⁹⁵ Nb			63La06
$^{95}\text{Tc}(\beta^+)^{95}\text{Mo}$		1683	10	1691	5	0.8	_					65Cr04 *
· · · · · · · · · · · · · · · · · · ·		1693	6		-	-0.4	_					74An05 *
	ave.	1690	5			0.1	1	98	97 ⁹⁵ Tc			average
												0

Item		Input va	lue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$ {}^{95}\text{Ru}(\beta^+)^{95}\text{Tc} \\ {}^{95}\text{Rh}(\beta^+)^{95}\text{Ru} \\ *^{95}\text{Tc}-\text{C}_{7,917} \\ *^{93}\text{Rb}-{}^{92}\text{Rb}_{489} \\ *^{95}\text{Pd}^m(\varepsilon p)^{94}\text{Ru} \\ * \\ *^{95}\text{Pd}^m(\varepsilon p)^{95}\text{Zr} \\ * \\ *^{95}\text{Tc}(\beta^+)^{95}\text{Mo} \\ *^{95}\text{Tc}(\beta^+)^{95}\text{Mo} $	$M-A=-{}$ Rejected E(p)=430 Same Original of the second seco	2558 5110 36066(28) keV by authors 0(300) to ⁹⁴ R E(p); both free error 5 correct 4417(10) give: (10) from ⁹⁵ Tc' (6) from ⁹⁵ Tc'	30 150 7 for mixe om figure ed by ref n by same c ^m at 38.8	2567 ture gs+m at 3 4.55 s e group, not u 89	13 38.89 ke sed	0.3 V	1 2	18	15 ⁹⁵ Ru			68Pi03 75We03 Ens95 ** 86Au02 ** NDS933** 82No06 ** 94Ha.A ** NDS933** NDS933**
$C_7 H_{12}^{-96} Zr$ $C_7 H_{12}^{-96} Mo$ $^{96} Tc - C_8$ $C_7 H_{12}^{-96} Ru$		185628 189226.9 -92192 186304.6	6 3.0 32 3.8	185627.0 189220.9 -92129 186303	3.0 2.1 6 8	$-0.1 \\ -0.8 \\ 2.0 \\ -0.2$	U 1 U 1	8 79	8 ⁹⁶ Mo 79 ⁹⁶ Ru	M15 M15 GS2 M16	2.5 2.5 1.0 2.5	63Ri07 63Ri07 03Li.A * 63Da10
${}^{93}\text{Rb} - {}^{96}\text{Rb}_{.554} \\ {}^{95}\text{Rb} - {}^{96}\text{Rb}_{.848} \\ {}^{95}\text{Rb} - {}^{96}\text{Rb}_{.848} \\ {}^{94}\text{Rb} - {}^{96}\text{Rb}_{.699} \\ {}^{94}\text{Rb} - {}^{96}\text{Rb}_{.588} \\ {}^{91}\text{Rb}_{.413} \\ {}^{91}Rb$		-2210 -1590 -1250 -380	27 30 30 25	$-2092 \\ -1515 \\ -1080 \\ -444$	18 26 22 19	$1.8 \\ 1.0 \\ 2.3 \\ -1.0$	U U U U			P21 P21 P21 P21 P21	2.5 2.5 2.5 2.5	82Au01 82Au01 82Au01 Y 82Au01
$^{95}\text{Rb} - ^{96}\text{Rb}_{.742} ^{92}\text{Rb}_{.258}$ $^{96}\text{Zr}(d,\alpha)^{94}\text{Y}$ $^{96}\text{Ru}(p,t)^{94}\text{Ru}$		-1116 -1143 7609 -11165	27 16 20 10	-1134 7617	24 7	-0.3 0.2 0.4	1 1 1 2	13 36 13	7 ⁹⁶ Rb 19 ⁹⁶ Rb 12 ⁹⁴ Y	P21 P31 Grn Oak	2.5 2.5	82Au01 86Au02 74Gi09 71Ba01
${}^{96}Zr(t,\alpha){}^{95}Y$ ${}^{96}Zr(d,t){}^{95}Zr$ ${}^{95}Mo(n,\gamma){}^{96}Mo$		8294 -1595.8 9154.32 9153.90	20 2.8 0.05 0.20	8289 -1599.1 9154.32	7 2.2 0.05	-0.2 -1.2 0.0 2.1	1 1 1 B	13 60 100	12 ⁹⁵ Y 43 ⁹⁶ Zr 70 ⁹⁵ Mo	LAI SPa MMn Bdn		83Fl06 79Bo37 91Is02 Z 03Fi.A
⁹⁶ Ru(p,d) ⁹⁵ Ru ⁹⁶ Rb(β ⁻) ⁹⁶ Sr	ave.	-8470 11590 11709 11690	10 80 40 40	-8469 11714	10 29	0.1 1.6 0.1 0.8	1 - - 1	91 65	85 ⁹⁵ Ru 37 ⁹⁶ Rb	Oak Bwg Gsn		71Ba01 87Gr.A 92Pr03 average
96 Sr(β^{-}) 96 Y		5332 5413 5345 5354	30 22 50 40	5408	18	$2.5 \\ -0.2 \\ 1.3 \\ 1.3$	F - U -		06	Gsn Bwg		79Pe17 * 80De02 * 87Gr.A 90Ma03
$^{96}\mathrm{Y}(\beta^{-})^{96}\mathrm{Zr}$	ave.	5399 7120 7030 7067	19 50 70 30	7096	23	0.4 -0.5 0.9 1.0 0.6	1 - U -	90	72 %Sr	Gsn Bwg		average 80De02 * 87Gr.A 90Ma03
$^{96}Y^m(\beta^-)^{96}Zr$ $^{96}Nb(\beta^-)^{96}Mo$ $^{96}Mo(p,n)^{96}Tc$	ave.	7081 8237 3186.8 -3760	26 21 3.2 10	-3756	5	0.6	1 2 2 2 2	82	82 ⁵⁰ Y	Bwg		average 92Gr.A 68An03 74Do09
96 Ru(p,n) 96 Rh 96 Pd(β^+) 96 Rh $*{}^{96}$ Tc $-$ Co	M-A=-{	-3754 -7175 3450 35860(28) keV	0 10 150 7 for mixt	ure gs+m at 3	34.28 ke	-0.5	2 2 3					70As08 Z 85Ry02 NDS931**
* ${}^{96}Sr(\beta^{-})^{96}Y$ * ${}^{96}Sr(\beta^{-})^{96}Y$ * ${}^{96}Sr(\beta^{-})^{96}Y$ * ${}^{8}r(\beta^{-})^{96}Zr$	$E^-=4400$ F: all oth Original $Q^-=:$ $Q^-=7079$	P(30) to 931.7 er ⁷⁹ Pe ₁₇ result error 20 correct 5362(10) gives P(15) given by	level and ts are structed by re n by same same gro	other E ⁻ ongly discrept of e group, not u oup, not used	ant sed	. •						NDS ** GAu ** 94Ha.A ** 84Bl.A ** 84Bl.A **
97 Rb-C _{8.083} C ₅ H ₅ O ₂ - 97 Mo 97 Ru-C _{8.083}		-62512 122937.6 -92471	64 2.3 30	-62650 122932.9 -92445	30 2.1 9	$-0.9 \\ -0.8 \\ 0.9$	U 1 U	13	13 ⁹⁷ Mo	Pb1 M15 GS2	2.5 2.5 1.0	89A133 63Ri07 03Li.A

Item		Input va	lue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
⁹⁴ Rb- ⁹⁷ Rb ⁹¹ Rb		-21	25	-134	17	-1.8	U			P21	2.5	82Au01 Y
${}^{96}\text{Rb} - {}^{97}\text{Rb}_{700} {}^{92}\text{Rb}_{900}$		650	30	621	30	-0.4	1	16	10 ⁹⁶ Rb	P21	2.5	82Au01
$^{95}\text{Rb} - ^{97}\text{Rb}_{400} + ^{93}\text{Rb}_{511}$		-165	25	-152	23	0.2	1	13	9 ⁹⁵ Rb	P21	2.5	82Au01
${}^{96}\text{Rb} = {}^{97}\text{Rb}$ and ${}^{93}\text{Rb}$ and		848	19	811	29	-0.8	1	38	27 ⁹⁶ Rb	P31	2.5	86Au02
96 Zr(n. γ) 97 Zr		5574	5	5575.2	0.4	0.2	Ū					77Ba33
		5575.1	0.4			0.2	1	99	55 ⁹⁶ Zr	Bdn		03Fi.A
$^{96}Mo(n,\gamma)^{97}Mo$		6821.15	0.25	6821.26	0.21	0.5	_			MMn		91Is02 Z
		6821.5	0.4			-0.6	_			Bdn		03Fi.A
	ave.	6821.25	0.21			0.1	1	99	62 ⁹⁶ Mo			average
⁹⁶ Mo(³ He,d) ⁹⁷ Tc		229	8	225	4	-0.5	_			ANL		74Co27
		220	8			0.6	-			Pit		74Co27
	ave.	225	6			0.1	1	53	53 ⁹⁷ Tc			average
⁹⁶ Ru(d,p) ⁹⁷ Ru		5886	3	5886.9	2.8	0.3	2			Can		77Ho02
		5892	7			-0.7	2			ANL		77Me04
97 Rb(β^{-}) 97 Sr		10440	60	10432	28	-0.1	-			Bwg		87Gr.A
		10462	40			-0.8	-			Gsn		92Pr03
07 - 07	ave.	10460	30			-0.7	1	72	61 ⁹⁷ Rb			average
9 Sr(β^{-}) 9 Y		7452	40	7470	16	0.4	-			Gsn		84B1.A
		7480	18			-0.6	_		07 -	Bwg		92Gr.A
977770 0977	ave.	7475	16			-0.3	1	93	90 ⁹⁷ Sr	~		average
97 Y(β^{-}) 97 Zr		6702	25	6689	11	-0.5	-			Gsn		84BI.A
		6689	13			0.0	_	07	07.071	Bwg		92Gr.A *
977 (Q->97) H	ave.	6692	12	2650.0	1.0	-0.2	1	9/	9/ / Y			average
$\frac{97}{2r(p)}$) $\frac{97}{Nb}$		2657.3	2.	2659.0	1.8	0.8	1	80	$56^{-7}Zr$			/4Ra.A
97 Nb(β) 97 Mo		1933.1	2.	1934.8	1.8	0.8	1	80	/6 / ND	ANT		/4Ra.A
$97 \text{ pb} (\theta +)97 \text{ pc}$		-1102	50	-1103	4	-0.1	1	47	47 ··· 10	ANL		/4C02/
$\operatorname{Kn}(p^+)$ Ku		3535	50	3520	40	-0.2	2					62Ba28
$97 \mathbf{p}_d(\mathbf{\beta}^+) 97 \mathbf{p}_b$		4700	200			0.2	1					80Go11
$97 \Lambda \alpha (\beta^+) 97 Pd$		4790	110				4 5					00Hu10
$*^{97}V(B^{-})^{97}Zr$	$E^{-}-6688$	(13): and 736	1(26) from	$m^{97} \mathbf{V}^m$ at 66	7 51		5					ND\$939**
* 1(p) Zi	E =0000	(1 <i>5)</i> , and 750	1(20)1101	III I at 00	1.51							1103939**
$C_5 H_6 O_2 - {}^{98}Mo$		131375.4	2.8	131371.3	2.1	-0.6	1	9	9 ⁹⁸ Mo	M15	2.5	63Ri07
$C_7 H_{14}^{-98} Ru$		204263.5	2.9	204263	7	0.0	1	86	86 ⁹⁸ Ru	M16	2.5	63Da10
⁹⁸ Rh-C _{8.167}		-89302	46	-89292	13	0.2	U			GS2	1.0	03Li.A *
⁹⁴ Rb- ⁹⁸ Rb _{.411} ⁹¹ Rb _{.590}		-290	40	-399	23	-1.1	U			P21	2.5	82Au01 Y
⁹⁷ Rb- ⁹⁸ Rb _{.792} ⁹³ Rb _{.209}		-250	60	-240	40	0.1	U			P21	2.5	82Au01
${}^{96}\text{Rb} - {}^{98}\text{Rb}_{.490} {}^{94}\text{Rb}_{.511}$		330	30	370	40	0.6	U			P21	2.5	82Au01 Y
97 Rb $-^{98}$ Rb $_{.660}$ 95 Rb $_{.340}$		-300	50	-180	40	1.0	U		00	P21	2.5	82Au01
06		-232	27			0.8	1	34	20 98Rb	P31	2.5	86Au02
96 Zr(t,p) 98 Zr		3508	20	3505	20	-0.2	1	97	98 ⁹⁸ Zr	LAI		69B101
⁹⁶ Zr(³ He,p) ⁹⁶ Nb		5728	5				2			Phi		75Me13
⁹⁰ Ru(¹⁰ O, ¹⁴ C) ⁹⁸ Pd		-12529	20				2			BNL		82Th01
$MO(n,\gamma)^{30}MO$		8642.60	0.07	8642.60	0.07	0.0	-			MMn		911s02 Z
		8642.57	0.18			0.2	-	100	55 98NA-	Ban		03F1.A
97M- (311- 4)98T-	ave.	8642.60	0.07	(92	2	0.0	1	100	55 ⁷⁰ Mo	ANT		average
Mo("He,d)" Ic		680	8	083	3	0.4	_			ANL		74C027
	01/0	682	10			-0.5	1	20	20 98To	MCM		/01/01/01/0
98 Pb (B^{-}) 98 Sr	ave.	11200	110	12420	50	11.1	B	29	29 10			70Po17
$KO(p^2)$ SI		12270	30	12420	50	5.1	C			McG		84Ia A
		12270	75			-0.2	-			Bwo		87Gr A
		12380	65			0.7	_			Gsn		92Pr03
	ave	12410	50			0.4	1	85	80 ⁹⁸ Rh	0.511		average
98 Rb ^m (β^{-}) 98 Sr		12710	120			5.7	2	00		Bwg		87Gr A
$^{98}Sr(\beta^{-})^{98}Y$		5821	10	5822	10	0.1	1	99	96 ⁹⁸ Sr	Gsn		84B1.A
		5815	40		-	0.2	U			Bwg		87Gr.A
98 Y(β^{-}) 98 Zr		8780	30	8820	15	1.3	_			Gsn		84B1.A
		8963	41			-3.5	С					88Ma.A
		8830	17			-0.6	_			Bwg		92Gr.A
	ave.	8818	15			0.1	1	99	96 ⁹⁸ Y			average

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
${}^{98}Y^m(\beta^-){}^{98}Zr$ ${}^{98}Mo(p,n){}^{98}Tc$ ${}^{98}Tc(\beta^-){}^{98}Ru$ ${}^{98}Pu(\beta^+){}^{98}Pu$		9233 -2458 1795	27 10 22	-2466 1797	3 7	-0.8 0.1	2 1 1	11 11	11 ⁹⁸ Tc 8 ⁹⁸ Ru	Bwg ANL		92Gr.A 74Co27 73Ok.A
98 Ru(p,n) 98 Rh 98 Ag(β^+) 98 Pd		-5832 8420 8200	50 10 150 70	8240	10 60	-1.2	2 3 3					94Ba06 70As08 Z 79Ve.A *
98 Cd(ϵ) 98 Ag * 98 Rh-C _{8.167} * 98 Ag(β^+) 98 Pd	M-A=-8 Q ⁺ =688	5430 33154(30) ke 30(150) to 15	40 V for mixt 41.6 level	ure gs+m at 6	50#50 ke	0.0 V	4					01St.A Nubase ** NDS987**
$C_7 H_{15} - {}^{99}Ru$		211442.8	3.0	211436.2	2.2	-0.9	1	8	8 ⁹⁹ Ru	M16	2.5	63Da10
99 Ru $^{-98}$ Ru 97 Rb $^{-99}$ Rb $_{.653}$ 93 Rb $_{.348}$		652 100	11 100	652 140	7 80	0.0 0.2	1 1	6 11	6 ⁹⁸ Ru 10 ⁹⁹ Rb	M16 P21	2.5 2.5	63Da10 82Au01
${}^{98}\text{Rb} - {}^{99}\text{Rb}_{.742} {}^{95}\text{Rb}_{.258}$ ${}^{97}\text{Rb} - {}^{99}\text{Rb}_{.490} {}^{95}\text{Rb}_{.511}$ ${}^{99}\text{Ru}(n \alpha)^{96}\text{Mo}$		690 350 6822	180 60	520 230 6819 9	100 70	-0.4 -0.8	U 1 U	19	16 ⁹⁹ Rb	P21 P31	2.5 2.5	82Au01 86Au02 01Wa50
96 Ru(16 O, 13 C) 99 Pd 98 Mo(n, γ) 99 Mo		-11723 5925.42	20 0.15	-11746 5925.43	15 0.15	-1.2 0.1	1 1 1	57 100	49 ⁹⁹ Pd 66 ⁹⁹ Mo	BNL MMn Pdn		82Th01 91Is02 Z
⁹⁹ Tc(p,d) ⁹⁸ Tc		-6740 -6755	5 9	-6742	3	-4.5 -0.4 1.4	-	-	08	Bld		76S106 77Em02
99 Rb(β^-) 99 Sr	ave.	-6744 11340 10960	4 120 130	11310	110	-0.3 -0.3	1 1 C	59 82	57 98 Tc 74 ⁹⁹ Rb	McG Bwg		average 84Ia.A 87Gr A
99 Sr(β^-) 99 Y		8030 8360	80 75	8020	80	$-0.2 \\ -4.6$	1 C	92	91 ⁹⁹ Sr	McG Bwg		84Ia.A 87Gr.A
99 Y(β^{-}) 99 Zr 99 Zr(β^{-}) 99 Nb		7568 4559	14 15	7568 4558	14 15	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1 1	100 100	99 ⁹⁹ Y 100 ⁹⁹ Zr	Bwg Bwg		92Gr.A 92Gr.A
99 Mo(β^{-}) ⁹⁹ Tc 99 Tc(β^{-}) ⁹⁹ Ru		1356.7 292 290 293 5	1.0 3 4 2.0	1357.3 293.8	1.0 1.4	0.6 0.6 1.0 0.2	1 - -	92	58 ⁹⁹ Tc			71Na01 51Ta05 52Fe16 80A102
$^{99}\mathrm{Rh}(\beta^+)^{99}\mathrm{Ru}$	ave.	293.5 292.6 2038 2053 2110	1.5 10 10 40	2043	7	0.2 0.8 0.5 -1.0 -1.7	1 - - U	85	45 ⁹⁹ Ru			average 52Sc11 * 59To.A 74An23
99 Pd(β^+) 99 Rh 99 Ag(β^+) 99 Pd	ave.	2046 3410 5430	7 20 150	3387	15	-0.4 -1.2	1 1 2	95 57	94 ⁹⁹ Rh 51 ⁹⁹ Pd			average 69Ph01 * 81Hu03
99 Tc(β^{-}) ⁹⁹ Ru 99 Rh(β^{+}) ⁹⁹ Ru 99 Pd(β^{+}) ⁹⁹ Rh *	$E^+ = 434$ $E^+ = 740$ $E^+ = 218$ to 20	.8(2.6), 346.7 (10) from ⁹⁹ I 0(20), 1930(2 0.4, 464.0, 82	7(2.0) from Rh ^m at 64.2 20), 1510(2 74.1 levels	n ⁹⁹ Tc ^m at 142 3 to 340.73 le 20) above 1/2 ⁻ 1	2.6833 to evel level (nov	gs, 89. v grour	.68 le nd-sta	vel ite)				NDS949** NDS949** 69Ph01 ** NDS949**
$\begin{array}{c} C_7 H_{16} - {}^{100}\text{Mo} \\ C_7 H_{16} - {}^{100}\text{Ru} \\ {}^{100}\text{Rh} - C_{8.333} \\ {}^{100}\text{Cd} - C_{8.333} \\ {}^{100}\text{Cn} - C_{8.333} \\ {}^{100}\text{Sn} - C_{8.33} \\ {}^{100}$		217730.3 220983.8 -91855 -79636 -69405 -62020 5019	4.2 3.7 46 214 322 1020 2	217723 220981.0 -91878 -79710 -68890 -60960 5019	6 2.2 20 100 270 760 6	-0.7 -0.3 -0.5 -0.3 1.6 1.0 0.0	1 1 1 B B	36 5 18 23	36 ¹⁰⁰ Mo 5 ¹⁰⁰ Ru 18 ¹⁰⁰ Rh 23 ¹⁰⁰ Cd	M15 M16 GS2 CS1 CS1 CS1 H11	2.5 2.5 1.0 1.0 1.0 1.0	63Ri07 63Da10 03Li.A * 96Ch32 96Ch32 96Ch32 96Ch32
96 Ru(16 O, 12 C) 100 Pd 100 Mo(d, 3 He) 99 Nb 100 Mo(t, α) 99 Nb 100 Mo(d, 3 He) 99 Nb	ave.	-5599 -5639 8642 -5653	26 15 20 12	-5583 -5653 8668 -5653	13 12 12 12	0.0 0.6 -0.9 1.3 0.0	1 - - 1	24 100	17 ¹⁰⁰ Pd	BNL Tex LAl	4.0	82Th01 74Bi08 83F106 average

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
99 Tc(n, γ) ¹⁰⁰ Tc		6764.4	1.				2					79Pi08
99 Ru(n, γ) 100 Ru		9672.65	0.06	9673.324	0.026	11.2	0			ILn		88Co18 2
		9673.39	0.05			-1.3	-			MMn		91Is02 2
		9673.30	0.03			0.8	-			ILn		00Ge01
		9673.41	0.19			-0.5	U		100	Bdn		03Fi.A
100 - 100	ave.	9673.324	0.026			0.0	1	100	55 ¹⁰⁰ Ru			average
100 Sr(β^{-}) 100 Y		7520	140	7080	100	-3.2	С			McG		84Ia.A
100		7075	100				5			Bwg		87Gr.A
100 Y(β^{-}) 100 Zr		7920	100	9310	70	13.9	Ċ			McG		84Ia.A
$100\pi (0 - 100)\pi$		9310	70				4			Bwg		8/Gr.A
$100 \text{ Zr}(\beta) = 100 \text{ ND}$		3335	25				3			Bwg		8/Gr.A
$100 \text{ ND}(\beta)$ 100 MO		6245	25	6714	20	0.4	2			Bwg		8/Gr.A
$100 \text{ Mo}(\beta)$ 100 Mo		6745	/5	6/14	28	-0.4	2			Bwg		8/Gr.A
$100 \text{ MO}(t, 5 \text{ He})^{100} \text{ ND}^{\prime\prime}$		-6690	30	-0095	28	-0.2	2	00	02 100 DL	LAI		79AJ05
$100 \text{ A} \approx (R^{+}) 100 \text{ D} d$		2025	20	2022	10	0.2	1	82	62 ***Kli			70Va A
Ag(p ·)····Pu		7073	200	7080	80	0.0	_					79 VC.A
	01/0	7022	200			0.5	1	97	87 100 A a			80Ha20
$100 Cd(B^+) 100 \Lambda \alpha$	ave.	2800	80 70	2000	70	0.1	1	0/	77 100 Cd			average
$100 \ln(\beta^+) 100 Cd$		10000	020	10080	220	0.1	I II	90	// ···Cu	Lun		058z01
m(p) Cu		10900	230	10080	230	-0.9	2			Lvp		02PI03
$100 \text{Sn}(B^+) 100 \text{In}$		7390	230 660				3					97Su06
$*^{100}$ Rh_C	M	25508(29) keV	I for mixtu	ure as⊥m at 10′	7.6 keV		5					ND\$975*
$*^{100}$ Y(β^{-}) ¹⁰⁰ Zr	Not unan	nhiguously gr	ound-state	transition	7.0 RC 1							GAu *
$*^{100} A \sigma (\beta^+)^{100} Pd$	From 5 ⁺	ground-state (o 2920 4 F	high spin level								79Ve A *
$*^{100} Ag(\beta^+)^{100} Pd$	$E^+ = 535$	0(200) from ¹	00 A σ^m at 1	5 52 to 665 57	2 ⁺ level							NDS905*
$*^{100} \ln(\beta^+)^{100} Cd$	From low	er and upper	limits 9300	-12500	2 10.01							GAu *
$*^{100}$ Sn $(\beta^+)^{100}$ In	Q ⁺ =720	00(+800-500))									97Su06 *
$C_{s} H_{5} - {}^{101}Ru$		133549.5	2.2	133543.1	2.2	-1.2	1	15	15 ¹⁰¹ Ru	M16	2.5	63Da10
101 Rh $-C_{8,417}$		-93821	58	-93836	18	-0.3	U			GS2	1.0	03Li.A
101 Pd $-C_{8,417}$		-91816	30	-91711	19	3.5	U			GS2	1.0	03Li.A
$^{100}Mo(n,\gamma)^{101}Mo$		5398.23	0.08	5398.24	0.07	0.1	2			ILn		90Se17
		5398.27	0.13			-0.2	2			Bdn		03Fi.A
100 Ru(n, γ) 101 Ru		6802.0	0.7	6802.05	0.24	0.1	_					82Ba69
		6802.04	0.25			0.1	-			Bdn		03Fi.A
	ave.	6802.04	0.24			0.1	1	100	60 ¹⁰¹ Ru			average
101 Rb(β^{-}) 101 Sr		11810	110				7			Bwg		92Ba28
101 Sr(β^{-}) 101 Y		9505	80				6			Bwg		92Ba28
101 Y(β^{-}) 101 Zr		8545	90				5			Bwg		92Ba28
101 Zr(β^{-}) 101 Nb		5485	25				4			Bwg		92Gr.A
$^{101}\text{Nb}(\beta^{-})^{101}\text{Mo}$		4569	18				3			Bwg		92Gr.A
$^{101}Mo(\beta^{-})^{101}Tc$		2836	40	2825	25	-0.3	R					570k.A
101 Tc(β^{-}) 101 Ru		1620	30	1614	24	-0.2	2					71Ar23
101 Pd(β^+) 101 Rh		1980	4				3					71Ib01
$^{101}Ag(\beta^+)^{101}Pd$		4100	200	4200	100	0.5	4					72We.A
		4350	200			-0.7	4					78Ha11
101 a 1/0± 101		4180	150			0.2	4					79Ve.A
$^{101}Cd(\beta^{-})^{101}Ag$		5530	130	5480	110	-0.4	5					70Be.A
101 Ph C	м • •	5350	200 / for		7 22 1 17	0.6	5					/2We.A
$*^{101}$ Rh-C _{8.417} $*^{101}$ Cd(β^+) 101 Ag	M-A=-8 Measured	1 E+ may go t	o excited s	tate	7.32 KeV							NDS981* 70Be.A *
$C_{r} H_{r} = \frac{102}{R_{H}}$		142604.8	30	142600.9	2.2	_0.5	1	7	7 ¹⁰² Ru	M16	25	63Da10
$\frac{102}{4}$ Ag $-$ C		-88315	30	142000.7	2.2	-0.5	2	/	/ KU	GS2	1.0	
$^{100}Mo(t n)^{102}Mo$		5034	20				2			LA1	1.0	72Ca10
MO(LP) MO		5054	20				4			LAI		12Ca10

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference	;
¹⁰⁰ Mo(³ He,p) ¹⁰² Tc		6054	20	6024	10	-1.5	1	27	20 ¹⁰² Tc	Pri		82De03	
102Pd(p,t)100Pd		-10356	12	-10360	11	-0.3	1	84	83 ¹⁰⁰ Pd	Win		74De31	
101 Ru(n, γ) 102 Ru		9219.64	0.05	9219.64	0.05	0.0	1	100	75 ¹⁰² Ru	MMn		91Is02	Ζ
102 x < > > 101 x		9219.63	0.19	2220	150	0.1	U			Bdn		03F1.A	
$102 \ln(\mathcal{E}p)^{101} Ag$ $102 \mathbf{S}_r(\mathcal{B}^-) 102 \mathbf{V}$		3420	310	3230	150	-0.6	0			Lvp		91Re.A	*
$102 \mathbf{V} (B^{-})^{102} \mathbf{7r}$		9850	70				5			Bwg		92Da20 92Ba28	
$^{102}Zr(\beta^{-})^{102}Nb$		4605	30				4			Bwg		87Gr18	
$^{102}\text{Nb}(\beta^{-})^{102}\text{Mo}$		7210	35				3			Bwg		87Gr18	
$^{102}\text{Nb}^{m}(\beta^{-})^{102}\text{Mo}$		7335	40				3			Bwg		87Gr18	
102 Rh(β^+) 102 Ru		2317	10	2323	5	0.6	-					61Hi06	
102 102		2325	10			-0.2	-					63Bo17	
102 Ru(p,n) 102 Rh		-3115	15	-3105	5	0.6	_		= 0.102 m c			83Do11	
102 Rh(β^{-}) 102 Ru	ave.	2323	6	2323	5	0.0	1	51	50 ¹⁰² Rh			average	
$102 \text{ Kn}(\beta)$ $(\beta^{+})102 \text{ Pd}$		5800	200	1150 5660	2	0.0	I E	57	50 ¹⁰² Rh			61Hi06	
$Ag(p^{-})$ Pu		5500	100	3000	28	-0.7	Г					67Ch05	*
		4910	140			5.4	č					70Be.A	*
		5350	200			1.6	Ũ					72We.A	
		5880	110			-2.0	U					79Ve.A	
102 Cd(β^+) 102 Ag		2587	8				3			GSI		91Ke08	
102 In(β^+) 102 Cd		9250	380	8970	110	-0.7	4			Lvp		95Sz01	*
		8970	150			0.0	4			GSI		98Ka.A	
$102 c_{\mu} (\theta + 102 t_{\mu})$		8910 5780	1/0			0.3	4			GSI		03G106	*
$*^{102} \Lambda q = C$	M = A = 8	2760(28) kay	/0 / for mivt	ure as t m at 0	3 koV		5					NDS083	ىلە بىلە
* $Ag = C_{8.5}$ * ¹⁰² In(ϵn) ¹⁰¹ Ag	Estimated	from proton	spectrum	from 1450 to	3200 keV	7						GAu	**
$*^{102}Ag(\beta^+)^{102}Pd$	$F: E^+ = 2$	260(40) does	not fit wi	th later decay	scheme	•						NDSAHW	V **
$*^{102}Ag(\beta^+)^{102}Pd$	From con	bination with	n decay sc	heme in ref.								NDS983	**
$*^{102}$ Ag(β^+) 102 Pd	$Q^{+} = 492$	0(100) from ¹	$^{102}Ag^{m}$ at	9.3(0.4)								NDS983	**
$*^{102}$ In(β^+) 102 Cd	From dete	ermined uppe	r 9900 and	d lower 8600	limits							GAu	**
$*^{102}$ In(β^+) 102 Cd	Good agre	eement with a	authors ea	rlier measurer	nent, ave	rage=89	950(1)	20)				03Gi06	**
$C_8 H_7 - {}^{103}Rh$		149263.5	3.3	149271	3	0.9	1	13	13 ¹⁰³ Rh	M16	2.5	63Da10	
$^{103}Ag - C_{8.583}$		-91091	52	-91027	18	1.2	U			GS2	1.0	03Li.A	*
¹⁰³ Cd- ¹⁰² Cd		-1534	154	-1040	40	2.1	U			CR2	1.5	92Sh.A	*
103 Rh(p,t) 101 Rh		-8275	17				2			Pri		64Th05	
102 Ru(n, γ) 103 Ru		6232.2	0.3	6232.05	0.15	-0.5	-			D I		82Ba69	Z
		6232.00	0.17			0.3	1	100	02 103 D.	Bdn		03F1.A	
102 Pd(n x) 103 Pd	ave.	0232.03 7624.6	0.15	7625.4	0.8	0.0	1	100	85 ³³⁸ Ku			70Bo29	
1 u(ii, /) 1 u		7625.6	0.9	7025.4	0.0	-0.3	_			Bdn		03Fi A	
	ave.	7625.3	0.8			0.0	1	99	92 ¹⁰² Pd	Dun		average	
103 Zr(β^{-}) 103 Nb		6945	85				5			Bwg		87Gr18	
103 Nb(β^{-}) 103 Mo		5530	30				4			Bwg		87Gr18	
103 Mo(β^{-}) 103 Tc		3750	60				3			Bwg		87Gr18	
103 Ru(β^{-}) 103 Rh		764	4	763.4	2.1	-0.1	-					58Ro09	
		760	6			0.6	-					65Mu09	
		762	5			0.3	-					70Pe04	
	01/0	764 6	4			-1.4	1	86	00 103 ph			820n04	
103 Pd(ϵ) 103 Ph	ave.	704.0 543.0	2.5	543-1	0.8	0.1	1	90 90	92 ¹⁰³ Pd			average 86Be53	
$^{103}Ag(\beta^+)^{103}Pd$		2622	27	2688	17	2.4	1	38	38 ¹⁰³ Ag	Dlf		88Bo28	
$^{103}Cd(\beta^+)^{103}Ag$		4131	11	4142	10	1.0	1	90	62 ¹⁰³ Ag	Dlf		88Bo28	
103 In $(\dot{\beta}^+)^{103}$ Cd		5380	200	6050	20	3.4	в		-0	Brk		83Wo04	
		6050	20				2			Dlf		88Bo28	
102		6040	60			0.2	U					98Ka42	
$*^{103}$ Ag $-C_{8.583}$	M-A=-8	4784(29) keV	/ for mixt	ure gs+m at 1	34.45 ke	V						NDS017	**
$*^{103}$ Cd $-^{102}$ Cd	From ¹⁰² C		9029800(150)								AHW	**

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$C_8 H_8 - {}^{104}Ru$		157171.5	3.4	157168	3	-0.5	1	16	16 ¹⁰⁴ Ru	M16	2.5	63Da10
$C_8 H_8 - {}^{104}Pd$		158612	10	158564	4	-1.9	U			M16	2.5	63Da10
$^{104}Pd-C_{8.667}$		-95938	30	-95964	4	-0.9	U			GS2	1.0	03Li.A
$^{104}Ag - C_{8,667}^{3,007}$		-91410	30	-91371	6	1.3	U			GS2	1.0	03Li.A *
$^{104}\text{Cd}-\text{C}_{8,667}^{3.007}$		-90147	30	-90151	10	-0.1	U			GS2	1.0	03Li.A
104In -103 In		-1241	231	-1620	90	-1.1	U			CR2	1.5	91Sh19 *
104 Ru(d, α) 102 Tc		7180	10	7188	9	0.8	1	82	80 ¹⁰² Tc	Pri		82De03
¹⁰⁴ Ru(d, ³ He) ¹⁰³ Tc		-5289	10	-5287	9	0.2	2			VUn		83De20
104 Ru(t, α) 103 Tc		9048	30	9033	9	-0.5	2			LAI		81Fl02
104 Ru(d,t) 103 Ru $-^{148}$ Gd() 147 Gd		85	3	82.7	2.7	-0.8	1	79	65 ¹⁰⁴ Ru	Jul		86Ru04 *
103 Rh(n, γ) 104 Rh		6998.96	0.10	6998.96	0.08	0.0	2			MMn		81Ke03 Z
		6998.95	0.14			0.0	2			Bdn		03Fi.A
104 Nb(β^{-}) 104 Mo		8105	90				4			Bwg		87Gr18
$^{104}\text{Nb}^{m}(\beta^{-})^{104}\text{Mo}$		8320	80				4			Bwg		87Gr18
$^{104}Mo(\beta^{-})^{104}Tc$		2155	40	2157	28	0.1	3			Bwg		87Gr18
4		2160	40			-0.1	3			Jyv		94Jo.A
104 Tc(β^{-}) 104 Ru		5620	70	5600	50	-0.2	2			5		78Su03
4		5590	60			0.2	2			Bwg		87Gr18
104 Pd(p,n) 104 Ag		-5061	4				3			0		79De44
104 In(β^+) 104 Cd		7100	200	7870	80	3.8	в					78Hu06
		7260	250			2.4	В			Brk		83Wo04
		7800	250			0.3	_			Dlf		88Bo28
		7880	100			-0.1	_			GSI		98Ka.A
	ave.	7870	90			0.0	1	83	82 ¹⁰⁴ In			average
104 Sn $(\beta^+)^{104}$ In		4515	60				2			GSI		91Ke11
$*^{104}$ Ag-C _{8.667}	M-A=-	85144(28) k	eV for m	ixture gs+m a	at 6.9 k	eV						Ens00 **
$*^{104}In^{-103}In$	From 103	In/104 In=0.9	9038900	(222)								AHW **
$*^{104}$ Ru(d,t) ¹⁰³ Ru $-^{148}$ Gd()	Q=82(3)	to 2.81 level	l (AHW)									NDS932**
105 Rh $-C_{8.75}$		-94378	53	-94306	4	1.4	U			GS2	1.0	03Li.A *
$^{105}Ag - C_{8.75}$		-93534	31	-93471	12	2.0	U			GS2	1.0	03Li.A *
105 In - 104 In		-3618	144	-3620	90	0.0	1	18	18 ¹⁰⁴ In	CR2	1.5	91Sh19 *
104 Ru(n, γ) 105 Ru		5909.9	0.5	5910.10	0.11	0.4	_					74Hr01
		5910.1	0.2			0.0	_					78Gu14
		5910.11	0.14			-0.1	_			Bdn		03Fi.A
	ave.	5910.10	0.11			0.0	1	100	82 ¹⁰⁵ Ru			average
104 Pd(n, γ) 105 Pd		7094.1	0.7				2					70Bo29
¹⁰⁵ Sb(p) ¹⁰⁴ Sn		482.6	15.				3					94Ti03
$^{105}\text{Nb}(\beta^{-})^{105}\text{Mo}$		6485	70				4			Bwg		87Gr18
$^{105}Mo(\beta^{-})^{105}Tc$		4950	45				3			Bwg		87Gr18
$^{105}\text{Tc}(\beta^{-})^{105}\text{Ru}$		3640	55				2			Bwg		87Gr18
105 Ru $(\beta^{-})^{105}$ Rh		1916	4	1918	3	0.5	1	76	58 ¹⁰⁵ Rh	_		67Sc01
105 Rh $(\beta^{-})^{105}$ Pd		570	5	567.2	2.5	-0.6	_					51Du03
4		560	5			1.4	_					56La24
		568	4			-0.2	_					64Ka23
	ave.	566.3	2.6			0.3	1	89	47 ¹⁰⁵ Pd			average
$^{105}\mathrm{Ag}(\varepsilon)^{105}\mathrm{Pd}$		1347	25	1345	11	-0.1	_					67Pi03
		1310	25			1.4	_					67Sc26
	ave.	1329	18			0.9	1	36	35 ¹⁰⁵ Ag			average
105 Cd(β^+) 105 Ag		2738	5	2738	4	0.0	_		0			53Jo20 *
		2742	11			-0.4	_					86Bo28 *
	ave.	2739	5			-0.2	1	97	80 ¹⁰⁵ Cd			average
105 In(β^+) 105 Cd		5140	200	4849	13	-1.5	В			Brk		83Wo04
		4849	13			0.0	1	100	99 ¹⁰⁵ In			86Bo28
* ¹⁰⁵ Rh-C _{0.75}	M-A=-	87847(32) k	eV for m	ixture gs+m :	at 129 7	781 keV	, •	- 00				NDS934**
* ¹⁰⁵ Ag-Co ==	M-A=-	87113(28) k	eV for m	ixture gs+m	at 25.46	55 keV						Ens93 **
$*^{105}In = 104In$	From ¹⁰⁴	In/105 In=0.9	9050293	(139)								AHW **
$*^{105}Cd(\beta^+)^{105}Ag$	$E^+ = 160$	-1.0 - 1.0 - 0.9 91(5) to 105 A	σ^m at 25	465								NDS934**
$*^{105}Cd(\beta^+)^{105}A\sigma$	$E^+ = 16$	95(11) to 105	Ag ^m at 2	5.465								NDS934**
	10											

$11.11.$ Multipling of $u_{1.7}$ induced 1 involution $127120001127-30$	A.H.	Wapstra	et al.	/Nuclear	Ph	vsics A	729	(2003)	129-3.	36
---	------	---------	--------	----------	----	---------	-----	--------	--------	----

Item		Input va	alue	Adjusted value v_i			Dg	Sig	Main flux	Lab	F	Reference
$C_{0} H_{10} - {}^{106}Pd$		174764.0	4.3	174765	4	0.1	1	17	17 ¹⁰⁶ Pd	M16	2.5	63Da10
$^{106}Pd-C_{0.022}$		-96495	30	-96514	4	-0.6	Ū			GS2	1.0	03Li.A
$^{106}Ag - C_{8,822}$		-93318	44	-93331	5	-0.3	U			GS2	1.0	03Li.A *
$C_{e}H_{10} - {}^{106}Cd$		171789.3	2.7	171791	6	0.2	1	89	89 ¹⁰⁶ Cd	M16	2.5	63Da10
106 In $-C_{8,822}$		-86516	32	-86535	13	-0.6	1	17	17 ¹⁰⁶ In	GS2	1.0	03Li.A *
$^{106}\text{Te}(\alpha)^{102}\text{Sn}$		4323.5	30.	4290	9	-1.1	U					81Sc17
		4290.2	9.				6					94Pa11
		4323.5	30.			-1.1	U					02Ma19
¹⁰⁶ Cd(³ He, ⁶ He) ¹⁰³ Cd		-9173	17	-9147	15	1.5	1	76	72 ¹⁰³ Cd	MSU		78Pa11
104Ru(t,p)106Ru		5892	20	5894	7	0.1	R			LAI		72Ca10
106Cd(p,t)104Cd		-10802	15	-10819	7	-1.1	-			MSU		82Cr01
		-10829	12			0.9	-			Pri		83De03
		-10819	12			0.0	-		104	Ors		84Ro.A
105 107	ave.	-10819	7			0.0	1	100	100 ⁻¹⁰⁴ Cd			average
105 Pd(n, γ) 106 Pd		9560.5	0.4	9560.97	0.28	1.2	-			BNn		87Fo20 *
		9561.4	0.4			-1.1	_		105	Bdn		03Fi.A
105	ave.	9560.95	0.28			0.1	1	100	51 ¹⁰⁵ Pd			average
¹⁰⁵ Pd(⁵ He,d) ¹⁰⁶ Ag		322	8	320.0	2.8	-0.2	1	13	12 ¹⁰⁰ Ag	Bld		75An07
$^{106}Cd(d,t)^{105}Cd$		-4661	50	-4616	12	0.9	U		a. 105 m .			73De16
$^{106}Cd(^{3}He,\alpha)^{105}Cd$		9728	25	9704	12	-1.0	1	25	20 ⁻¹⁰⁵ Cd	Man		75Ch21
$^{100}Mo(\beta^{-})^{100}Tc$		3520	17	3520	12	0.0	5			Bwg		92Gr.A
106m (a = >106m		3520	17			0.0	5			Jyv		94Jo.A
$106 \text{ IC}(\beta)$ $(0-106 \text{ Ru})$		6547	11	20.40	0.01	0.7	4			Bwg		92Gr.A
roo Ru(p) $roo Rh$		39.2	0.3	39.40	0.21	0.7	3					50Ag01
$106 \mathbf{n}_{\mathbf{h}} (\mathbf{g} - 106 \mathbf{n}_{\mathbf{h}})$		39.0	0.5	2541	6	-0.7	3					58Gr07
$\operatorname{Ki}(p)$		3550	10	5541	0	1.1	2					52A100
		3550	20			-0.9	2					580107 60Se05
$106 \mathbf{Ph}^{m}(B^{-})^{106} \mathbf{Pd}$		3677	10			-0.5	2					66De11
$106 \Delta q(\mathbf{c})^{106} \mathbf{P}d$		2961	4	2965 1	28	1.0	2					78Ge01 *
$^{106}Pd(p n)^{106}\Delta q$		-3756	5	_3747.5	2.0	1.0	_					79De44
$106 \Delta q(c)^{106} Pd$	ave	2966	3	2965.1	2.8	_0.3	1	81	70 ¹⁰⁶ A a			average
$^{106}In(\beta^+)^{106}Cd$	uve.	6516	30	6526	11	0.3	_	01	,, 116			66Ca09 *
m(p) eu		6507	29	0020		0.7	_					86Bo28 *
$^{106}Cd(p.n)^{106}In$		-7312.9	15.	-7308	11	0.3	_			ANL		84Fi05 *
106 In(β^+) 106 Cd	ave.	6524	12	6526	11	0.2	1	86	82 ¹⁰⁶ In			average
106 Sn(β^+) 106 In		3195	60	3180	50	-0.2	_			GSI		79P106
		3200	100			-0.2	_					88Ba10
	ave.	3200	50			-0.3	1	91	90 106Sn			average
* ¹⁰⁶ Ag-C _{8 833}	M-A=-8	36880(32) keV	/ for mixt	ure gs+m at 8	9.66 ke	V						NDS934**
* ¹⁰⁶ In-C _{8 833}	M-A=-8	80575(29) keV	/ for mixt	ure gs+m at 2	8.6 keV							NDS934**
$*^{105}$ Pd(n, γ) ¹⁰⁶ Pd	Calculate	d from 13 γ e	nergies in	2 keV n-capt	ure							AHW **
*	to lev	els in ¹⁰⁶ Pd; o	corr. for re	ecoil								NDS945**
$*^{106}Ag(\epsilon)^{106}Pd$	L/K=0.20	03(0.003) give	s Q ⁺ =99	(4), recalcula	ted Q							AHW **
*	from	¹⁰⁶ Ag ^m at 89.	66 to 295	1.78 level								NDS945**
$*^{106}$ In(β^+) 106 Cd	$E^{+} = 489$	0(30) from 100	⁵ In ^m at 28	.6 to 632.64 1	evel							NDS945**
$*^{106}$ In(β^+) 106 Cd	$E^{+} = 296$	5(30) to 2491	.66 level a	and 4908(29)								NDS945**
*	from	106 In ^m at 28.6	6 to 632.64	1 level								NDS945**
* ¹⁰⁶ Cd(p,n) ¹⁰⁶ In	T=7535(1	15) to 151.1 le	evel									NDS **
107 Pd $-C_{8.917}$		-95013	95	-94867	4	1.5	U			GS2	1.0	03Li.A *
$C_8 H_{11} - 107 Ag$		180986.4	3.1	180979	5	-1.0	1	35	35 ¹⁰⁷ Ag	M16	2.5	63Da10
¹⁰⁷ Cd-C _{8,917}		-93410	30	-93382	6	0.9	U		0	GS2	1.0	03Li.A
107 In $-C_{8.917}$		-89710	30	-89705	12	0.2	1	17	17 ¹⁰⁷ In	GS2	1.0	03Li.A
107 Sn $-^{106}$ Sn		-1148	86	-1240	90	-0.7	1	50	40 ¹⁰⁷ Sn	CR2	1.5	92Sh.A *
107 Te(α) 103 Sn		3982.2	15.	4008	5	1.7	3					79Sc22
		4011.3	5.			-0.6	3					91He21
Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
--	-----------------------	--	------------------------	---------------------------------------	-----------------------	-------------------	---------	-----	----------------------	------	-----	--------------------
$107 \Delta q(p t)^{105} \Delta q$		_9015	15	_8995	11	1.4	1	50	48 105 A g	Min		75Ku14 *
$^{106}Pd(n v)^{107}Pd$		6536.4	0.5	6536.4	0.5	0.1	1	99	67 ¹⁰⁷ Pd	Bdn		03Fi A
107 Ag(n d) 106 Ag		-7305	11	-7311	4	-0.6	1	12	8 106 A g	Bld		75An07
$^{107}Mo(\beta^{-})^{107}Tc$		6160	60	,,,,,	•	0.0	4		о <u>ь</u>	Bwg		89Gr23
$^{107}\text{Tc}(\beta^{-})^{107}\text{Ru}$		4820	85				3			Bwg		89Gr23
107 Ru(β^{-}) 107 Rh		3140	300	2940	120	-0.7	2			0		62Pi02
v		2900	135			0.3	2			Bwg		89Gr23
107 Rh(β^{-}) 107 Pd		1510	40	1504	12	-0.1	1	10	9 ¹⁰⁷ Rh			62Pi02
107 Pd(β^{-}) 107 Ag		33	3	34.1	2.7	0.4	1	82	50 ¹⁰⁷ Ag			49Pa.B
107 Cd(β^+) 107 Ag		1417	4	1417	4	0.0	1	98	96 ¹⁰⁷ Cd			62La10 *
107 In(β^+) 107 Cd		3426	11	3425	10	-0.1	1	87	83 ¹⁰⁷ In			86Bo28
$*^{107}$ Pd $-C_{8.917}$	M-A=-8	8397(62) keV	for mixtu	tre gs+m at 2	14.6 keV							NDS002**
$*^{107}$ Sn $-^{100}$ Sn	From ¹⁰⁷ S	$Sn/100}Sn=1.00$	943053(8	1)	106	108 - 4						AHW **
* ¹⁰⁷ Ag(p,t) ¹⁰³ Ag	Recalibra	ted with (p,t)	results on	¹⁰⁴ Pd, ¹⁰⁵ Pd,	¹⁰⁰ Pd and	¹⁰⁸ Pd						AHW **
$*^{107}Cd(\beta^{+})^{107}Ag$	E ⁺ =302((4) to ¹⁰⁷ Ag ^m	at 93.13									NDS914**
$C_8 H_{12} - {}^{108}Pd$		190014	6	190009	4	-0.4	1	6	6 ¹⁰⁸ Pd	M16	2.5	63Da10
$^{108}Ag - C_{9}$		-93973	50	-94044	5	-1.4	U		100	GS2	1.0	03Li.A *
$C_8 H_{12} - {}^{108}Cd$		189715.6	2.9	189717	6	0.2	1	68	68 ¹⁰⁸ Cd	M16	2.5	63Da10
$^{108}In - C_9$		-90277	31	-90302	10	-0.8	1	11	11 ¹⁰⁸ In	GS2	1.0	03L1.A *
$108 \text{ Sn} - \text{C}_9$		-88102	32	-880/5	21	0.9	1	44	44 ¹⁰⁰ Sn	GS2	1.0	03L1.A
108 Sn - 107 Sn $108 \text{Te}(\alpha) 104 \text{Sm}$		-3650	/6	-3720	90	-0.6	1	61	60 ¹⁰⁷ Sn	CR2	1.5	92Sh.A *
$108_{100} 104_{Sb}$		5444.9 4000 1	4.				5					91He21 04Pe12
108 pd(d 3 He) 107 ph		4099.1	12	1157	12	0.0	1	02	01 107 Ph	Grn		94Fa12 86Ka43
$107 \Delta q(n x)^{108} \Delta q$		7269.6	0.6	7271 41	0.17	3.0	II.	92	<i>71</i> Kii	Un		85Ma54 7
115(ii,7) 115		7271.41	0.17	7271.11	0.17	5.0	2			Bdn		03Fi.A
108 Mo(β^{-}) 108 Tc		5135	60	4650#	150#	-8.1	D			Bwg		92Gr.A *
		5120	40			-11.8	0			0		94Jo.A *
		5100	60			-7.5	D					95Jo02 *
108 Tc(β^{-}) 108 Ru		7720	50				4			Bwg		89Gr23
108 Ru(β^{-}) 108 Rh		1315	100	1350	50	0.3	3					62Pi02
		1420	185			-0.4	3			Bwg		89Gr23
		1380	80			-0.4	0			Jyv		92Jo05
108pt (0-)108pt		1350	60			-0.1	3			Jyv		94Jo.A
108 Rh(β) 108 Pd		4505	105	1150	10	0.2	2			Bwg		89Gr23
roo Rh ^m (p) roo Pd		4434	50 100	4450	40	0.3	2					69P108 84Ph02
$108 \ln(B^+) 108 Cd$		5124	50	5137	0	-0.0	2 11					62Ko23
m(p) cu		5124	14	5157	,	0.5	-					86Bo28 *
$^{108}Cd(p n)^{108}In$		-5927	12	-5919	9	0.0	_			ANL.		84Fi05 *
108 In(β^+) 108 Cd	ave.	5136	9	5137	9	0.0	1	87	82 ¹⁰⁸ In			average
$108 \text{Sn}(\beta^+)^{108} \text{In}$		2089	25	2075	19	-0.6	1	61	54 ¹⁰⁸ Sn	GSI		79P106
* ¹⁰⁸ Ag-C ₀	M-A=-8	7480(34) keV	for mixtu	re gs+m at 10	09.440 ke	v						Ens00 **
* ¹⁰⁸ In-C ₉	M-A=-8	4078(28) keV	for mixtu	ire gs+m at 29	9.75 keV							Ens00 **
* ¹⁰⁸ Sn- ¹⁰⁷ Sn	From 107S	Sn/108Sn=0.99	076701(7	0)								AHW **
$*^{108}$ Mo(β^{-}) ¹⁰⁸ Tc	Systemati	cal trends sug	gest 108M	o 470 more b	ound							CTh **
$*^{108}$ In(β^+) 108 Cd	$E^{+} = 1290$	0(80) to 2807.	91 level a	nd $E^+ = 3500$	(50)							62Ka23 **
*	from	¹⁰⁸ In ^m at 29.7	5 to 632.9	86 level								NDS978**
$*^{108}$ In(β^+) 108 Cd	$E^{+} = 1887$	7(28) to 2239.	26 level; a	and 3494(14)								86Bo28 **
*	from	¹⁰⁸ In ^m at 29.7	5 to 632.9	6 level								NDS914**
* ¹⁰⁰ Cd(p,n) ¹⁰⁰ In *	T=-6191(to 198	(8),-6244(9),e 3.38, 266.06 le	rrors statis evels.	stical only,								AHW ** NDS978**
$C_{o} H_{ia} - {}^{109} A_{\sigma}$		196972.1	3.8	196973	3	0.1	1	11	11 ¹⁰⁹ Ασ	M16	2.5	63Da10
109 Sn-Co or		-88747	30	-88717	11	1.0	Ū			GS2	1.0	03Li.A
109 Te(α) 105 Sn		3225.6	4.				3					91He21

Item		Input va	ılue	Adjusted	value	v _i	Dg	Sig	Ma	in flux	Lab	F	Reference
109 Ag(n t) 107 Ag		-7995	15	-7982	5	0.9	1	11	8	¹⁰⁷ A σ	Min		75Ku14 *
108 Pd(n γ) 109 Pd		6153.8	03	6153 60	0.15	-0.7	_		0		ILn		80Ca02 Z
		6153.54	0.17			0.4	_				Bdn		03Fi.A
	ave.	6153.60	0.15			0.0	1	100	91	¹⁰⁸ Pd			average
¹⁰⁸ Cd(³ He,d) ¹⁰⁹ In- ¹¹⁰ Cd() ¹¹¹ In		-806.5	2.6	-806.3	2.5	0.1	1	96	47	109In			80Ta07
109 Te(ε p) 108 Sn		7140	60				2						73Bo20
109 I(p) 108 Te		819	5	819.5	1.9	0.1	4						84Fa04
		819.6	2.0			0.0	4						92He.A
109 Tc(β^{-}) 109 Ru		6315	70				4				Bwg		89Gr23
109 Ru(β^{-}) 109 Rh		4160	65				3				Bwg		89Gr23
109 Pd(β^{-}) 109 Ag		1116	2	1116.1	2.0	0.0	1	97	91	¹⁰⁹ Pd			62Br15 *
109 Cd(ε) 109 Ag		182	3	214.2	2.9	10.7	С			100			68Go.A *
100 - 100		214	3			0.1	1	94	85	¹⁰⁹ Cd			Averag *
$^{109}In(\beta^+)^{109}Cd$		2015	8	2020	6	0.6	-						62No06
		2030	15			-0.7	_	- 0		100 -			71Ba08
109 ct (0+)109 c	ave.	2018	7			0.2	1	68	53	¹⁰⁹ In			average
$109 \text{ Sb}(\beta^{-1})^{109} \text{ Sn}$	D 111	6380	16	104 5 1 1	05	ín 1	3	2					82Jo03
109 Ag(p,t) ¹⁰⁷ Ag	Recalibrat	ted with (p	,t) result	s on ¹⁰⁺ Pd, ¹	⁰⁵ Pd, ¹⁰	'Pd an	d 100	'Pd					AHW **
$*^{109}$ Pd(β) 109 Ag	E = 1028((2) to 10 A	g^{m} at 88.	.0341	2.4.1								NDS91c**
109 Cd(ϵ) 109 Ag	IBE=68(3) gives 94	(3) to (3)	Ag at 88.0.	341 2+ 12	(α)	1	0					NDS91c**
$*^{10}Cd(\varepsilon)^{10}Ag$	From aver	LM/K=0	0.2265(0.	0026) - > 0	2^{-12}	5(3); r	ecal	2. Q					AHW **
*	to To A	Ag^{-1} at 88.	0.002										NDS91C**
*	L_{MIN}	K=0.228 ()	(5) > 1	MN/K=0.2	58(0.004	a	O^+	-10	0(5)	not us	had		65Le06 **
*	L/K=0	K = 0.2260	0.003	2000 / K = 0.2	38(0.000	<i>n</i> – <i>></i>	Q	-10	9(3)	not us	eu		70Go39 **
	Divit ()	R =0.220(0.005)										1000000
¹¹⁰ Ru-C _{9.167}	_	85899	77	-85860	60	0.5	1	55	55	¹¹⁰ Ru	JY1	1.0	03Ko.A
¹¹⁰ Rh-C _{9,167}	-	88708	84	-88860	50	-1.9	1	42	42	¹¹⁰ Rh	JY1	1.0	03Ko.A *
$C_8 H_{14} - \frac{110}{10} Pd$	2	204389	9	204397	12	0.4	1	27	27	¹¹⁰ Pd	M16	2.5	63Da10
$C_{8}H_{14} - {}^{110}Cd$	2	206548.4	4.6	206548.4	2.9	0.0	1	6	6	¹¹⁰ Cd	M16	2.5	63Da10
110In-C _{9.167}	-	92898	36	-92835	13	1.8	U				GS2	1.0	03Li.A *
110Sn-C _{9.167}	-	92189	30	-92157	15	1.1	2				GS2	1.0	03Li.A
$110 \text{ Te}(\alpha)^{100} \text{ Sn}$		2723.1	15.				2						81Sc17
$II0I(\alpha)^{100}Sb$		3574.2	10.	3580	50	0.2	7						81Sc17
11037 ()1067		3586.7	5.	2005	1.4	-0.1	/						91He21
$\operatorname{Xe}(\alpha)^{\operatorname{ros}}$ le		38/8.3	30.	3885	14	0.2	7						81Sc17
110 D d(p t) 108 D d		5000.0 6405	15.	6196	11	-0.1	1	51	40	110 р.4	Min		92ne.A
110 Pd(d ³ He) ¹⁰⁹ Ph		5134	15	-0480	11	0.0	2	51	49	ru	VUn		87Ko20
$^{110}Pd(t \alpha)^{109}Ph$		9206	25	9186	5	_0.8	1 U				I A1		82E109
$^{109}Ag(n y)^{110}Ag$		6809.2	0.1	6809.20	0 10	0.0	1	100	71	¹⁰⁹ Δ σ	L/ 11		81Bo B
11g(ii,j) 11g		6808.20	0.16	0009.20	0.10	63	B	100	/1	115	Bdn		03Fi A
110 Tc(β^{-}) ¹¹⁰ Ru		9021	55				2				Jvv		00Kr.A
110 Ru $(\beta^{-})^{110}$ Rh		2810	50	2790	40	-0.3	1	78	45	¹¹⁰ Ru	Jvv		91Jo11
110 Rh $(\beta^{-})^{110}$ Pd		5400	100	5570	50	1.7	1	26	25	110 Rh			70Pi01
$^{110}\text{Rh}^{m}(\beta^{-})^{110}\text{Pd}$		5500	500	5510	19	0.0	U						63Ka21
		5510	19				2				Bwg		00Kr.A
$^{110}\text{Ag}(\beta^{-})^{110}\text{Cd}$		2891.4	3.0	2892.4	1.6	0.3	_				0		63Da03 *
24		2892.9	2.0			-0.2	_						67Mo12 *
	ave.	2892.4	1.7			0.0	1	94	71	¹¹⁰ Ag			average
110 In(β^+) 110 Cd		3928	20	3878	12	-2.5	2						51Mc11 *
		3868	20			0.5	2						53B144 *
		3838	20			2.0	2						62Ka08 *
110 Sb(β^+) 110 Sn		8750	200	8300#	200#	-2.3	D						72Mi26 *
110		9085	100			-7.8	D						72Si28 *
$*^{110}$ Rh-C _{9.167}	M-A=-8	2641(72)1	ceV for n	nixture gs+n	n at –20	(60) ke	eV						Nubase **
* ¹¹⁰ In-C _{9.167}	M-A=-8	6503(28) 1	ceV for n	nixture gs+n	n at 62.1	keV	. 10						Ens00 **
****Pd(p,t)***Pd	Recalibrat	ted with (p	,t) result	s on 104 Pd, 1	⁵⁵ Pd, ¹⁰⁰	'Pd an	d 108	'Pd					AHW **
* $\operatorname{Ag}(\beta^{-})$ Cd	E ⁻ =529(3	5) from 110	Ag ^m at 1	17.59 to 247	9.95 lev	el							NDS92c**
*···Ag(β)····Cd	E =2891((4); and 53	1(2)	0.470.05	1								6/Mo12**
* 1101(<i>P</i> +)110.0.1	trom f	·····Ag‴ at	117.59 to) 24/9.95 le	vel	761	1						NDS92c**
*····m(p+)····Ca	E =2310)(20) from	····in‴ a	t 02.08(0.04) to 657	./6 lev	ei						89Kr12 **

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$ *^{110} In(\beta^+)^{110} Cd *^{110} In(\beta^+)^{110} Cd *^{110} Sb(\beta^+)^{110} Sn $	$E^+ = 225$ $E^+ = 222$ Systemat	0(20) from ¹¹⁰ 0(20) from ¹¹⁰ ical trends sug	^D In ^m at 62 ^D In ^m at 62 ggest ¹¹⁰ S	.08(0.04) to 6 .08(0.04) to 6 b 720 more bo	57.76 lev 57.76 lev ound	vel vel						89Kr12 ** 89Kr12 ** GAu **
¹¹¹ Ru–Coor		-82304	79				2			JY1	1.0	03Ko.A
$^{111}Rh-C_{0.25}$		-88283	79	-88410	30	-1.7	С			JY1	1.0	03Ko.A
$^{111}Ag - C_{9.25}$		-94741	51	-94709	3	0.6	U			GS2	1.0	03Li.A *
$C_8 H_{15} - {}^{111}Cd$		213184.4	3.9	213197.4	2.9	1.3	1	9	9 ¹¹¹ Cd	M16	2.5	63Da10
$^{111}Cd-C_{9.25}$		-95774	30	-95821.9	2.9	-1.6	U			GS2	1.0	03Li.A *
¹¹¹ Sb-C _{9.25}		-86837	30				2			GS2	1.0	03Li.A
111 I(α) 107 Sb		3270.1	10.	3280	50	0.2	3					79Sc22
		3293.0	10.			-0.2	3					92He.A
111 Xe(α) 107 Te		3693.3	25.	3720	50	0.5	4					79Sc22
		3714.1	30.			0.1	4					81Sc17
1100 1/		3723.5	10.			-0.1	4			D I		91He21
$110 \operatorname{Pd}(\mathbf{n}, \gamma) \cdots \operatorname{Pd}$		5720.3	0.4	6075 95	0.10	0.7	2			Ban		03F1.A
⁽ⁱⁱ ,γ) ⁽ⁱⁱ Cα		6075.0	0.5	0975.85	0.19	0.7	_					00No P
		6975.1	0.2			-0.3	B			Bdn		O3Ei A
	ave	6975.84	0.4			0.0	1	100	68 ¹¹⁰ Cd	Dun		average
¹¹¹ Te(<i>ɛ</i> p) ¹¹⁰ Sn	u.e.	5070	70			0.0	3	100	00 04			68Ba53
$^{111}\text{Tc}(\beta^{-})^{111}\text{Ru}$		7449	80				3			Jvv		00Kr.A
111 Ru(β^{-}) 111 Rh		5039	50	5690	80	13.1	Č			Jvv		00Kr.A
111 Rh $(\beta^{-})^{111}$ Pd		3640	50	3647	28	0.1	3			Jyv		00Kr.A
4		3650	33			-0.1	3			Bwg		00Kr.A
111 Pd(β^{-}) 111 Ag		2210	100	2217	11	0.1	U					52Mc34 *
		2190	50			0.5	U					57Kn.A *
		2160	100			0.6	U					60Pr07 *
$^{111}\text{Ag}(\beta^-)^{111}\text{Cd}$		1035	2	1036.8	1.4	0.9	2					71Na02
lllar (0+)llla		1038.6	2.	5055	•	-0.9	2					77Re12
$^{111}Sb(\beta^+)^{111}Sn$		4470	50	5057	29 0.021 N	, 11.7	В					728128
$*^{11}Ag - C_{9.25}$	M-A=-8	88221(44) Kev	for mixt	ure $gs+m$ at 5^{\prime}	9.82 keV							NDS962**
$*^{11}Cd - C_{9.25}$	M - A = -8 $O^{-} - 2150$	(100) to 111	/ 10r	d^{m} at Eexc=39	90.214 K	ev						Ensuo **
* $Pd(\beta)$ Ag	Q = 2130 Q = -2120	(100) to 111 A a	g at 59.0	52								NDS908**
* $P(p) = Ag^{+111} Pd(B^{-})^{111} Ag^{-111}$	Q = 2130 Q = -2100	(100) to 111	at 59.62	27								NDS908**
* $ru(p)$ Ag	Q =2100	(100) to A	g at 59.0	52								IND3908**
¹¹² Ru-C _{9.333}		-81035	79				2			JY1	1.0	03Ko.A
$^{112}Rh-C_{9,333}$		-85510	117	-85610	60	-0.8	R		a 112 m a	JY1	1.0	03Ko.A *
$C_8 H_{16} - 112 Cd$		222445.3	3.9	222442.7	2.9	-0.3	1	9	9 112Cd	M16	2.5	63Da10
$C_{9.333}$		-94366	58	-94468	6	-1.8	U			GS2	1.0	03L1.A *
$C_8 H_{16} Sn$		220384	20	220382	5	-0.1	0			MI6	2.5	63Da10
1121(a)108 Sh		-8/39/	30 20	-87602	19	-0.2	2			G5 2	1.0	03L1.A
$112 \mathbf{Y}_{e}(\alpha)^{108} \mathbf{T}_{e}$		2987.0	20	3330	6	0.1	1					815c17
Ac(u) ic		3308 5	15	5550	0	14	4					92He A
		3335.4	7			-0.7	4					94Pa11
¹¹² Sn(³ He ⁶ He) ¹⁰⁹ Sn		-8686	9			017	2			MSU		78Pa11
110 Pd(t.p) 112 Pd		5659	20	5648	17	-0.5	1	70	60 ¹¹² Pd	LAI		72Ca10
¹¹² Cd(¹⁴ C. ¹⁶ O) ¹¹⁰ Pd		5543	29	5526	11	-0.6	1	14	13 110 Pd	LAI		84Co19
¹¹² Cd(p,t) ¹¹⁰ Cd		-7891	5	-7888.4	0.4	0.5	Ū			Min		73Oo01
112 Sn(p,t) 110 Sn		-10485	15	-10478	14	0.5	R			Roc		70F108
$^{111}Cd(n,\gamma)^{112}Cd$		9394.3	0.3	9394.32	0.30	0.1	1	100	60 ¹¹¹ Cd	ILn		93Dr.A
$^{112}Cd(\gamma,n)^{111}Cd$		-9403	5	-9394.32	0.30	1.7	U			McM		79Ba06
¹¹¹ Cd(d,p) ¹¹² Cd		7170	10	7169.75	0.30	0.0	U			Yal		67Ba15
· · • • •		7171	5			-0.3	U			MIT		67Sp09
112Sn(p,d)111Sn		-8574	15	-8563	5	0.7	2			Har		70Ca01
¹¹² Sn(d,t) ¹¹¹ Sn		-4529.0	5.7	-4531	5	-0.3	2			SPa		75Be09

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{112}Cs(p)^{111}Xe$		814.3	7.				5					94Pa12
$^{112}\text{Tc}(\beta^{-})^{112}\text{Ru}$		9484	100				3			Jvv		00Kr.A
112 Ru(β^{-}) 112 Rh		4520	80	4260	90	-3.3	В			Jyv		91Jo11 *
112 Rh $(\beta^{-})^{112}$ Pd		6200	500	6600	50	0.8	U			Jyv		88Ay02
		6573	54			0.4	2			Bwg		00Kr.A
112 Rh ^{<i>m</i>} (β^{-}) ¹¹² Pd		6929	56				2			Bwg		00Kr.A
112 Pd(β^{-}) 112 Ag		299	20	288	17	-0.5	1	70	40 112Pd			55Nu11
$^{112}Ag(\beta^{-})^{112}Cd$		3967	20	3956	17	-0.5	1	70	70 ¹¹² Ag			62In01
$^{112}Cd(p,n)^{112}In$		-3376	6	-3367	5	1.5	1	62	58 ¹¹² In	Tky		80Ad04
112 In(β^{-}) 112 Sn		656	6	665	5	1.5	1	62	42 ¹¹² In			53B144
112 Sb(β^+) 112 Sn		7029	50	7061	18	0.6	R					72Si28
1120 ()11201		7062	26	50.40	10	-0.1	R					82Jo03
112 Sn(p,n)112 Sb	····) (-7995	55 1V.f	- /843	18	2.8	B			VUn		76Ka19
$*^{112}$ Rn $-C_{9.333}$	ave $M - F$	A = -79482(30)) Kev Ior	mixture gs+	-m at 3	40(70) I 0 IveV	ke v					NUDBOCh
* III $-C_{9.333}$ * ¹¹² Pu(β^{-}) ¹¹² Ph	H = A = -a $F^{-} = -a = -a$	(80) to 327 (v for fillx	ture gs+m a	t 150.5	9 Kev						NDS966
* $\operatorname{Ku}(p)$ Ki	E _4190	(80) 10 327.0) level									IND3900**
¹¹³ Ru-C _{9.417}		-77034	93	-77510	80	-5.1	С			JY1	1.0	03Ko.A *
113 Rh-C _{9.417}		-84466	83	-84470	50	0.0	1	40	40 113Rh	JY1	1.0	03Ko.A
$C_9 H_5 - {}^{113}Cd$		134721.1	3.9	134723.5	2.9	0.2	1	9	9 ¹¹³ Cd	M16	2.5	63Da10
$^{113}Cd-C_{9,417}$		-95506	93	-95598.3	2.9	-1.0	U			GS2	1.0	03Li.A *
$C_9 H_5 - 113 In$		135015	9	135067	3	2.3	В			M16	2.5	63Da10
$^{113}In - C_{9.417}$		-95969	126	-95942	3	0.2	U			GS2	1.0	03Li.A *
113 Sn-C _{9.417}		-94796	39	-94829	4	-0.9	U			GS2	1.0	03L1.A *
113Sb-C _{9.417}		-90635	30	-90628	19	0.2	R			GS2	1.0	03L1.A
$13_{10} = C_{9,417}$		-84109	30 40				2			G5 2	1.0	03L1.A
$113 X_{0}(\alpha)^{109} T_{0}$		2705.9	40.				4					708.22
$^{113}Cd(p t)^{111}Cd$		-7456	5	-7452.6	0.7	0.7	U J			Min		730.001
113 In(n t) ¹¹¹ In 115 In() ¹¹³ In		- 810	10	-807	5	0.7	1	25	11 ¹¹⁵ In	Roc		74Ma09
$^{113}In(p t)^{111}In - ^{112}CdO^{110}Cd$		-746 3	4 1	-746	4	0.0	1	78	77 ¹¹¹ In	SPa		80Ta07
$^{112}Cd(n,\gamma)^{113}Cd$		6542.0	0.2	6540.1	0.6	-9.6	Ċ	10	,, <u> </u>	014		90Ne.A
$^{112}Cd(d,p)^{113}Cd$		4315.56	0.64	4315.5	0.6	-0.1	1	98	58 113Cd	Rez		90Pi05 *
112 Sn(n, γ) 113 Sn		7741.9	2.3	7743.1	1.8	0.5	_					75SI.A
112 Sn(d,p) 113 Sn		5518.2	3.2	5518.5	1.8	0.1	_			SPa		75Be09
112 Sn(n, γ) 113 Sn	ave.	7742.2	1.9	7743.1	1.8	0.5	1	96	80 ¹¹² Sn			average
112Sn(3He,d)113Sb		-2400	40	-2446	17	-1.2	R			Sac		68Co22
¹¹³ Xe(εp) ¹¹² Te		7920	150				4					82P105
$^{113}Cs(p)^{112}Xe$		967	4	973.5	2.6	1.6	5					84Fa04
		982.7	4.			-2.3	5					92He.A
1120 (0.)11201		967.6	6.			1.0	5			•		94Pa12
113 Ru(β^{-}) 113 Rh		6480	50	5010	10	0.0	2	76	co 113 D1	Jyv		00Kr.A
$113 \text{Rn}(\beta)$ (113Pd)		5008	50	5010	40	0.0	1	/5	60 113 Rh	Jyv		00Kr.A
$H_{A}^{(p)}$ $H_{A}^{(p)}$ $H_{A}^{(p)}$		3340	35	3340 2017	30 16	0.0	1	88	85 ····Pa	Stu		90F007
$\operatorname{Ag}(\beta)$		2010	20	2017	10	0.5	_			Stu		3/Je.A
	ave	2031	17			-0.5	1	97	97 113 A g	Stu		average
$^{113}Cd(B^{-})^{113}In$	ave.	320	10	320	3	0.0	1	11	7 ¹¹³ In	CIT		88Mi13
113 Sn $(\beta^+)^{113}$ In		1034.6	5.0	1036.6	2.7	0.0	_		, 11	cm		93Li10
$^{113}In(p,n)^{113}Sn$		-1809	6	-1818.9	2.7	-1.7	_			Oak		73Ra13
113 Sn(β^+) 113 In	ave.	1031	4	1036.6	2.7	1.4	1	51	45 113 Sn			average
113 Sb $(\beta^+)^{113}$ Sn		3934	30	3913	17	-0.7	2					61Se08
4 /		3945	50			-0.6	2					69Ki16
113 Te(β^+) 113 Sb		5520	300	6070	30	1.8	U					74Bu21
-		5720	200			1.8	U					74Ch17
* ¹¹³ Ru-C _{9.417}	M-A=-7	71692(77) ke	V for mix	ature gs+m a	t 130(1	8) keV						Nubase **
* ¹¹³ Cd-C _{9.417}	M-A=-8	38832(41) ke	V for mix	ture gs+m a	t 263.5	4 keV						NDS983**
* ¹¹³ In-C _{9.417}	M-A=-8	39199(30) ke	V for mix	ature gs+m a	t 391.6	99 keV						Ens99 **
* ¹¹³ Sn-C _{9.417}	M-A=-8	88263(29) ke	V for mix	ture gs+m a	t 77.38	6 keV						Ens00 **
$*^{112}Cd(d,p)^{113}Cd$	Estimated	1 systematica	l error 0.5	added to st	atistica	u error ().40					AHW **
****Ag(<i>p</i> ⁻)***Cd	$Q^{-}=2075$	(50) from 11.	Ag‴ at 4	5.5								NDS904**

Item		Input va	lue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
		-81194 237487.6 -94986 -90731 -87911	121 4. 68 30 30	237492.0 -95086	2.9 3	0.4 -1.5	2 1 U 2 2	8	8 ¹¹⁴ Cd	JY1 M16 GS2 GS2 GS2	1.0 2.5 1.0 1.0 1.0	03Ko.A * 63Da10 03Li.A * 03Li.A 03Li.A
$^{114}Xe^{-133}Cs_{1857}^{114}Cd^{35}Cl^{-112}Cd^{37}Cl^{-114}Cd^{35}Cl^{-112}Cd^{37}Cl^{-114}Ba(\gamma)^{12}C)^{102}Sn^{-114}Cs(\alpha)^{110}I^{-114}Ba(\alpha)^{110}Xe^{-113}Cd(n,\gamma)^{114}Cd^{-114$		9008 3548.5 18110 3357.0 3534.2 9042.76	12 1.0 780 30. 40. 0.20	3550.8 18980 9042.98	0.7 40 0.14	0.9 1.1 1.1	2 U F 6 8 -			MA6 H26 ILn	1.0 2.5	03Di.1 73Me28 95Gu01 * 81Sc17 02Ma19 79Br25 Z
¹¹³ In(n, γ) ¹¹⁴ In ¹¹⁴ Sn(d,t) ¹¹³ Sn ¹¹⁴ Cs(rp) ¹¹³ I	ave.	9043.18 9042.98 7274.0 7273.83 -4043.7 8730	0.19 0.14 1.2 0.27 4.2 150	7273.85 -4041.9 9300#	0.27 2.7 300#	-1.1 0.0 -0.1 0.1 0.4 3.8	- 1 1 1 1 D	100 100 43	71 ¹¹⁴ Cd 82 ¹¹³ In 38 ¹¹³ Sn	Bdn Bdn SPa		03Fi.A average 75Ra07 Z 03Fi.A 75Be09 82Pl05 *
¹¹⁴ Ru(β^{-}) ¹¹⁴ Rh ¹¹⁴ Rh(β^{-}) ¹¹⁴ Pd ¹¹⁴ Pd(β^{-}) ¹¹⁴ Ag		6100 6120 6500 7392 1414	200 200 500 53 30	5100# 7860 1452	200# 120 18	-5.0 -5.1 2.7 8.9 1.3	o D U C			Jyv Jyv Jyv Jyv Stu		92Jo05 * 94Jo.A * 88Ay02 00Kr.A 90Fo07
114 Ag(β^{-}) ¹¹⁴ Cd 114 In(β^{-}) ¹¹⁴ Sn	ave.	1431 1436 5160 5018 1987 1989	25 19 110 35 2 1	5072 1988.7	25 0.7	0.0 0.8 -0.8 1.5 0.9 -0.3	- 1 U 1 -	85 50	50 ¹¹⁴ Ag 50 ¹¹⁴ Ag	Stu Stu		94J0.A average 84Lu02 90Fo07 61Da01 61Ni02
$^{114}\text{Sb}(\beta^+)^{114}\text{Sn}$ $^{114}\text{Sn}(p,n)^{114}\text{Sb}$ $^{114}\text{Rh}-C_{9.5}$ $^{114}\text{In}-C_{9.5}$ $^{114}\text{Ba}(\gamma,^{12}\text{C})^{102}\text{Sn}$ $^{114}\text{Cs}(\varepsilon p)^{113}\text{I}$ $^{114}\text{Ru}(\beta^-)^{114}\text{Rh}$ $^{114}\text{Ru}(\beta^-)^{114}\text{Rh}$	ave. ave $M-A$ M-A=-8 Most prol Systemati $E^-=5910$	1988.5 1988.6 5690 6875 a=-75532(61) 8384(31) keV bably backgro ical trends sug (120) doubled	1.0 0.7 100 35 keV for V for mix pund ggest ¹¹⁴ C to 127.0	6046 -6828 mixture gs+n ture gs+m at Cs 570 less bo , 255.2 levels	28 28 n at 200# 190.29 ke	0.2 0.3 3.6 1.3 150 keV	- 1 U B	98	72 ¹¹⁴ In	VUn		68Ze04 average 69Bu.A 76Ka19 Nubase ** NDS96b** GAu ** CTh ** 92J005 **
* ¹¹⁴ Ru(β^{-}) ¹¹⁴ Rh ¹¹⁵ Rh-C _{9,583} C ₉ H ₇ - ¹¹⁵ In ¹¹⁵ In-C _{9,583} C ₉ H ₇ - ¹¹⁵ Sn ¹¹⁵ Sb-C _{9,583} ¹¹⁵ Te-C _{9,583} ¹¹⁵ Te-C _{9,583} ¹¹⁵ Te-C _{9,583} ¹¹⁵ Xe- ¹¹³ Cs ¹¹⁴ Sta(d,p) ¹¹⁵ Cd ¹¹⁵ In(γ ,n) ¹¹⁴ In ¹¹⁴ Sn(n, γ) ¹¹⁵ Sn ¹¹⁴ Sn(n, γ) ¹¹⁵ Sn ¹¹⁴ Sn(n, γ) ¹¹⁵ Sn ¹¹⁴ Sn(h, γ) ¹¹⁵ Sn ¹¹⁵ Sh(β^{-}) ¹¹⁵ Rh ¹¹⁵ Rh(β^{-}) ¹¹⁵ Pd	Systemati ave.	79666 150910 96095 151411 93402 88098 81952 8078 3916.30 9039 7545.5 5320.6 7545.4 6200 7780 6000 6566	87 8 30 8 30 31 13 0.59 5 2.0 3.4 1.7 130 100 500 50	150897 -96122 151433 -93402 3916.3 -9036 7546.4 5321.8 7546.4 5940 6190	5 5 3 17 0.6 4 1.7 1.7 30 100	-0.7 -0.9 1.1 0.0 0.6 0.4 0.4 0.6 -2.0 0.4 -7.4	2 U U 2 2 2 2 1 1 - - 1 U 3 U C	98 58 94	87 ¹¹⁵ Cd 48 ¹¹⁵ In 70 ¹¹⁴ Sn	JY1 M16 GS2 M16 GS2 GS2 MA6 Rez McM ORn SPa Jyv Jyv Jyv	1.0 2.5 1.0 2.5 1.0 1.0 1.0 1.0	CTh ** 03Ko.A 63Da10 03Li.A 63Da10 03Li.A 03Li.A 03Li.A 03Li.A 90Pi05 * 79Ba06 78Ra16 Z 75Be09 average 72H018 00Kr.A 88Ay01 00Kr.A

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main	lux	Lab	F	Reference	ce
115 Pd(β^{-}) 115 Ag		4584	50				3				Stu		90Fo07	
$^{115}Ag(\beta^{-})^{115}Cd$		3180	100	3100	30	-0.8	2				biu		64Ba36	
<u></u>		3105	100	0100	50	0.0	2						78Ma18	
		3091	40			0.3	2						90Fo07	*
115 Cd(β^{-}) 115 In		1460	4	1446	4	-3.5	_						74Bo26	
N 2		1431	5			3.0	_						75Bo29	*
		1440	2			3.1	_						76Ra33	*
	ave.	1443	6			0.6	1	49	41 115	In			average	
$^{115}In(\beta^{-})^{115}Sn$		494	20	499	4	0.3	U						49Be53	*
		494	30			0.2	U						62Se03	*
		480	30			0.6	U						62Wa15	
		495	20			0.2	U						72Mu02	:
116 - 116		482	15			1.2	U						78Pf01	
$^{115}{\rm Sb}(\beta^+)^{115}{\rm Sn}$		3030	20	3033	16	0.1	R						61Se08	
$*^{115}$ Te $-C_{9.583}$	M-A=-	82058(28) k	eV for n	nixture gs+m	at 10(7)	keV							Nubase	**
* ¹¹⁴ Cd(d,p) ¹¹⁵ Cd	Estimate	d systematio	cal error	0.5 added to	statistica	al error	0.32	2					AHW	**
$*^{115}Ag(\beta^{-})^{115}Cd$	$Q^{-}=3132$	2(40) from	$^{115}Ag^m$ a	t 41.1									NDS929)**
$*^{115}Cd(\beta^{-})^{115}In$	$E^{-}=320($	5), 679(6) f	rom 115 C	² d ^m at 181.0	to 1290.:	592, 93	3.78	30 lev	els				NDS991	**
$*^{115}Cd(\beta^{-})^{115}In$	Q ⁻ =162	l(2) from ¹¹	³ Cd ^m at	181.0									NDS929) **
$*^{115} \ln(\beta^{-})^{115} Sn$	Q ⁻ =830	(20) from 11	${}^{5}In^{m}$ at 3	36.244									NDS991	**
$*^{115} In(\beta^{-})^{115} Sn$	Q ⁻ =830	(30) from ¹¹	⁵ In ^m at 3	36.244									NDS991	**
¹¹⁶ Rh-C		-75938	148				2				IY1	1.0	03Ko A	*
$C H = \frac{116}{10}Cd$		157837 4	29	157844	3	1.0	1	22	22 116	Cd	M16	2.5	63Da10	
$C_{2}H_{8} = -\frac{116}{5}$		160861	8	160860	3	-0.1	ц.	22	22	Cu	M16	2.5	63Da10	
¹¹⁶ Sh-C		-93123	126	-93206	6	-0.7	U				GS2	1.0	03L i A	*
¹¹⁶ Te-C.		-91540	30	200	0	0.7	2				GS2	1.0	03Li A	
116 Xe $^{-133}$ Cs		4027	14				2				MA6	1.0	03Di 1	
116 Cd 35 Cl $-^{114}$ Cd 37 Cl		4348 7	1.2	4347 4	2.2	-0.4	1	52	44 116	Cd	H26	2.5	73Me28	
$^{116}Cs(\epsilon\alpha)^{112}Te$		12300	400	12810#	200#	1.3	D		••	cu	1120	2.0	77Bo28	
		12400	900			0.5	D						76Jo.A	*
		12810	100			0.0	R						S-sugg	
¹¹⁶ Cd(¹⁴ C, ¹⁶ O) ¹¹⁴ Pd		2497	29	2534	23	1.3	1	66	65 114	Pd	LAI		84Co19	
¹¹⁶ Cd(p,t) ¹¹⁴ Cd		-6363	5	-6359.3	2.0	0.7	1	16	14 116	Cd	Min		73Oo01	
$^{116}Cd(\gamma,n)^{115}Cd$		-8702	4	-8700.2	2.0	0.4	1	26	21 116	Cd	McM		79Ba06	
115 In(n, γ) 116 In		6783.8	1.2	6784.72	0.22	0.8	U						72Ra39	Ζ
		6784.4	1.1			0.3	U						74Co35	
		6784.72	0.22				2				Bdn		03Fi.A	
115 Sn(n, γ) 116 Sn		9563.41	0.11	9563.45	0.10	0.3	_				ORn		91Ra01	Ζ
		9563.55	0.19			-0.5	-				Bdn		03Fi.A	
	ave.	9563.45	0.10			0.0	1	100	78 115	Sn			average	
115 Sn(³ He,d) ¹¹⁶ Sb $-^{120}$ Sn() ¹²¹ Sb		-1722	10	-1705	5	1.7	1	29	27 116	Sb	VUn		78Ka12	
$^{116}Cs(\varepsilon p)^{115}I$		6350	300	6980#	110#	2.1	В						78Da07	*
116 Rh(β^-) 116 Pd		8000	500	9220	150	2.4	В				Jyv		88Ay02	
110 Pd(β^{-}) 110 Ag		2607	30				3				Stu		90Fo07	
116 - 116		2620	100	2610	30	-0.1	U				Jyv		94Jo.A	
$^{116}\text{Ag}(\beta^{-})^{116}\text{Cd}$		6028	130	6150	50	1.0	2				Stu		82A129	*
116		6170	50	- 100	_	-0.4	2		- 116	~.	Stu		90Fo07	*
ligar maga balling		-5483.2	6.	-5489	5	-1.0	1	75	73 110	Sb	Oak		77Jo03	
$^{110}Sb^{m}(\beta^{+})^{110}Sn$		5090	40				2						60Je03	
110^{110} $\text{Ie}(\beta^+)^{110}$ Sb		1554	100	1552	29	0.0	U						61F105	
$(\beta^+)^{(10)}$ le		7760	130	7780	100	0.1	R						70Be.A	
116x (0+)116x		7710	200	4450	100	0.3	R						/6Go02	
$\frac{116}{116}$		4340	200	4450	100	0.5	3						/6Go02	
****Kh-C _{9.667}	M-A=-	/0636(100)	kev for	mixture gs+i	n at 200	#150 k	e∨						Nubase	**
$*^{10}Sb-C_{9.667}$	M-A=-	86553(34) k	eV for n	nxture gs+m	at 380(4	ŧ0) ke∖	/						Nubase	**
****Cs($\epsilon \alpha$) ¹¹² Te	Q=12500	(900) from	•••Cs‴ a	it estim 100#	60 keV								GAu	**
$*^{116}$ Cs($\epsilon \alpha$) ¹¹² Te	Systemat	ical trends	suggest 1	••Cs 500 less	s bound	x 7							CTh	**
****CS(Ep)***1	Q=6450(300) from 1	"Cs" at	estimated 10	10#60 ke	v							GAu	**
$\operatorname{Ag}(p)$) ¹¹⁰ Ud	Q = 6110	J(150) from	·····Ag‴	at 81.9	m -+ 01 4	, ,							NDS949	1**
****Ag(\$\mu\$)***Cd	Q =6199	9(100); and	6241(50) from '''Ag	" at 81.9	ŧ							NDS949	! **

Item		Input va	llue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$C^{35}Cl_3 - {}^{117}Sn$		3596	2	3606	3	1.3	1	15	15 ¹¹⁷ Sn	H14	4.0	62Ba24
$^{117}\text{Te}-C_{9.75}$		-91318	30	-91355	14	-1.2	2			GS2	1.0	03Li.A
		-91359	30			0.1	2			GS2	1.0	03Li.A *
¹¹ /I-C _{9.75}		-86350	30	50.644		0.0	2			GS2	1.0	03Li.A
117 Xe-C _{9.75}		-79647	30	-79641	11	0.2	R			GS2	1.0	03L1.A
$117 \text{Ce} - 133 \text{Ce}_{.880}$		3562	12	3561	11	-0.1	2	100	100 117 Ca	MA6	1.0	03D1.1
$^{116}Cd(d p)^{117}Cd$		2552.66	1.0	118/0	70	0.0	2	100	100	MA4	1.0	99AII05 *
$^{116}Sn(n,2)^{117}Sn$		5552.00 6043.5	1.0	60/3 2	0.5	0.2	2 11			Rez		90P103 * 75Bb01 7
51(1,7) 51		6943.3	1.5	0745.2	0.5	-0.1	Ŭ					78Ra16 Z
		6942.9	0.5			0.5	_			Bdn		03Fi.A
¹¹⁶ Sn(d,p) ¹¹⁷ Sn		4721.0	1.8	4718.6	0.5	-1.3	_			SPa		75Be09
116 Sn(n, γ) 117 Sn	ave.	6943.1	0.5	6943.2	0.5	0.1	1	99	77 ¹¹⁶ Sn			average
¹¹⁶ Sn(³ He,d) ¹¹⁷ Sb		-1091	10	-1088	9	0.3	1	80	80 ¹¹⁷ Sb	VUn		78Ka12 *
117 Xe(ε p) 116 Te		4100	200	3795	30	-1.5	U					72Ho18
117 Ba(ε p) 116 Xe		7900	300	8470#	300#	1.9	D					78Bo20 *
¹¹⁷ La(p) ¹¹⁶ Ba		789.8	6.	803	11	2.3	3					01So02
$117r_{-m(n)} = 116r_{-}$		813.0	5.			-1.9	3					01Ma69
$117 \text{ Dat}(\theta =)117 \text{ A} \approx$		941.1	10.				3			Terre		018002
$^{117}\Lambda_{g}(\beta^{-})^{117}Cd$		3733 4160	52 50				4			Jyv Stu		00KI.A 82 A 120
$^{117}In(\beta^{-})^{117}Sn$		1456.6	5	1455	5	-03	1	95	94 ¹¹⁷ In	Stu		55Mc17 *
117 Sn(p n) 117 Sb		-2525	20	-2538	9	-0.6	1	20	20^{-117} Sb	Oak		71Ke21
$^{117}\text{Te}(\beta^+)^{117}\text{Sb}$		3552	20	3548	16	-0.2	R	20	20 50	oun		62Kh05
		3492	30			1.9	R					67Be46
117 I(β^+) 117 Te		4680	100	4660	30	-0.2	U					69La33
		4610	110			0.5	U					70Be.A *
117 Xe(β^+) 117 I		6270	300	6249	30	-0.1	U		117			85Le10 *
$^{117}Cs^{x}(IT)^{117}Cs$		50	50	50	50	0.0	1	100	100^{-117} Cs ^x			AHW
$*^{117}$ Te-C _{9.75}	M-A=-8	4804(28) ke	V for ""	Te ^m at Eexc	=296.1	keV						NDS023**
$*^{116}Cd(d p)^{117}Cd$	M-A=-6	6422(20) Ke	V IOF mi	sture gs+m	at 150#8	so ke v	0.95					Ensuo **
$*^{116}Sn(^{3}He d)^{117}Sh$	O_{120}	$Sp(^{3}He d)) =$	1373(10	K_{a} $O(120)$	-282.1	(2.0)	0.85					
$*^{117}Ba(\epsilon n)^{116}Xe$	Systemati	cal trends su	1375(10	Ba 570 less	bound	(2.0)						CTh **
$*^{117}Ag(\beta^{-})^{117}Cd$	$O^{-}=4260$	(110): and 4	170(50)	from ¹¹⁷ Ag ⁿ	ⁿ at 28.6							NDS926**
$*^{117} In(\beta^{-})^{117} Sn$	E-=740(1	0) to 711.54	level; a	nd 1772(5),	1616(5)							55Mc17 **
*	from	11^{7} In ^m at 315	5.302 to	ground-state	, 158.56	level						NDS926**
$*^{117}$ I(β^+) ¹¹⁷ Te	$Q^{+} = 431$	0(100) assun	ned to 27	74.4, 325.91	evels							AHW **
$*^{117}$ Xe(β^+) ¹¹⁷ I	May be lo	ower limit										AHW **
G H 1180		176615	-	186618	2	<u>.</u>				10.5	2.5	(2D, 10)
$C_9 H_{10} - Sn^{118}$		1/0045	20	1/0647	3	0.1	U			MI6 GS2	2.5	
118 L C		-94102 86032	30	-94172	21	-0.5	2			GS2 GS2	1.0	
$1 - C_{9.833}$		-86920	30	-80920	21	-0.2	2			GS2	1.0	03LiA *
118 Xe $-C_{0.022}$		-83785	30	-83821	11	-1.2	R			GS2	1.0	03Li.A
118 Xe $-^{133}$ Cs $_{887}$		37	12	43	11	0.5	2			MA6	1.0	03Di.1
$^{118}Cs^{x} - ^{133}Cs^{.007}$		10429	13	10429	13	0.0	1	100	100 118Csx	MA1	1.0	99Am05
$^{117}Cs^{x} - ^{118}Cs^{x}_{.496} ^{116}Cs_{.504}$		-1160	400	-1180#	130#	0.0	U			P32	2.5	86Au02
118 Cs $(\epsilon \alpha)^{114}$ Te		10600	200	11050	30	2.3	U					77Bo28
116		10750	200			1.5	U					78Da07 *
$^{110}Cd(t,p)^{118}Cd$		5650	20		~ ~	<u> </u>	2			Ald		67Hi01
$\sin(n,\gamma)$ $\sin(n,\gamma)$		9326.5	2.	9327.4	0.9	0.5	-					700r.A
		9324.8	2.1			1.5	_			Ddn		1351.A
	ave	9327.9	1.1			-0.4	1	98	62 117 Sp	Dull		ourage
118 Pd(β^{-}) 118 Ag	ave.	4100	200			0.4	4	20	52 511	Ivv		89Ko22 *
$^{118}\text{Ag}(\beta^{-})^{118}\text{Cd}$		7122	100	7140	60	0.2	3			Stu		82A129 *
64. <i>,</i> ==		7110	470			0.1	Ū			Stu		82A129 *
		7155	76			-0.2	3					95Ap.A

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Mai	in flux	Lab	F	Reference
$^{118}\text{In}^{m}(\beta^{-})^{118}\text{Sn}$		4270	100	4530#	50#	2.6	В						64Ka10
¹¹⁸ Sn(p,n) ¹¹⁸ Sb		-4439.0	3.				2				Oak		77Jo03
118 Sb ^{<i>m</i>} (β^+) 118 Sn		3907	5				2						61Bo13
118 I(β^+) 118 Te		7080	150	6750	25	-2.2	в						68La18 *
110		7068	100			-3.2	С						70Be.A
$^{116}Cs(\beta^+)^{116}Xe$		9300	1000	9670	16	0.4	U	100	100	1180			76Da.C
	M A_ 9	C 1, (20) 1	4 V for 1	D 181m at Earra	4	0.0	V I	100	100	^m Cs			82Au01 *
$*^{118}C_{9,833}$	M—A=-o Δs read fr	0775(28) K	401	I- at Eexc	=190.1((1.0) Ke	v						GAU **
* $CS(2U)$ IC * ¹¹⁸ Pd(β^{-}) ¹¹⁸ Ag	Original y	value 40000	200) cor	rected for n	w bran	ching r	atios						93Ia03 **
$*^{118}$ Ag(β^{-}) ¹¹⁸ Cd	$E^{-}=4330$	(240), 3960	(170), 3	810(150)	on orun	•g :	unos						GAu **
*	to 278	88.75, 3224	.37, 326	5.70 levels,	reinterp	reted							95Ap.A **
$*^{118}$ Ag(β^{-}) ¹¹⁸ Cd	E ⁻ =3990	(720), 3910	(630)										NDS876**
*	from	¹¹⁸ Ag ^m at 1	27.49(0	.05) to 3181	.72, 338	81.8 lev	els, 1	reinter	prete	d			95Ap.A **
$*^{118}$ I(β^+) ¹¹⁸ Te	$E^{+} = 5450$	0(150) to 6	05.71 lev	vel									68La18 **
$*^{118}Cs^{x}(IT)^{118}Cs$	Original 2	24(19) corre	ected for	new estima	ted IT=	100(60)#						GAu **
$C_0 H_{11} - {}^{119}Sn$		182778	7	182768	3	-0.6	U				M16	2.5	63Da10
$^{119}I - C_{9,917}$		-89926	30				2				GS2	1.0	03Li.A
119 Xe $-C_{9.917}$		-84601	30	-84589	11	0.4	R				GS2	1.0	03Li.A
¹¹⁹ Xe ⁻¹³³ Cs _{.895}		33	12	31	11	-0.1	2				MA6	1.0	03Di.1
119 Cs $-C_{9,917}$		-77532	57	-77623	15	-1.6	U				GS2	1.0	03Li.A *
$^{119}Cs^{x} - ^{133}Cs_{.895}$		7018	13	7015	9	-0.2	2				MA1	1.0	99Am05
119 1 1181		7012	13	2000	40	0.2	2				MA4	1.0	99Am05
119 I 117 I		-2/4/	155	- 3000	40	-1.1	U				CR2	1.5	925n.A *
1 - 1 $118 Ce^{x} - 119 Ce^{x} - 116 Ce^{x}$		-3370	80	-3380 420#	100#	-0.6	U				P32	2.5	92511.A *
$^{118}Cs^{x} - ^{119}Cs^{x}$		870	50	910	40	0.0	U				P22	2.5	82Au01
20 20,496 20,504		980	40	,10	10	-0.7	Ŭ				P32	2.5	86Au02
119 Sn(t, α) 118 In $^{-118}$ Sn() 117 In		-127	6	-127	6	0.0	1	100	100	¹¹⁸ In	McM		85Pi03
118 Sn(n, γ) 119 Sn		6484.6	1.5	6483.6	0.6	-0.7	_						78Ra16
		6483.3	0.6			0.5	-				Bdn		03Fi.A
118 a 277 to 110 at	ave.	6483.5	0.6			0.3	1	99	64	118Sn			average
¹¹⁸ Sn(³ He,d) ¹¹⁹ Sb		-388	10	-383	8	0.5	1	59	59	¹¹⁹ Sb	VUn		78Ka12 *
$119 \operatorname{Ba}(\mathcal{E}p)^{110} \operatorname{Xe}$		6200 5250	200				3				Ctor		/8B020
$^{119}Cd(B^{-})^{119}In$		2707	40				2				Stu		82A129
119 Sb(c) ¹¹⁹ Sp		570	20	501	8	0.6	2				Stu		570105
119 Sn(n n) 119 Sh		-1369	15	-1373	8	-0.3	_				Oak		71Ke21
119 Sb(ϵ) 119 Sn	ave.	584	12	591	8	0.6	1	41	41	¹¹⁹ Sb	Out		average
$^{119}\text{Te}(\beta^+)^{119}\text{Sb}$		2293	2				2						60Ko12
119 I(β^+) 119 Te		3630	100	3419	29	-2.1	U						69La33
4		3370	100			0.5	U						70Be.A
119 Xe(β^+) 119 I		4990	120	4971	30	-0.2	U						70Be.A
119 Cs(β^+) 119 Xe		6260	290	6489	17	0.8	U						83Pa.A
$^{119}Cs^{x}(IT)^{119}Cs$		16	11				. 3						82Au01 *
$*^{119}Cs - C_{9.917}$	M - A = -7	2195(48) k	eV for n	nixture gs+n	n at 50#	30 keV							Nubase **
* ¹¹⁹ I ⁻¹¹⁰ I .119 _I 117 _I	From ¹¹⁷ I	/1191_0.092	01584(1	117) -3039(1 120)	139)								GAu **
* $1 - 1$ * 1^{118} Sp(³ He d) ¹¹⁹ Sb	$0 - 0(^{120})$	1 = 0.983 Sn $(^{3}$ He d) 12	$^{21039(1)}$	573(10) O(1	20)-28	5 1(2 1)						
$*^{119}Cd(\beta^{-})^{119}In$	Q = Q(-1)	(90) and 3	940(80)	from ¹¹⁹ Cd ⁿ	n at 146	54)						NDS92a**
$*^{119}Cs^{x}(IT)^{119}Cs$	Original 3	(90), and 9 33(22) corre	ected for	new estima	ted IT=:	50(30)#	ŧ						GAu **
$^{13}C^{35}Cl_{-}^{37}Cl_{-}^{120}Sp$		4758	3	4768 1	27	0.8	1	5	5	120 Sn	H14	4.0	62Ba24
$^{120}Sb-C_{10}$		-94796	76	-94928	8	-1.7	U	5	5	511	GS2	1.0	03Li.A *
$C_0 H_{12} - \frac{10}{120}$ Te		189879	9	189880	10	0.1	1	21	21	¹²⁰ Te	M16	2.5	63Da10
9 12			-				-						

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹²⁰ L_C		_90222	104	_89952	19	26	П			GS2	1.0	03I i A *
120 Xe-C		-88231	30	-88216	13	0.5	R			GS2	1.0	03Li.A
120 Xe $^{-133}$ Cs and		-2930	14	-2933	13	-0.2	2			MA6	1.0	03Di 1
$^{120}Cs-C_{10}$		-79342	54	-79323	11	0.4	Ū			GS2	1.0	03LiA *
$^{120}Cs^{x} - ^{133}Cs_{002}$		5956	12	5965	10	0.7	2			MA1	1.0	99Am05
00 00.902		5983	17	0700	10	-1.1	2			MA4	1.0	99Am05
$^{118}Cs^{x} - ^{120}Cs^{x}_{220} $ $^{117}Cs^{x}_{220}$		460	120	450	60	0.0	Ū			P22	2.5	82Au01
$^{119}Cs^{x} - ^{120}Cs^{x}_{661} ^{117}Cs^{x}_{220}$		-940	50	-945	30	0.0	U			P22	2.5	82Au01
$^{119}Cs^{x} - ^{120}Cs^{x}_{406} = ^{118}Cs^{x}_{504}$		-1220	30	-1167	14	0.7	U			P22	2.5	82Au01
.490 .304		-1200	30			0.4	U			P32	2.5	86Au02
120 Cs($\epsilon \alpha$) 116 Te		9200	300	8955	30	-0.8	U					76Jo.A
¹²⁰ Te(p,t) ¹¹⁸ Te		-9343	12	-9344	11	-0.1	2			Win		74De31
120Sn(d,3He)119In		-5169	20	-5196	7	-1.4	1	13	13 ¹¹⁹ In	MSU		71We01
120 Sn(t, α) 119 In $-^{118}$ Sn() 117 In		-692	6	-690	6	0.4	1	92	87 ¹¹⁹ In	McM		85Pi03
120Sn(d,t)119Sn		-2847.0	2.5	-2850.8	2.2	-1.5	1	78	55 ¹¹⁹ Sn	SPa		75Be09
120 Pd(β^{-}) 120 Ag		5500	100				4			Jyv		94Jo.A
$^{120}Ag(\beta^{-})^{120}Cd$		8200	100	8320	70	1.2	3			Stu		82A129
		8450	100			-1.3	3					95Ap.A
120 In(β^{-}) 120 Sn		5370	40				2					87Ga.A
120 In ^{<i>m</i>} (β^{-}) ¹²⁰ Sn		5280	200	5420#	50#	0.7	D					64Ka10 *
		5340	170			0.5	D			Stu		78Al18 *
¹²⁰ Sn(p,n) ¹²⁰ Sb		-3462.9	7.1				2			Tkm		63Ok01
120 I(β^+) 120 Te		5615	15				2					70Ga32 *
		5778	150	5615	15	-1.1	U					68La18 *
120 Xe(β^+) 120 I		1960	40	1617	21	-8.6	F					74Mu10 *
$^{120}Cs^{x}(IT)^{120}Cs$		5	4				3					82Au01 *
120 Ba(β^+) 120 Cs		5000	300				4					92Xu04
* ¹²⁰ Sb-C ₁₀	M-A=-8	38302(50) ke	eV for m	nixture gs+m	1 at 0#10)0 keV						Nubase **
$*^{120}I-C_{10}$	M-A=-8	33881(28) ke	eV for m	nixture gs+n	at 320(15) keV						Nubase **
$*^{120}$ Cs-C ₁₀	M - A = -2	73856(29) ke	eV for m	iixture gs+m	at 100#	#60 keV	r					Nubase **
$*^{120} In^{m} (\beta^{-})^{120} Sn$	Systemat	ical trends s	uggest 1.	²⁰ In ^m 105 les	ss boun	d						GAu **
$*^{120}I(\beta^+)^{120}Te$	$E^{+} = 459$	5(15), 4030	(20) to g	round-state,	560.43	8 level						NDS026**
$*^{120}I(\beta^+)^{120}Te$	$E^{+} = 313$	0(150) from	$^{120}I^{m}$ at	t 150(30) to	1776.23	level						Nubase **
$*^{120}$ Xe(β^+) 120 I	$p^+ = 0.07$	(0.01) to 25	.1 level,	recalculated	IQ							AHW **
$*^{120}$ Cs ^x (IT) ¹²⁰ Cs	Original	24(19) corre	cted for	new estimat	ed IT=1	.00(60)‡	¥					GAu **
$C_0 H_{12} - {}^{121}Sb$		197910.5	3.7	197909.7	2.4	-0.1	1	7	7 ¹²¹ Sb	M16	2.5	63Da10
¹²¹ Sb-C ³⁵ Cl ³⁷ Cl		3162	3	3157.8	2.4	-0.3	Ū			H14	4.0	62Ba24
¹²¹ Sb-C10.002		-96180	30	-96184.3	2.4	-0.1	Ŭ			GS2	1.0	03Li.A
121 I-C 10.083		-92609	30	-92633	11	-0.8	1	14	14 ¹²¹ I	GS2	1.0	03Li.A
121 Xe-C _{10.082}		-88562	30	-88538	12	0.8	R			GS2	1.0	03Li.A
121 Xe $-^{133}$ Cs or 0		-2495	13	-2499	12	-0.3	2			MA6	1.0	03Di.1
$^{121}Cs - ^{133}Cs_{010}$		3248	25	3268	15	0.8	R			MA1	1.0	99Am05 *
$^{121}Cs-C_{10.082}$		-82821	38	-82771	15	1.3	2			GS2	1.0	03Li.A *
¹²¹ Sb ³⁵ Cl- ¹¹⁹ Sn ³⁷ Cl		3452	2	3458.1	2.9	0.8	1	13	10 ¹¹⁹ Sn	H14	4.0	62Ba24
$^{119}Cs^{x} - ^{121}Cs^{x} - ^{118}Cs^{x} - ^{11$		-1080	30	*			U			P22	2.5	82Au01
$^{120}Cs^{x} - ^{121}Cs^{x} - ^{118}Cs^{x} - ^{0/2}$		280	30	*			U			P22	2.5	82Au01
$^{120}Cs^{x} - ^{121}Cs^{x}_{406} + ^{119}Cs^{x}_{504}$		813	14	*			U			P32	2.5	86Au02
120 Sn(n, γ) 121 Sn		6170.3	2.	6170.3	0.3	0.0	U					76Ca24
× /•/		6170.5	0.7			-0.3	_					81Ba53
		6170.1	0.4			0.6	_			Bdn		03Fi.A
120Sn(d,p)121Sn		3946.2	1.7	3945.8	0.3	-0.3	_			SPa		75Be09
120 Sn(n, γ) 121 Sn	ave.	6170.2	0.3	6170.3	0.3	0.3	1	99	70 ¹²⁰ Sn			average
¹²⁰ Te(³ He,d) ¹²¹ I		-1320.5	4.4	-1322	4	-0.3	1	97	83 ¹²¹ I	Hei		78Sz09
$^{121}\text{Ba}(\varepsilon p)^{120}\text{Xe}$		4200	300	4140	140	-0.2	R					78Bo20
¹²¹ Pr(p) ¹²⁰ Ce		837	50				3					90Bo39

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{121}\text{Ag}(\beta^{-})^{121}\text{Cd}$		6400	120				4			Stu		82A129
$^{121}Cd(\beta^{-})^{121}In$		4780	80				3			Stu		82A129 *
$^{121}\text{In}(\beta^{-})^{121}\text{Sn}$		3406	50	3363	27	-0.9	R			Stu		78A118
$^{121}Sn(\beta^{-})^{121}Sb$		383	5	391.0	2.1	1.6	_					49Du15
		383.4	3.			2.5	_					68Sn01 *
	ave.	383.3	2.6			3.0	1	65	43 ¹²¹ Sn			average
121 Te(β^+) 121 Sb		1080	30	1044	26	-1.2	1	74	74 ¹²¹ Te			75Me23 *
121 I(β^+) 121 Te		2364	50	2264	27	-2.0	1	29	26 ¹²¹ Te			53Fi.A
121 - 121		2384	100			-1.2	U					65Bu03
121 Xe(β^+) 121 I		4160	140	3814	15	-2.5	С					70Be.A
$^{121}Cs(\beta^+)^{121}Xe$		5400	20	5372	18	-1.4	R			TAE		81So06
121 g r (m) 121 g		5400	40			-0.7	R			JAE		96Os04 *
$121 \text{Cs}^{*}(\Pi)^{121} \text{Cs}^{121}$		46	8	*	1.40	0.1	C			145		GAu
$121_{\text{Ca}} = 133_{\text{Ca}}$	D 220	6340	160	6360	140	0.1	3 7000/	(10) 1-	- 17	JAE		96Us04
* ¹²¹ Cs_C	$D_M = 528$	5(13) uu Ior	Mixture g	gs+m at 68.5	kev; M =	A = -7	089((12) K	ev			NDS005**
$* C_{10.083}$	M - A = -	(150); and (060(80)	from $121Cd^m$	ot 214 8	:v D						NDS003**
$* Cu(p) III = (R^{-})^{121} Sh$	Q -409	(150), and $254($	5) from 1	21 Sp ^m at 6.20	at 214.0	z Laval						NDS91a**
* $SI(p^{-}) = S0^{+121}Te(B^{+})^{121}Sb$	$p^+ = -0.0^{\circ}$	24(0.011) mix	$O^+ = 0^+$	315(30) reca	lculated							AHW **
* IC(p) 50	p _0.0.	121 Te ^m at 20	13.98 to 3	7 13 level	uculated	Q⊤						NDS91a**
$*^{121}Cs(B^+)^{121}Xe$	$0^+ - 54'$	70(40) from	$^{121}Cs^{m}$ at	68 5								NDS005**
$= \cos(p)$ no	Q -51	/0(10) Hom	C5 U	00.5								1125005***
¹²² Xe-C _{10.167}		-91637	30	-91632	12	0.2	R			GS2	1.0	03Li.A
122 Xe $-^{133}$ Cs _{.917}		-4931	13	-4932	12	-0.1	2			MA6	1.0	03Di.1
122 Cs $-^{133}$ Cs $_{.917}$		2810	45	2810	30	0.1	1	58	58 ¹²² Cs	MA1	1.0	99Am05 *
$^{122}Cs-C_{10.167}$		-83881	53	-83890	30	-0.1	1	42	42^{-122} Cs	GS2	1.0	03Li.A *
$^{122}Cs^{m} - ^{155}Cs_{.917}$		2961	12	2959	10	-0.2	2			MA1	1.0	99Am05
122 D G		2955	17			0.2	2			MA4	1.0	99Am05
$^{120}\text{Ba} - \text{C}_{10.167}$		-80096	30				2			GS2	1.0	03L1.A
120 GeV = 122 GeV = 119 GeV		-/24	27	*			U			P32	2.5	86Au02
$121 \text{ Cs}^{-122} \text{ Cs}^{-328} 120 \text{ Cs}^{-672}$		300	17	*			U			P32	2.5	86Au02
$CS = CS_{.496} - CS_{.504}$		-1109	13	×	10	0.0	1	65	64 120 To	P52 Win	2.3	74Do21
$122 \text{Sp}(d^{3}\text{He})^{121} \text{Ip}$		-8300	50	-8370	27	-0.9	2	05	04 10	Sac		69Co03
Sh(u, Hc) In		-5861	43	-3900	21	_0.2	2			MSU		71We01
122 Sp(d t) 121 Sp		-2558.8	3.0	-2556.0	25	0.9	1	67	40 122 Sn	SP ₂		75Be09
$^{121}Sb(n \gamma)^{122}Sb$		6806.4	0.3	6806 38	0.15	-0.1	Ū	07	10 511	Sia		72Sh A Z
50(11,7) 50		6806.36	0.15	0000120	0.12	0.1	1	100	62 121 Sh	Bdn		03Fi A
122 Sn(t. ³ He) ¹²² In		-6350	50			0.1	2	100	02 50	LAI		78Ai01
$^{122}\text{In}^{n}(\beta^{-})^{122}\text{Sn}$		6736	200	6660	130	-0.4	2					71Ta07
4		6590	180			0.4	2			Stu		78A118
122 Sb(β^{-}) 122 Te		1970	5	1983.9	1.9	2.8	_					55Fa33
4		1980	3			1.3	_					68Hs02
	ave.	1977.4	2.6			2.5	1	54	46 122 Sb			average
122 I(β^+) 122 Te		4234	5				2					77Re.A
$^{122}Cs(\beta^+)^{122}Xe$		7050	180	7220	30	0.9	U					83Pa.A
		7000	150			1.4	U			IRS		93A103
100 - 100		7080	50			2.7	В			JAE		96Os04
122 Cs ^m (β^+) 122 Xe		6950	250	7350	14	1.6	U			-		83Pa.A
122 a. x ann 122 a		7300	150			0.3	U			IRS		93A103
$^{122}Cs^{1}(IT)^{122}Cs$		11	6	*			U					82Au01 *
* ¹²² Cs- ¹⁵⁵ Cs _{.917}	$D_M = 288$	0(12) uu for	mixture g	gs+m at 130(3	30) keV;	M-A=	-780)82(1	1) keV			99Am05**
****Cs-C _{10.167}	M-A=-	/8070(28) ke	V for m	ixture gs+m a	t 130(30) keV						NDS943**
****Cs*(IT)***Cs	Original	45(33) revise	ea from '	Cs'''=114(1	8)							GAu **

Item		Input va	lue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
C H N- ¹²³ Sb		200580.0	33	200585.5	2.2	0.7	П			M16	2.5	63Da10
$L_8 \Pi_{13} \Pi = 50$		200580.0	83	200385.5	1.6	1.4	U U			GS2	1.0	
12^{3} L C		- 95015	20	-93730.0	1.0	-1.4	U			G\$2	1.0	
$1 - C_{10,25}$ 1^{23} V ₂₀ 1^{33} C ₂₀		-94444	12	-94411	10	1.1	1	62	62 123 Vo	MA6	1.0	03Di 1
123 Ca C		-4048	57	-4001	10	-1.0	1 TT	02	02 AC	CE2	1.0	
123 Cs = $C_{10.25}$		-8/00/	12	-8/004	15	0.1	2			US2	1.0	03LI.A *
123D = 133 C-		455	13				2			MAI	1.0	99Am05
123D C		0238	15	01210	12	20	2			MAS	1.0	00Be42
123 gs = 35 gs = 121 gs = 37 gs		-81327	30	-81219	13	3.6	C	0	r 121 cu	GS2	1.0	03L1.A
122 Sb 55 CI = 121 Sb 57 CI		3343	2	3348.4	2.3	0.7	1	8	5 ¹²¹ Sb	H14	4.0	62Ba24
$122 \operatorname{Sn}(n,\gamma)^{123} \operatorname{Sn}$		5948	3	5945.8	1.2	-0.7	-					/5Bn01
1220 (1) 1230		5945.8	1.5	2521.2		0.0	-			(TP)		77Ca09
122 Sn(d,p) $123 Sn$		3721.8	2.6	3721.3	1.2	-0.2	_		10 122 0	SPa		75Be09
122 Sn(n, γ) 123 Sn	ave.	5946.3	1.2	5945.8	1.2	-0.4	1	94	49 ¹²² Sn			average
$^{123}Sb(\gamma,n)^{122}Sb$		-8966	4	-8965.3	2.1	0.2	1	28	16 ¹²² Sb	McM		79Ba06
122 Te(n, γ) 123 Te		6937	5	6929.18	0.16	-1.6	U					68Ch.A
		6929.1	0.5			0.2	-					91Ho08
122		6929.16	0.17			0.1	_			Bdn		03Fi.A
¹²² Te(d,p) ¹²⁵ Te		4706	6	4704.62	0.16	-0.2	U		100	MIT		75Li22
122 Te(n, γ) 123 Te	ave.	6929.15	0.16	6929.18	0.16	0.2	1	100	92 ¹²² Te			average
¹²² Te(³ He,d) ¹²³ I		-574.2	3.5	-575	3	-0.3	1	97	96 ⁻¹²³ I	Hei		78Sz04
123 Cd(β^{-}) 123 In		6115	33				3			Stu		87Sp09
123 In(β^{-}) 123 Sn		4400	30	4394	24	-0.2	2			Stu		87Sp09 *
123 Sn(β^{-}) 123 Sb		1395	10	1403.6	2.9	0.9	-					49Du15 *
		1420	10			-1.6	-					50Ke11
		1399	20			0.2	U					66Au04
	ave.	1408	7			-0.5	1	17	11 ¹²³ Sn			average
123 I(β^+) 123 Te		1260	7	1229	3	-4.5	С					86Ag.A
123 Xe(β^+) 123 I		2676	15	2695	10	1.3	1	42	38 ¹²³ Xe			60Mo.A
$^{123}Cs(\beta^+)^{123}Xe$		4110	30	4205	15	3.2	В			JAE		96Os04
¹²³ Cs ^x (IT) ¹²³ Cs		7	4				3					82Au01
123 Ba(β^+) 123 Cs		5330	100	5389	17	0.6	U			JAE		96Os04
$*^{123}$ Te $-C_{10,25}$	M-A=-8	88941(30) keV	/ for mix	xture gs+m at	247.55	keV						NDS93b**
$*^{123}Cs-C_{10,25}$	M-A=-8	80968(28) keV	/ for mix	xture gs+m at	156.74	keV						NDS93b**
$*^{123}In(\beta^{-})^{123}Sn$	Q ⁻ =4410)(31); and 464	5(72) fr	om ¹²³ In ^m at 3	327.21							NDS93b**
$*^{123}$ Sn $(\beta^{-})^{123}$ Sb	E ⁻ =1260	(10) from ¹²³	Sn ^m at 2	4.6 to 160.33	level							NDS93b**
124 Sp $- 13$ C 37 Cl		4210.47	0.71	4211.3	15	0.5	1	71	70 ¹²⁴ Sn	H30	25	84Ha20
124 Sn-C		-94716	21	-94726.1	1.5	_0.5	Π.	/1	70 511	MA8	1.0	
124 Te 13 C 37 Cl		1754.63	1 26	1755.3	1.5	-0.5	1	25	25 124 Te	H30	2.5	84Ha20
124Ta 54 Fa 35 C1		25501.65	2.56	25502.0	1.0	0.2	1	25	6 124 To	H20	2.5	8411a20
^{124}LC		03786	30	03700 1	2.5	0.1	1 II	'	0 10	GS2	1.0	031 ; A
$1^{-1}C_{10.333}$ $1^{24}V_{20}$ $1^{13}C_{37}C_{11}$		4921 15	1.59	- 93790.1	2.5	-0.1	1	25	25 124 Vo	U32 U20	2.5	84Ho20
124 Y ₂ 54 E ₂ 35 C1		4031.13	0.00	28577 1	2.0	-0.2	1	61	23 AC 57 124 Vo	H20	2.5	84Ha20
124 Y ₂ 133 C ₂		20373.70	12	20377.1	1.9	0.5	I II	01	57 AC	MAG	2.5	02D: 1
$124C_{2}$ $133C_{2}$		-3980	12	- 3988.2	2.0	-0.2	D			MAO	1.0	03D1.1
$Cs = Cs_{.932}$		370	15	577	9	0.5	K D			MAI	1.0	99A1105
124Ca C		201 87606	20	87742	0	1.0	к 2			MA8	1.0	03Gu.A
$-c_{10.333}$		-0/090	30	-8//42	9	-1.5	2			032	1.0	03L1.A
124p. 133C-		-0/093	3U 15	2010	12	-1.0	2			US2	1.0	00 A == 05
¹²⁴ Pa C		3212	15	3212	13	0.0	2 P			MAI CS2	1.0	99Am05
124 La C		-84905	3U 71	-84906	13	0.0	ĸ			G52	1.0	03L1.A
$La - C_{10.333}$		-/5464	/1	-/5430	00	0.5	2	10	11 1220	GS2	1.0	USLI.A *
124 m 35 cl -122 m 37 cl		4/84	2	4/85.0	2.8	0.1	1	12	11 ·· Sn	H15	4.0	02Ba23
¹²⁴ Ie ³² CI – ¹²² Ie ³⁷ CI		2728	2	2/24.09	0.26	-0.5	U	- .	20 124	H16	4.0	03Ba47
124 x 124 m		2458.51	0.89	2456.1	1.6	-1.1	1	54	30 124 Te	H39	2.5	84Ha20
120 cm = 124 cm = 119 cm		3076.00	1.78	3075.1	2.3	-0.2	1	27	17 ***Xe	H39	2.5	84Ha20
$^{120}\text{Cs}^{x} - ^{124}\text{Cs}^{x}_{.194} $ $^{119}\text{Cs}^{x}_{.807}$		310	30	*			U			P22	2.5	82Au01

Item		Input va	lue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{121}Cs^{x} - ^{124}Cs^{x} - ^{120}Cs^{x} - ^{12$		-1360	30	*			U			P22	2.5	82Au01
$^{123}Cs^{x} - ^{124}Cs^{x} + ^{120}Cs^{x} + ^{12$		-1390	30	*			Ũ			P22	2.5	82Au01
¹²⁴ Sn(d. ⁶ Li) ¹²⁰ Cd		-5216	24	-5214	19	0.1	2					79Ja21
124 Sn(³ He ⁷ Be) ¹²⁰ Cd		-5098	30	-5102	19	-0.1	2			MSU		76St11
124 Sn $(^{18}O^{20}Ne)^{122}$ Cd		-1246	43	0102	.,	0.1	2					97Gu32
124 Sn(d ³ He) ¹²³ In		-6610	50	-6606	24	0.1	R			Sac		69Co03
Sh(d, He) In		-6572	66	0000	21	-0.5	R			MSU		71We01
124 Sn(d t) 123 Sn		-2233 4	37	-2230.4	2.6	0.8	1	48	43 123 Sn	SPa		75Be09
123 Sb(n 2) ¹²⁴ Sb		6467.55	0.10	6467.50	0.06	_0.5	_	10	45 50	51 u		73Sh A 7
50(11,7) 50		6467.40	0.10	0407.50	0.00	1.0	_					81Su A Z
		6467.58	0.14			-0.6	_			Bdn		03Fi A
	ave	6467.50	0.06			0.0	1	100	79 ¹²³ Sb	Dun		average
123 Te(n γ) 124 Te	u.e.	9425	2	9423 97	0.17	-0.5	Ū	100	// 50			69Bu05
10(11,7) 10		9423 7	15	, 1201) /	0117	0.2	Ŭ					700r A
		9424.05	0.30			-0.3	_			Ltn		95Ge06 Z
		9423.89	0.20			0.4	_			Bdn		03Fi A
	ave	9423 94	0.17			0.2	1	100	92 ¹²³ Te	Dun		average
$^{124}Cd(\beta^{-})^{124}In$	u.e.	4166	39			0.2	3	100	/2 10	Stu		87Sp09
$^{124}In(\beta^{-})^{124}Sn$		7360	49				2			Stu		87Sp09
$124 \text{In}^{m} (\beta^{-})^{124} \text{Sn}$		7341	51				2			Stu		87Sp09
$^{124}Sb(B^{-})^{124}Te$		2907.7	5	2904-3	15	-0.7	-			Stu		65Hs02
50(p) ie		2907.7	J. 4	2904.5	1.5	-0.7	_					66Ca10
		2904.7	2			-0.2	_					69Na05
	ave	2904.9	17			-0.4	1	83	79 124 Sh			average
$124 I(B^+) 124 T_0$	ave.	2157	1.7	2150.6	1.0	-0.4	2	05	19 30			71Po01
$I(p^{+})$ le		2160.2	4	5159.0	1.9	0.0	2					/1D001 *
$124C_{0}(B^{+})^{124}V_{0}$		5010	2.1	5020	0	-0.5	2 11			IAE		92 0003
$124 CaX(TT)^{124} Ca$		3910	20	3929	9	0.0	2			JAL		AUX/
$124L_{0}(B^{+})^{124}P_{0}$		8030	110	8820	60	0.0	D			IAE		ARW *
$La(p^{-})$ Ba	M 4-	0930 01222(20) 1ra	110 V for 124	Co ^m at Earson	00 462 55 1v	-0.9	ĸ			JAE		96N000
$* CS - C_{10.333}$	M A=-	70244(22) ke	V IOI V for mi	US at Eexc=	100#100	l v						ND5974**
* $La - C_{10,333}$ $124 I (\theta +) 124 T_2$	Original	-70244(32) Ke	v 101 III	$h(\theta^+)$	100#100	KCV						ALIXY
$* 1(p^{-1}) 1e^{124}Ca^{3}$	Driginal	$^{124}C_{o}m(TT)$	462 54	$KD(p^{-1})$								ARW **
* CS(II) CS	Lasmania	1 Cs (11)=	402.34	a in 118 Ca 120	$C_{2} = \frac{122}{C_{2}}$							NDS645**
* CS (11) CS	Isomeric	and assume	u <0.1 a	s in Cs, v	cs, cs							Anw **
¹²⁵ I-C _{10.417}		-95374	30	-95369.8	1.6	0.1	U			GS2	1.0	03Li.A
$^{125}Cs - ^{133}Cs_{.940}$		-1382	14	-1397	8	-1.0	-			MA1	1.0	99Am05
		-1386	14			-0.8	-			MA4	1.0	99Am05
	ave.	-1384	10			-1.3	1	71	71 ¹²⁵ Cs			average
$^{125}Cs-C_{10,417}$		-90280	30	-90272	8	0.3	U			GS2	1.0	03Li.A
$^{125}Ba - ^{133}Cs_{940}$		3356	13	3348	12	-0.6	2			MA5	1.0	00Be42
$^{125}Ba-C_{10,417}$		-85569	30	-85527	12	1.4	R			GS2	1.0	03Li.A
¹²⁵ La-C _{10,417}		-79191	30	-79184	28	0.2	2			GS2	1.0	03Li.A
$^{122}Cs^{x} - ^{125}Cs_{244} ^{121}Cs_{756}^{x}$		715	23	*			U			P32	2.5	86Au02
124 Sn(n, γ) 125 Sn		5733.1	1.5	5733.1	0.6	0.0	2					77Ca09 Z
		5733.1	0.6			0.0	2					81Ba53
124 Sn(d,p) 125 Sn		3509.4	3.6	3508.5	0.6	-0.2	U			SPa		75Be09
124 Te(n, γ) 125 Te		6569.0	1.0	6568,970	0.030	0.0	Ū					71Gr.A
(-,1)		6568.97	0.03			0.0	1	100	83 ¹²⁵ Te			99Ho01
		6569 39	0.19			-2.2	в			Bdn		03Fi.A
124 Te(d n) 125 Te		4344	8	4344 404	0.030	0.1	Ũ			MIT		69Gr24
$^{124}\text{Te}(^{3}\text{He d})^{125}\text{I}$		115.1	3.0	107 38	0.07	_2.6	B			Hei		78Sz04
$124 Xe(n v)^{125} Xe$		7603 3	0.4	7603 3	0.4	_0.1	1	100	99 125 Xa	1101		82K2 A
$125Cd(\beta^{-})^{125}In$		7122	62	1005.5	0.4	0.1	1	100)) At	Stu		87Sp00
$125Cdm(B^{-})125In$		7122	35				4			Ster		87 5 00 *
$125_{1p}(\beta^{-})^{125}c_{-}$		5/10	30				4			Stu		875-00 *
$125 ch(R-) 125 T_{2}$		3410 727 7	30	766 7	2.1	0.2	2			Stu		61Mc20
su(p) le		765 7	3. 3	/00./	2.1	-0.3	2					66Ma40
		105.1	э.			0.5	4					001110-12

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main	flux	Lab	F	Reference
125 I(ε) 125 Te		186.1	0.3	185.77	0.06	-1.1	U						86Bo46
$125C_{0}(R+)125V_{0}$		185.77	0.06	2104	0	16	2						94H104
$Cs(p^{+})$ Ae		3082	20	5104	0	1.0	_						54101a54 75We23
	ave	3077	14			1.1	1	31	29 125	ⁱ Cs			average
$^{125}Ba(\beta^+)^{125}Cs$	uve.	4560	250	4420	14	-0.6	Ū	51	2)	0.5			68Da09
Би(р) Со		4380	50	1.20		0.8	Ŭ				JAE		96Os04
$^{125}La(\beta^+)^{125}Ba$		5950	70	5909	28	-0.6	R				JAE		98Ko66
$*^{125}$ Cd(β^{-}) ¹²⁵ In	E ⁻ =4625	(62) to 2497	.45 level										NDS93a**
$*^{125}Cd^{m}(\beta^{-})^{125}In$	E ⁻ =5009	(109), 4581(126), 453	33(39) to 210	1.50, 264	0.32, 2	641.9	92 lev	els				NDS93a**
$*^{125}$ In(β^{-}) ¹²⁵ Sn	Q ⁻ =5443	(31); and 57	30(43) fr	om 125 In ^m at	360.12								NDS93a**
¹²⁶ Xe_C		-95647	30	_95726	7	_2.6	C				GS2	1.0	03I i A
$^{126}C_{s} - ^{133}C_{s}$		-1011	13	95120	,	2.0	2				MA1	1.0	99Am05
$^{126}Ba = ^{133}Cs = -$		786	15	787	13	0.1	2				MA1	1.0	99Am05
¹²⁶ Ba-Cios		-88745	30	-88750	13	-0.2	Ř				GS2	1.0	03Li A
$^{126}La-C_{10.5}$		-80503	232	-80490	100	0.1	2				GS2	1.0	03Li.A *
$^{126}Ce-C_{10.5}$		-76029	30	00170	100	0.1	2				GS2	1.0	03Li A
126 Te 35 Cl $^{-124}$ Te 37 Cl		3441.28	1.54	3443.89	0.11	1.1	Ū				H43	1.5	90Dv04
$^{123}Cs^{x} - ^{126}Cs_{200} ^{121}Cs^{x}$		-1160	30	*			Ū				P22	2.5	82Au01
$^{124}Cs^{x} - ^{126}Cs_{500} ^{121}Cs^{x}_{410}$		-340	30	*			U				P22	2.5	82Au01
$^{124}Cs^{x} - ^{126}Cs_{402} ^{122}Cs_{508}^{x}$		-570	30	*			Ū				P22	2.5	82Au01
$^{124}Cs^{x} - ^{126}Cs_{228} ^{123}Cs_{672}^{x}$		390	30	*			U				P22	2.5	82Au01
$^{125}Cs - ^{126}Cs _{496} ^{.526} 124 Cs^{x}_{504}$		-1130	30	-1075	26	0.7	U				P22	2.5	82Au01
124 Sn(t,p) 126 Sn		5445	15	5445	11	0.0	2				Ald		69Bj01
		5444	15			0.0	2				Roc		70F105
125 Te(n, γ) 126 Te		9113.7	0.4	9113.69	0.08	0.0	U						77Ko.A
		9113.69	0.08			0.0	1	100	83 126	Ϋ́Te			03Vo03
$^{126}Cd(\beta^{-})^{126}In$		5486	36				4				Stu		87Sp09
126 In(β^{-}) 126 Sn		8207	39				3				Stu		87Sp09
$^{126}In^{m}(\beta^{-})^{126}Sn$		8309	51				3				Stu		87Sp09
126 Sn(β^{-}) 126 Sb		378	30				3						710r04
$^{126}I(\beta^{+})^{126}Te$		2151	5	2154	4	0.6	1	53	50 126	ΡI			59Ha27
$^{126}I(\beta^{-})^{126}Xe$		1258	5				2						55Ko14
$^{126}Cs(\beta^+)^{126}Xe$		4780	20	4824	14	2.2	в				JAE		96Os04
$^{126}La(\beta^+)^{126}Ba$		7700	100	7700	90	0.0	R				JAE		98K066
$^{120}La^{m}(\beta^{+})^{120}Ba$		7910	400				3				JAE		98Ko66
* ¹²⁰ La-C _{10.5}	M-A=-7	4883(28) ke	V for mi	xture gs+m at	210(410)) keV							Nubase **
$C_{10} H_7 - {}^{127}I$		150297	6	150303	4	0.4	1	6	6 ¹²⁷	Ί	M16	2.5	63Da10
/		150305.3	3.4			-0.3	1	20	20 127	Ί	M16	2.5	63Da10
127Cs-133Cs.955		-2287	13	-2289	6	-0.2	_				MA1	1.0	99Am05
.,		-2293.3	7.7			0.5	_				MA8	1.0	03Gu.A
	ave.	-2292	7			0.4	1	82	82 127	Cs			average
$^{127}Cs-C_{10.583}$		-92571	30	-92582	6	-0.4	U				GS2	1.0	03Li.A
¹² /Ba- ¹³³ Cs _{.955}		1389	13	1387	12	-0.1	2				MA5	1.0	00Be42
$^{127}Ba-C_{10.583}$		-88923	39	-88906	12	0.4	R				GS2	1.0	03Li.A *
$^{127}La-C_{10.583}$		-83640	30	-83625	28	0.5	2				GS2	1.0	03Li.A *
12 Ce-C _{10.583}		-77269	62				2				GS2	1.0	03Li.A *
$^{125}Cs - {}^{127}Cs_{.591} {}^{122}Cs_{.410}^{x}$		-1098	18	*			U				P32	2.5	86Au02
120 Te(n, γ) 127 Te		6289	3	6287.8	0.4	-0.4	U		a a 123				72Mu.A
127		6287.8	0.4			0.1	1	100	98 12/	Te	Bdn		03Fi.A
$^{127}I(\gamma,n)^{120}I$		-9145	3	-9143.9	2.7	0.4	1	83	50 126	Ί	MMn		86Ts04
$^{127}Cd(\beta^{-})^{127}In$		8468	63				5				Stu		87Sp09
$(10)^{12} (\beta^{-})^{12} Sn$		6514	31				4				Stu		87Sp09

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{127} \text{In}^m (\beta^-)^{127} \text{Sn}$		6976	64				4			Stu		87Sp09
$^{127}Sn(\beta^{-})^{127}Sh$		3201	24				3			Stu		77Lu06 *
127 Sb(β^{-}) ¹²⁷ Te		1581	5				2			btu		67Ra13
$^{127}\text{Te}(\beta^{-})^{127}\text{I}$		683	10	702	3	19	_					55Da37
10(p) 1		695	10	.02	5	0.7	_					56Kn20
	ave.	689	7			1.8	1	24	22 ¹²⁷ I			average
127 Xe(ϵ) 127 I		663.3	2.2	662.3	2.0	-0.4	_					68Sc14
¹²⁷ I(³ He,t) ¹²⁷ Xe		-676	6	-680.9	2.0	-0.8	_			Pri		89Ch01
127 Xe(ε) 127 I	ave.	662.6	2.1	662.3	2.0	-0.1	1	98	92 ¹²⁷ Xe			average
$^{127}Cs(\beta^+)^{127}Xe$		2115	25	2081	6	-1.4	_					54Ma54
		2076	20			0.2	_					67Sp08
		2089	20			-0.4	-					75We23
	ave.	2090	12			-0.8	1	27	18 ¹²⁷ Cs			average
127 Ba(β^+) 127 Cs		3450	100	3424	13	-0.3	U					76Be11
127 La(β^+) 127 Ba		5010	70	4920	28	-1.3	R			JAE		98K066
* ¹²⁷ Ba-C _{10.583}	M-A=-8	82791(28) ke'	V for mix	kture gs+m at	80.33 k	æV						NDS961**
* ¹²⁷ La-C _{10.583}	M-A=-7	77903(28) ke'	V for mix	kture gs+m at	14.8(1.	2) keV						NDS961**
* ¹²⁷ Ce-C _{10,583}	M-A=-7	71976(29) ke'	V for mix	kture gs+m at	0#1001	keV						Nubase **
$*^{127}$ Sn(β^{-}) ¹²⁷ Sb	Q ⁻ =3206	5(24) from ¹²⁷	Sn ^m at 4	.7								NDS822**
$C_{10} H_0 - \frac{128}{2} Xe$		159068.2	4.2	159069.0	1.5	0.1	U			M16	2.5	63Da10
-108		159069.7	0.7			-0.4	1	77	77 ¹²⁸ Xe	C3	2.5	70Ke05
$^{128}Cs - ^{133}Cs$ occ		-1293	13	-1296	6	-0.2	1	21	21 128Cs	MA1	1.0	99Am05
¹²⁸ C8-C10.007		-92181	30	-92251	6	-2.3	Ū			GS2	1.0	03Li.A
$^{128}Ba - ^{133}Cs$ occ		-720	13	-727	11	-0.5	_			MA1	1.0	99Am05
.962	ave.	-718	12			-0.8	1	83	83 ¹²⁸ Ba			average
¹²⁸ Ba-C _{10.667}		-91663	30	-91682	11	-0.6	R			GS2	1.0	03Li.A
$^{128}La-C_{10,667}$		-84436	69	-84410	60	0.3	2			GS2	1.0	03Li.A *
128 Ce $-C_{10,667}$		-81089	30				2			GS2	1.0	03Li.A
$^{128}Pr-C_{10,667}$		-71209	32				2			GS2	1.0	03Li.A
¹²⁸ Te ³⁵ Cl- ¹²⁶ Te ³⁷ Cl		4106	2	4101.5	2.2	-0.6	1	8	5 ¹²⁸ Te	H16	4.0	63Ba47
		4102.3	1.8			-0.2	1	24	15 ¹²⁸ Te	C3	2.5	70Ke05
¹²⁸ Te- ¹²⁸ Xe		931.26	1.20	931.8	1.6	0.3	1	77	57 ¹²⁸ Te	H43	1.5	90Dy04
$^{126}Cs - ^{128}Cs_{656} ^{122}Cs_{344}^{x}$		-1130	30	*			U			P22	2.5	82Au01
$^{124}Cs^{x} - ^{128}Cs^{222} ^{122}Cs^{x}_{678}$		-1070	30	*			U			P22	2.5	82Au01
$^{126}Cs - ^{128}Cs _{501} ^{.525}Cs _{410}^{.078}$		-350	30	-334	18	0.2	U			P22	2.5	82Au01
$^{124}Cs^{x} - ^{128}Cs_{104} ^{123}Cs_{807}^{x}$		370	50	366	25	0.0	U			P22	2.5	82Au01
$^{125}Cs - ^{128}Cs _{244} ^{124}Cs _{756}^{x}$		-1440	30	-1354	23	1.1	U			P22	2.5	82Au01
$^{126}Cs - ^{128}Cs_{402} ^{124}Cs_{508}^{x}$		-610	30	-562	25	0.6	U			P22	2.5	82Au01
$^{127}Cs - ^{128}Cs_{661} ^{125}Cs_{339}$		-965	16	-934	7	0.8	U			P32	2.5	86Au02
$^{127}Cs - ^{128}Cs_{496} ^{126}Cs_{504}$		-1160	30	-1108	14	0.7	U			P22	2.5	82Au01
$^{127}I(n,\gamma)^{128}I$		6826.12	0.05	6826.13	0.05	0.2	_			MMn		90Is03 Z
		6826.22	0.14			-0.6	_			Bdn		03Fi.A
	ave.	6826.13	0.05			0.0	1	100	88 ¹²⁸ I			average
128 Cd(β^{-}) 128 In		7070	290				5			Stu		87Sp09
$^{128}In(\dot{\beta}^{-})^{128}Sn$		8992	45	8980	40	-0.4	4			Stu		87Sp09
N /		8910	90			0.7	4			Gsn		90St13
128 In ⁿ $(\beta^{-})^{128}$ Sn		9306	43	9290	40	-0.3	4			Stu		87Sp09
		9230	90			0.7	4			Gsn		90St13
128 Sn $(\beta^{-})^{128}$ Sb ^m		1265	30	1264	13	0.0	3					76Nu01
-		1290	40			-0.7	3			Stu		77Lu06
		1260	15			0.3	3			Gsn		90St13
128Sb ^m (IT)128Sb		10	7				3					AHW *
$^{128}\text{Sb}^{m}(\beta^{-})^{128}\text{Te}$		4391	40	4394	24	0.1	2			Stu		77Lu06
		4395	30			0.0	2			Gsn		90St13

Item		Input va	lue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
128 I(β^{-}) 128 Xe 128 Cs(β^{+}) 128 Xe		2116 3928	10 6	2122 3929	4 5	0.6 0.1	1	14 81	12 ¹²⁸ I 79 ¹²⁸ Cs			56Be18 76Cr.B
128 La(β^+) 128 Ba		6650	400	6770	60	0.3	U					66Li04
		6820	100			-0.5	R			JAE		98Ko66
$*^{128}$ La-C _{10.667} $*^{128}$ Sb ^m (IT) ¹²⁸ Sb	M–A=–' From 3.6	78601(28) ke 5% IT for M ₃	V for mix transitior	xture gs+m at 1	100#100	keV						Nubase ** NDS832**
¹²⁹ Sn-C _{10.75}		-86521	31				2			MA8	1.0	01Si.A *
129 Xe $-C_2$ 35 Cl ₃		-1777.98	0.68	-1778.6	0.8	-0.6	1	60	59 ¹²⁹ Xe	H47	1.5	94Hy01
$^{129}Cs - ^{133}Cs_{.970}$		-2216	14	-2224	5	-0.6	1	12	12 ¹²⁹ Cs	MA1	1.0	99Am05
$^{129}La - C_{10.75}$		-87300	30	-87307	22	-0.2	2			GS2	1.0	03L1.A
129 Pr C		-81898	30				2			GS2 GS2	1.0	03L1.A
128 Te(n γ) ¹²⁹ Te		6085	32	6082.41	0.08	-0.9	1 U			032	1.0	72Mu A
10(11,7)		6082.42	0.09	0002.11	0.00	-0.1	_					03Wi02
		6082.36	0.19			0.3	_			Bdn		03Fi.A
	ave.	6082.41	0.08			0.0	1	100	92 ¹²⁹ Te			average
129 Nd(ϵ p) 128 Ce		5300	300	6010#	200#	2.4	D					78Bo.A *
$^{129}In(\beta^{-})^{129}Sn$		7655	32				3			Stu		87Sp09
$129 \text{ In}^{m} (\beta^{-})^{129} \text{ Sn}$		8033	66 120	4020	10	0.2	3			Stu		87Sp09
$129 \text{ Sh}(\beta^{-})^{129} \text{ Te}$		3990	30	4030	40 21	0.3	2			Stu		700h05
$^{129}\text{Te}(\beta^{-})^{129}\text{I}$		1485	10	1500	3	1.0	ū					64De10 *
10(p) 1		1503	4	1500	5	-0.7	1	60	52 ¹²⁹ I			68Go34 *
129 I(β^{-}) 129 Xe		190	5	194	3	0.8	1	40	39 ¹²⁹ I			54De17
$^{129}Cs(\beta^+)^{129}Xe$		1197	5	1197	5	0.0	1	83	83 ¹²⁹ Cs			76Ma35
129 Ba(β^+) 129 Cs		2446	15	2436	11	-0.7	1	53	49 ¹²⁹ Ba			61Ar05 *
129 La(β^+) 129 Ba		3720	50	3738	24	0.4	R					79Br05
$1290 - (\theta + 129)$		3740	40	5040	20	0.0	R			JAE		98K066
¹²⁹ Sp C	M - A - S	3000 80576(27) ka	200 V for mix	0040 zture cc∔m at	30 35.2 keV	-2.8	в			IKS		93Al03
$*^{129}$ Nd(sp) ¹²⁸ Ce	Systemat	ical trends su	ggest 129	Nd 710 less b	ound	·						CTh **
$*^{129}\text{Te}(\beta^{-})^{129}\text{I}$	$E^{-}=1452$	2(10) to 27.79	level: an	d 1595(10) fr	rom ¹²⁹ Te	e^m at 10	5.50					NDS837**
$*^{129}$ Te $(\beta^{-})^{129}$ I	$E^{-}=1476$	5(4) to 27.79 l	evel; and	1 1607(7) from	n ¹²⁹ Te ^m	at 105.5	50					NDS837**
$*^{129}$ Ba(β^+) 129 Cs	$E^{+} = 142$	25(15); and 12	243(35), 9	975(60)								61Ar05 **
*	from	¹²⁹ Ba ^m at 8.4	2 to 188.	.93, 426.48 le	vels							NDS837**
¹³⁰ Sn-C _{10.833}		-86028	19	-86033	11	-0.2	_			MA8	1.0	01Si.A
		-86031	15			-0.1	-	05	or 130 c	MA8	1.0	01S1.A *
¹³ CC NH ¹³⁰ Vo	ave.	-86030	12	157606 1	0.8	-0.2	1	95	95 ¹³⁰ Sn 21 ¹³⁰ Vo	C2	25	average
$^{130}Xe = C ^{13}C ^{35}C1$		-6407.63	1.21	-6404.9	0.8	1.5	1	19	10 130 Xe	С3 H47	2.5	94Hv01
$^{130}Xe^{-133}Cs$		-4114	13	-4118.5	0.8	-0.3	Ū	17	1) //	MA6	1.0	03Di.1
$^{130}Cs - ^{133}Cs_{077}$		-916	13	-918	9	-0.2	1	48	48 130Cs	MA1	1.0	99Am05
$^{130}Cs-C_{10,833}$		-93181	60	-93291	9	-1.8	U			GS2	1.0	03Li.A *
¹³⁰ Ba- ⁸⁵ Rb _{1.529}		41195.8	3.4	41194.3	3.0	-0.4	1	78	78 ¹³⁰ Ba	MA8	1.0	03Gu.A
130 La-C _{10.833}		-87635	30	-87631	28	0.1	2			GS2	1.0	03Li.A
130 Ce $-C_{10.833}$		-85264	30				2			GS2	1.0	03Li.A
$^{130}Pr-C_{10.833}$		-76410	69 120	22000	20	0.0	2			GS2	1.0	03Li.A *
¹³⁰ Nd C		52902 71404	130	32800	50	-0.8	0			MA5 GS2	1.0	00Be42 *
130 Te 35 Cl 128 Te 37 Cl		-/1494 4711 7	1.8	4711.4	1.1	_0 1	2 11			C3	1.0	70Ke05
		4711.7	0.72	+/11.4	1.1	-0.1	1	96	80 ⁻¹³⁰ Te	H43	2.5	90Dv04
¹³⁰ Te- ¹³⁰ Xe		2712.98	3.02	2716.4	2.1	0.8	1	22	20 ¹³⁰ Te	H43	1.5	90Dy04
$^{129}Cs - ^{130}Cs_{.794}^{x}$ $^{125}Cs_{.206}$		-1270	40	-1201	17	0.7	U			P22	2.5	82Au01

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹³⁰ Ba(p,t) ¹²⁸ Ba ¹³⁰ Te(d, ³ He) ¹²⁹ Sb		-9482 -4550	24 30	-9521 -4519	10 21	$-1.6 \\ 1.0$	1 R	19	17 ¹²⁸ Ba	Win Oak		74De31 * 68Au04
$^{129}I(n,\gamma)^{130}I$		6500.33	0.04	6500.33	0.04	0.0	1	100	90 ¹³⁰ I	ILn		89Sa11 Z
129 Xe(n, γ) 150 Xe		9255.3 9256 1	1.0	9255.64	0.29	0.3	U					71Gr28 Z
		9255.57	0.30			-0.0	1	96	57 ¹³⁰ Xe	Bdn		03Fi.A
129Xe(3He,d)130Cs		5	20	-1	8	-0.3	1	17	17 130Cs	ChR		81Ha08
¹³⁰ Ba(d,t) ¹²⁹ Ba		-4001	15	-4011	11	-0.7	1	53	51 ¹²⁹ Ba	Tal		74Gr22
$^{130}Eu(p)^{129}Sm$		1028.0	15.0				3			Arp		02Ma61
$130 \text{Cd}(\beta^{-})^{130} \text{In}$		8320	280				3			Bwg Stu		02D1.A 87Sp00
$\operatorname{III}(\mathcal{P})$ SI		9880	90	10250	40	4.1	B			Gsn		90St13
130 In ^{<i>m</i>} (β^{-}) ¹³⁰ Sn		10300	37				2			Stu		87Sp09
130 In ^{<i>n</i>} (β^{-}) ¹³⁰ Sn		10650	49				2			Stu		87Sp09
130 a (0-)130 at		9880	200	10650	50	3.9	В			Gsn		90St13
$\sin(\beta)$ $\sin(\beta)$		2195	35	2153	14	-1.2	-			Stu		77Lu06 *
		2030	18			0.2	_			Gsn		90St13 *
	ave.	2148	15			0.3	1	91	86 ¹³⁰ Sb			average
130 Sb(β^{-}) 130 Te		5046	100	5060	17	0.1	U					71Ki15 *
		5015	100			0.4	U			Stu		77Lu06 *
		4990 5015	70			1.0	1	15	14 130 ch	Gsn		90St13 *
$^{130}I(\beta^{-})^{130}Xe$		2983	10	2949	3	-3.4	1	10	10 ¹³⁰ I	Siu		65Da01
$^{130}Cs(\beta^+)^{130}Xe$		2992	20	2981	8	-0.5	_	10	10 1			52Sm41
		2972	20			0.5	_					75We23
120 120	ave.	2982	14			-0.1	1	35	35 ¹³⁰ Cs			average
$^{130}Cs^{x}(IT)^{130}Cs$		27	15	5 (2)	26	0.4	2			TAE		AHW *
$^{130}La(p^+)^{130}Ba$	Original	2000 830/1(15) f	/U or the 10/	5034 6.88 isomer	26	-0.4	ĸ			JAE		98K000
* SII-C _{10.833} * ¹³⁰ Cs-C _{10.833}	M-A=-8	6716(30) ke ³	V for mix	ture gs+m at	163.25	keV						Ens01 **
$*^{130}Pr-C_{10,833}$	M-A=-7	1125(29) ke	V for mix	ture gs+m at	100#10	0 keV						Nubase **
* ¹³⁰ Nd ¹⁹ F- ¹³³ Cs _{1.120}	Tentative	result, low st	tatistics									00Be42 **
* ¹³⁰ Ba(p,t) ¹²⁸ Ba	Not resolv	ed peak. Or	iginal unc	ertainty 16								GAu **
$*^{130}$ Sn(β^{-}) ¹³⁰ Sb	$E^{-}=1490($	(90), 1150(3)	5) to 702.	32, 1047.40 l	evels							NDS017**
****Sn(p)***Sb	E =1415(and a	30), 1112(18 3sigma discu	8) to 702 repart 395	52, 1047.401 55(50) from ¹	³⁰ Sn ^m a	t 1946 9	88					NDS01/** 90St13 **
$*^{130}$ Sb $(\beta^{-})^{130}$ Te	O=5020(1	00) from 130	Sb ^{m} at 4.3	8	511 a	1 1 7 40.0	50					GAu **
$*^{130}$ Sb $(\beta^{-})^{130}$ Te	Also 4960	(25) from 13	0 Sb ^m at 4	.8, discrepant	t, not us	ed						90St13 **
$*^{130}$ Sb $(\beta^{-})^{130}$ Te	Derived fi	om given av	erage=50	08(38) with ⁹	$^{00}St_{13} = 4$	990(70)					GAu **
$*^{130}$ Cs ^x (IT) ¹³⁰ Cs	Combinin	g isomer rati	o of ref.									82Au01 **
*	with ¹	⁵⁶ Cs ^m (IT)=1	63.25									NDS89c**
¹³¹ Sn-C _{10.017}		-82966	34	-83000	23	-1.0	1	45	45 ¹³¹ Sn	MA8	1.0	01Si.A *
$C_{10}H_{11} - {}^{131}Xe$		180991.6	3.0	180993.0	1.0	0.2	Ū		10 51	M16	2.5	63Da10
131 Xe $-C_2$ 35 Cl ₂ 37 Cl		1472.65	0.80	1474.4	1.0	1.5	1	73	73 ¹³¹ Xe	H47	1.5	94Hy01
$^{131}Cs - ^{133}Cs_{.985}$		-1419	14	-1406	5	0.9	1	15	15 ¹³¹ Cs	MA1	1.0	99Am05
$^{131}Ba - ^{133}Cs_{.985}$		72	14	71	3	-0.1	1	5	5 ¹³¹ Ba	MA5	1.0	00Be42
$^{131}Ba - C_{10.917}$		-92955 -89930	00 30	-93059	3	-1.0	2			GS2 GS2	1.0	03Li.A *
$^{131}Ce-C_{10.917}$		-85578	36				2			GS2	1.0	03Li.A *
$^{131}Pr-C_{10.917}$		-79741	56				2			GS2	1.0	03Li.A *
131 Nd $-C_{10.917}$		-72753	30				2			GS2	1.0	03Li.A
$^{129}Cs - ^{131}Cs_{.328} ^{128}Cs_{.672}$		-1030	30	-871	6	2.1	В			P22	2.5	82Au01
$100 \text{ Ie}(n,\gamma)^{101} \text{ Ie}$		5929.7 5020 5	0.5	5929.38	0.06	-0.6	U					7/K0.A 80Ho20 7
		5929.38	0.4			0.0	1	100	100 ¹³¹ Te			03To08
		5930.16	0.19			-4.1	U			Bdn		03Fi.A

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
130 Ba(n, γ) 131 Ba		7493.5	0.3	7493.50	0.30	0.0	1	100	89 ¹³¹ Ba			82Ka.A
131 Nd(ϵ p) 130 Ce		4600	400	4360	40	-0.6	U					78Bo.A
¹³¹ Eu(p) ¹³⁰ Sm		957.4	8.	939	7	-2.3	0					98Da03
		939.2	7.				3					99So17
131 In(β^{-}) 131 Sn		9184	33	9177	18	-0.2	2			Stu		88Fo05
		9165	30			0.4	0			Stu		95Me16
131x m(0-)131c		9174	22	0520	10	0.1	2			Stu		99Fo01
$\ln^{m}(\beta)$) ¹⁵¹ Sn		9547	46	9530	40	-0.4	2			Stu		88F005 05Mo16
$131 \ln^{n}(\beta^{-}) 131 \ln^{n}(\beta^{-})$		9460 13450	163	13270	70	0.7	2			Stu		95Me10
$\operatorname{III}(p)$ SII		13230	80	15270	70	0.5	2			Stu		95Me16
131 Sn $(\beta^{-})^{131}$ Sh		4632	20	4674	11	2.1	_			Stu		84Fo19 *
51(p) 50		4688	14	1071		-1.0	_			Stu		99Fo01
	ave.	4670	11			0.4	1	93	55 ¹³¹ Sn			average
131 Sb $(\beta^{-})^{131}$ Te		3190	70	3221	21	0.4	U			Stu		77Lu06
4		3200	26			0.8	1	63	63 ¹³¹ Sb	Stu		99Fo01
131 Te(β^{-}) 131 I		2275	10	2234.9	2.2	-4.0	В					61Be20 *
		2278	15			-2.9	В					65De22 *
131 I(β^{-}) 131 Xe		971.0	0.7	970.8	0.6	-0.2	2					51Ve05
		970.4	1.2			0.4	2					52Ro16
131 Cs(ε) 131 Xe		355	10	355	5	0.0	-					54Sa22
		355	10			0.0	-					56Ho66
		360	15			-0.3	-	<i>c</i> 1	co 131 c			57M163
$ 3 \mathbf{p}_{-}(\theta^{+}) 3 \mathbf{C}_{-}$	ave.	356	6	1276	5	-0.1	1	61	60 ¹⁵¹ Cs			average
Ba(p ⁺) ^{ba} Cs		1370	10	1370	5	0.4	-					78Ve04
	9100	1371	12			0.4	1	31	25 131 Ce			76 Va04
131 La(β^+) 131 Ba	ave.	2960	100	2915	28	-0.5	ц П	51	25 CS			60Cr01
$^{131}Ce(\beta^+)^{131}La$		4020	400	4050	40	0.5	U					66No05
$^{131}\text{Pr}(\beta^+)^{131}\text{Ce}$		5250	150	5440	60	1.2	Ŭ			IRS		93A103
131 Nd(β^+) 131 Pr		6560	150	6510	60	-0.3	Ū			IRS		93A103
* ¹³¹ Sn-C _{10.017}	M-A=-7	7242(15) ke	V for mix	ture gs+m at	80#301	keV						Nubase **
$*^{131}Ba - C_{10.917}$	M-A=-8	6494(30) ke	V for mix	ture gs+m at	187.14	keV						NDS948**
$*^{131}$ Ce $-C_{10,917}$	M-A=-7	9685(28) ke	V for mix	ture gs+m at	61.8 ke	V						Nubase **
$*^{131}Pr-C_{10.917}$	M-A=-7	4202(28) ke	V for mix	ture gs+m at	152.4 k	eV						Nubase **
$*^{131}$ Sn(β^{-1}) ¹³¹ Sb	Q ⁻ =4638	(20); and 47	96(80) fro	om 131 Sn ^m at	241.8							NDS948**
$*^{131}$ Te $(\beta^{-})^{131}$ I	Q ⁻ =2457	(10) from ¹³	Te ^{m} at 18	32.25								NDS948**
$*^{131}$ Te(β^{-}) ¹³¹ I	Q ⁻ =2460	(15) from ¹³	Te ^m at 18	82.25								NDS948**
¹³² Sn-Cu		-82171	18	-82184	15	-0.7	1	66	66 ¹³² Sn	MA8	1.0	01Si.A
$C_{10}H_{12} - {}^{132}Xe$		189740.8	3.3	189746.9	1.0	0.7	Ū			M16	2.5	63Da10
132 Xe $-$ C 13 C 35 Cl $_{2}$ 37 Cl		-2803.73	1.40	-2809.3	1.0	-2.7	1	24	24 132 Xe	H47	1.5	94Hy01
$^{132}La-C_{11}$		-89874	67	-89900	40	-0.4	2			GS2	1.0	03Li.A *
$^{132}Ce-C_{11}^{11}$		-88542	30	-88540	22	0.1	1	54	54 132Ce	GS2	1.0	03Li.A
132 Ce O $-^{142}$ Sm _{1.042}		-5258	32	-5261	22	-0.1	1	48	46 132Ce	MA7	1.0	01Bo59 *
$^{132}Pr-C_{11}$		-80745	61				2			GS2	1.0	03Li.A *
¹³² Nd- ¹³³ Cs _{.992}		17147	52	17113	26	-0.7	R			MA5	1.0	00Be42
$^{132}Nd-C_{11}$		-76690	30	-76679	26	0.4	2			GS2	1.0	03Li.A
$^{152}Ba - ^{130}Ba$		-1241	4	-1260	3	-1.9	1	10	9 ¹³⁰ Ba	M17	2.5	66Be10
$^{130}Cs^{x} - ^{132}Cs_{.492} $ $^{128}Cs_{.508}$		-210	40	-340	17	-1.3	U			P22	2.5	82Au01
151 Xe(n, γ) 152 Xe		8936.3	1.0	8936.59	0.22	0.3	U					71Ge05
		8935	2			0.8	U					71Gr28
1327 (0-)132~		8936.65	0.22			-0.3	1	99	73 ¹⁵² Xe	Bdn		03Fi.A
$^{132}\ln(\beta^{-})^{132}Sn$		13600	400	14140	60	1.3	U			C		86Bj01
$132 g_{\mu}(\rho - 132 g_{\mu})$		14135	60 10	2110	0	0.4	2	00	54 132.01	Stu		95Me16
Sn(p)Sb		3115	10	3119	9	0.4	1	88	54 ~~Sb	Stu		99F0U1

Item		Input val	lue	Adjusted v	alue	v_i	Dg	Sig	Main flux	Lab	F	Reference
132 Sb(β^{-}) 132 Te		5491	20	5509	14	0.9	1	52	46 ¹³² Sb	Stu		99Fo01
$^{132}\text{Te}(\beta^{-})^{132}\text{I}$		493	4	518	4	6.2	В					65Iv01
(517	4			0.2	1	98	94 132 Te	Stu		99Fo01
$^{132}I(\beta^{-})^{132}Xe$		3596	15	3581	6	-1.0	_					61De17
4		3558	15			1.5	_					65Jo13
		3580	7			0.1	_			Stu		99Fo01
	ave.	3579	6			0.3	1	96	96 ¹³² I			average
$^{132}I^{m}(\beta^{-})^{132}Xe$		3685	10				2					74Di03
$^{132}Cs(\beta^+)^{132}Xe$		2127.7	6.	2124.6	2.1	-0.5	1	12	10 132Cs			87De33 *
132 La(β^+) 132 Ba		4820	100	4690	40	-1.3	U					60Wa03
100		4680	50			0.3	R					67Fr02
$*^{132}La - C_{11}$	M-A=-83	623(30) keV i	for mixture	e gs+m at 188.1	8 keV							Ens94 **
$*^{132}$ Ce O $-^{142}$ Sm _{1.042}	Original er	ror (22 keV) i	ncreased b	y 23 for BaF co	ontamina	tion in t	rap					GAu **
$*^{132}Pr-C_{11}$	M-A=-75	213(28) keV i	for mixture	e gs+m at 0#100) keV							Nubase **
$*^{132}Cs(\beta^+)^{132}Xe$	p' = 0.004	2(0.0001) give	es $E' = 43$	8(6) recalculate	ed							AHW **
*	to 667.	67 level										NDS922**
¹³³ Cs- ⁸⁵ Rb _{1,565}		43500	13	43501.00	0.03	0.1	U			MA5	1.0	00Be42
1.505		43499.3	1.6			1.1	U			MA8	1.0	02Ke.A
		43500.9	6.7			0.0	U			MA8	1.0	02Ke.A
¹³³ Cs-C _{11.083}		-94548.41	0.41	-94548.067	0.024	0.8	U			ST2	1.0	99Ca46
¹³³ La-C _{11.083}		-91810	120	-91780	30	0.2	U			GS1	1.0	00Ra23
122		-91782	30				2			GS2	1.0	03Li.A
$^{133}Ce-C_{11.083}$		-88471	32	-88485	18	-0.4	2			GS2	1.0	03Li.A *
135 Ce O $-^{142}$ Sm _{1.049}		-4618	21	-4613	19	0.3	R			MA7	1.0	01Bo59 *
$^{133}Pr-C_{11.083}$		-83663	30	-83669	13	-0.2	R			GS2	1.0	03L1.A
¹³³ Nd-C _{11.083}		-7/652	50				2			GS2	1.0	03L1.A *
$133 Pm - C_{11.083}$		-/0218	54	10970	12	0.1	2			GS2	1.0	03L1.A *
$^{133}C_{0}$ C O		108//	15	108/9	13	0.1	2	02	02 133 Ca	MAS	1.0	00Be42
$^{133}C_{0}$ C H		-04055.780	0.020	-04055.785	0.024	0.1	1	17	$17 \frac{133}{17}$	MI2	1.0	99DI47
$^{133}C_{8}(\gamma n)^{132}C_{8}$	-	8086	2	8086 3	1.0	-0.1	1	00	17 Cs $00^{-132}Cs$	MMn	1.0	99D147 85Tc02
$^{132}B_{9}(n x)^{133}B_{9}$		7189.91	0.36	7189.9	0.4	-0.2	1	100	90 132 Ba	MMn		90Is07 7
133 Sn(β^{-}) 133 Sh		7830	70	7990	25	23	B	100	<i>))</i> Da	Stu		83B116
51(p) 50		7990	25	1770	25	2.5	6			Stu		95Me16
133 Sb(β^{-}) 133 Te		4002	7				5			Stu		99Fo01
$^{133}\text{Te}(\beta^{-})^{133}\text{I}$		2960	100	2942	24	-0.2	U					68Mc09
4 /		2876	100			0.7	U					68Pa03 *
		2942	24				4			Stu		99Fo01
133 I(β^{-}) 133 Xe		1800	50	1757	4	-0.9	U					59Ho97
		1760	30			-0.1	U					66Ei01
100 - 100		1757	4				3			Stu		99Fo01
133 Xe(β^{-}) 133 Cs		428.0	4.	427.4	2.4	-0.2	2					52Be55
		427.0	3.			0.1	2			G .		61Er04
133p (1)133c		424	11	517 S	1.0	0.3	U	00	00 133D	Stu		99Fo01
$133 \text{Ba}(\mathcal{E})^{133} \text{Cs}$		517.3	1.0	517.5	1.0	0.2	I	99	99 ¹³⁵ Ba			6/Sc10 *
$^{133}C_{2}$	M A _ 92	2230 202(28) heV	200 for mintur	2059	28 19V	-0.9	U					50INa09
$*^{133}C_{0}O_{11.083}$	M - A = -62	(16) M = 871	50(16) for	gs+III at 57.11	xev x 27 1 1/2	W						GAU www
* CCO- SIII _{1.049} * ¹³³ Nd-C	M_A- 77	(10) W = -0/1	for mixture	$m \pi t = g + m \sigma t$	a 57.1 Kt 7 keV	v						NDS057
* ¹³³ Pm-C	M = A = -65	342(33) keV	for mixture	$s_{55+m} = 127.9$	(1 0) keV	1						Nubase **
$*^{133}\text{Te}(\beta^{-})^{133}\text{I}$	$0^{-}=32100$	100 from $133^{\prime\prime}$	Te ^{m} at 334	26	(1.0) KC							NDS86c**
*	reporte	d as belongin	g to ground	1-state, reintern	reted							AHW **
* ¹³³ Ba(ε) ¹³³ Cs	From L/K=	-0.371(0.007)	to 437.01	level; recalcula	ted Q							AHW **
				,								

Item		Input va	lue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Referenc	e
¹³⁴ Xe-C _{11,167}		-94634.4	5.4	-94605.5	0.9	2.1	В			ACC	2.5	90Me08	_
¹³⁴ Xe-C ¹³ C ³⁵ Cl ³⁷ Cl ₂		1381.76	0.60				2			H47	1.5	94Hy01	
¹³⁴ La-C _{11,167}		-91456	34	-91486	21	-0.9	2			GS2	1.0	03Li.A	
134 Ce $-C_{11,167}$		-91190	130	-91075	22	0.9	U			GS1	1.0	00Ra23	
11.107		-91056	30			-0.6	2			GS2	1.0	03Li.A	
¹³⁴ Ce O- ¹⁴² Sm _{1.056}		-6631	32	-6609	23	0.7	R			MA7	1.0	01Bo59	*
$^{134}Pr-C_{11,167}$		-84249	61	-84290	40	-0.6	2			GS2	1.0	03Li.A	*
¹³⁴ Nd-C _{11.167}		-81234	30	-81210	13	0.8	R			GS2	1.0	03Li.A	
¹³⁴ Pm-C _{11.167}		-71647	62				2			GS2	1.0	03Li.A	*
134 Pr $-^{133}$ Cs $_{1.008}$		11029	56	11020	40	-0.2	R			MA5	1.0	00Be42	*
$^{134}Nd - ^{133}Cs_{1.008}$		14100	14	14095	13	-0.4	2			MA5	1.0	00Be42	
$^{131}Cs - ^{134}Cs_{.244} ^{130}Cs_{.756}^{x}$		-1313	50	-1182	17	1.0	U			P22	2.5	82Au01	
$^{133}Cs(n,\gamma)^{134}Cs$		6891.540	0.017	6891.540	0.014	0.0	-			MMn		84Ke11	Ζ
		6891.540	0.027			0.0	_			ILn		87Bo24	Ζ
		6891.39	0.14			1.1	U	100	100 134 0	Bdn		03F1.A	
134 a (0-)134 at	ave.	6891.540	0.014			0.0	1	100	100 ⁻¹⁵⁴ Cs	<i>a</i> .		average	
$134 \text{ Sn}(\beta)$) 134 Sb		7370	90	0200	10		6			Stu		95Me16	
$154Sb(\beta)$)154Te		8400	300	8390	40	0.0	U			Stu		77Lu06	
		8420	120			-0.2	5			Bwg		8/GI.A	
$134 \text{ shm} (\theta - 1) 134 \text{ T}_{0}$		8390	45	8470	100	0.1	5			Stu		95Me16	
Sb (p) le		8510	110	8470	100	0.8	5			Bwa		77Lu00 87Gr A	
$134 T_{e}(B^{-}) 134 T_{e}$		1560	00	1513	7	-0.4	П			Stu		77L µ06	
Ie(p) I		1550	30	1515	/	-0.3	U			Stu		95Me16	
		1513	7			1.2	4			Stu		99Fo01	
$^{134}I(B^{-})^{134}Xe$		4170	60	4052	8	-2.0	Ū.			Stu		611008	
i(p) ne		4175	15	1052	0	-8.2	В			Stu		95Me16	
		4052	8				3			Stu		99Fo01	
$^{134}Cs(\beta^{-})^{134}Ba$		2058.6	0.4	2058.7	0.4	0.2	1	99	99 ¹³⁴ Ba			68Hs01	
$^{134}La(\beta^+)^{134}Ba$		3772	50	3731	20	-0.8	R					65Bi12	
		3692	30			1.3	R					73A120	
134 Pr(β^+) 134 Ce		6190	90	6320	40	1.5	R			Dbn		95Ve08	*
134 Nd(β^+) 134 Pr		2770	150	2870	40	0.7	U					77Ko.B	
134 Pm(β^+) 134 Nd		9170	200	8910	60	-1.3	С			Dbn		95Ve08	*
* ¹³⁴ Ce O- ¹⁴² Sm _{1.056}	Original	error (22 keV) increase	ed by 23 for Ba	F contam	ination	in t	rap				GAu	**
* ¹³⁴ Pr-C _{11,167}	M-A=-	-78477(28) ke	V for mix	ture gs+m at 0	#100 keV							Nubase :	**
* ¹³⁴ Pm-C _{11.167}	M - A = -	-66739(30) ke	V for mix	ture gs+m at 0	#100 keV							Nubase	**
* ¹³⁴ Pr- ¹³³ Cs _{1.008}	Most cer	rtainly gs. Miz	cture with	isomer not co	mpletely o	exclude	ed					00Be42 =	**
$*^{134}$ Pr $-^{133}$ Cs $_{1.008}$	$D_M 1102$	29(16) uu, M-	-A=-7850	03(15) keV for	mixture g	gs+m a	t 0#1	00 ke	eV			Nubase	**
$*^{134}$ Pr(β^+) 134 Ce	$E^+ = 412$	20(90) to 1048	3.65 4 ⁺ le	vel								NDS943	**
$*^{134}$ Pm(β^+) 134 Nd	E ⁺ =73	60(200) to 788	3.97 4 ⁺ le	vel								NDS934	**
¹³⁵ Ce_C		-90779	30	-90849	12	_23	П			G\$2	1.0	03I i A	¥
$^{135}Pr-C$		-86897	30	- 86888	12	-2.5	P			GS2 GS2	1.0		不
¹³⁵ Nd-C		-81800	130	-81819	21	_0.1	0			GS1	1.0	00Ra23	
14u C _{11.25}		-81811	36	01017	21	-0.2	R			GS2	1.0	03L i A	*
¹³⁵ Pm-C		-75124	63			0.2	2			GS2	1.0	03L i A	*
135 Sm-C		-67480	166				2			GS2	1.0	03Li A	*
$^{135}Cs - ^{133}Cs$		1957	14	1943 3	11	-10	Ū			MA1	1.0	99Am05	
$^{135}Pr^{-133}Cs_{1.015}$		9080	14	9078	13	-0.1	2			MA5	1.0	00Be42	
¹³⁵ Nd- ¹³³ Cs		14144	25	14147	21	0.1	$\overline{2}$			MA5	1.0	00Be42	*
$^{134}Cs(n,\gamma)^{135}Cs$		8762	1	8762.0	1.0	0.0	1	100	100 ⁻¹³⁵ Cs	ILn		92UI.A	
$^{134}Ba(n,\gamma)^{135}Ba$		6972.17	0.18	6971.96	0.10	-1.2	_			MMn		90Is07	Z
· · · · ·		6971.84	0.17			0.7	_			Ltn		93Bo01	Ζ
		6973.24	0.22			-5.8	В			BNn		93Ch21	
		6971.87	0.18			0.5	-			Bdn		03Fi.A	
	ave.	6971.96	0.10			0.1	1	100	99 ¹³⁵ Ba			average	

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
135 Sb(β^{-}) 135 Te		8120	50				3			Stu		89Ho08
$^{135}\text{Te}(\beta^{-})^{135}\text{I}$		5970	200	5960	90	0.0	2					85Sa15
125		5960	100			0.0	2			Bwg		87Gr.A
$^{155}I(\beta^{-})^{155}Xe$		2780	80	2627	6	-1.9	U			C to a		70Ma19
		2590	50			0.7	1	06	04 1351	Stu		/6Lu04 00Ec01
$^{135}Xe(B^{-})^{135}Cs$		1155	10	1165	4	1.0	-	90	94 1	Stu		52Be55
M(p) Cs		1167	5	1105	-	-0.4	_			Stu		99Fo01
	ave.	1165	4			0.0	1	98	98 ¹³⁵ Xe			average
135 La(β^+) 135 Ba		1200	10				2					71Ba18
135 Ce(β^+) 135 La		2027	5	2026	5	-0.3	3					76Ga.A
125 - 125		2016	13			0.7	3					81Sa09
135 Pr(β^+) 135 Ce		3720	150	3689	16	-0.2	U			-		54Ha68
$^{135}Pm''(\beta^{+})^{135}Nd$	MAQ	6040	150 for 135 Cu	6290#	120#	1.6	U			Dbn		95Ve08 *
* ¹³⁵ Nd C	$M = A = -8^2$ M = A = -76	+114(28) KeV 5174(28) keV	for mixt	e^{m} at Eexc=44	5.8 KeV							NDS085**
* ¹³⁵ Pm-C	M = A = -60	3174(20) KeV	for mixt	ure gs+m at 0. ure gs⊥m at 50)#100 keV	J						Nubase **
$*^{135}$ Sm-Cu ar	M-A=-62	2857(38) keV	for mixt	ure gs+m at 0#	#300 keV	•						Nubase **
* ¹³⁵ Nd- ¹³³ Cs _{1,015}	$D_{M}=14179$	$\frac{1}{2}(14)$ uu for g	s+m mixt	ture at 65.0 ke	V; M-A	=-76185	5(13)	keV				NDS985**
$*^{135}$ Pm ^m (β^+) ¹³⁵ Nd	E^{+} =4920	(150) to mixt	ure groun	nd-state and 19	98.5 level		. ,					95Ve08 **
$C_{10} H_{1c} - {}^{136}Xe$		217982.	3.9	217982	8	0.0	1	60	60 ¹³⁶ Xe	M16	2.5	63Da10
$^{136}La-C_{11,222}$		-92392	87	-92360	60	0.3	2			GS2	1.0	03Li.A *
136 Nd $-C_{11,333}$		-85044	30	-85024	13	0.7	R			GS2	1.0	03Li.A
¹³⁶ Pm-C _{11.333}		-76405	91	-76430	80	-0.3	2			GS2	1.0	03Li.A *
¹³⁶ Sm-C _{11.333}		-71768	30	-71724	13	1.5	R		126	GS2	1.0	03Li.A
$^{136}Pr - ^{133}Cs_{1.023}$		9418	15	9414	13	-0.2	1	77	77 ¹³⁶ Pr	MA5	1.0	00Be42
$^{130}Nd - {}^{133}Cs_{1.023}$		11703	14	11699	13	-0.3	2			MA5	1.0	00Be42
$136 \text{ pm}^{-135} \text{Cs}_{1.023}$		20429	100	24008	12	0.7	2			MA5	1.0	00Be42 *
$^{136}\text{Te}(\beta^-n)^{135}\text{I}$		1285	50	1290	40	-0.7	2	80	80 ¹³⁶ Te	MAS	1.0	00De42 84KrB
136 Xe(d ³ He) ¹³⁵ I		-4438	30	-4431	10	0.2	1	11	6 ¹³⁵ I	Oak		71Wi04
136 Xe(d,t) 135 Xe		-1723	40	-1822	8	-2.5	Ū		•	Oak		68Mo21
135 Ba(n, γ) 136 Ba		9107.74	0.04	9107.74	0.04	0.0	_			MMn		90Is07 Z
		9107.73	0.19			0.1	-			Bdn		03Fi.A
126 - 126	ave.	9107.74	0.04			0.0	1	100	99 ¹³⁶ Ba			average
$^{130}\text{Te}(\beta^{-})^{130}\text{I}$		5100	150	5070	60	-0.2	-					77Sc21
		5095	100			-0.2	-	10	ac 1361	Bwg		8/Gr.A
$136_{I}(R-)136_{V_{0}}$	ave.	5100	80	6020	50	-0.5	1	40	26 ***1			average
I(p) Ac		6690	150	0930	50	-0.3	B			Stu		76I n04
		6925	70			0.0	_			Bwg		87Gr.A
	ave.	6940	60			-0.2	1	74	74 ¹³⁶ I	U		average
${}^{136}\mathrm{I}^{m}(\beta^{-}){}^{136}\mathrm{Xe}$		7100	230	7580	110	2.1	2			Stu		76Lu04
		7705	120			-1.1	2			Bwg		87Gr.A
136 Cs(β^{-}) 136 Ba		2548.1	2.0	2548.2	1.9	0.1	2					540105
136r (0+)136p		2549	5	2050	50	-0.2	2					65Re07
$^{130}La(\beta^+)^{130}Ba$		2870	70	2850	50	-0.3	R					59G150
$r(\beta^+)$ bo Ce		5084	50 75	5141	15	1.1	U					68Zn04 71Ko07
		5134	20			0.4	1	53	30 ¹³⁶ Ce	IRS		83A1 B
136 Nd(β^+) 136 Pr		2211	25	2128	17	-3.3	B	55	50 CC	1100		75Br16
136 Pm(β^+) 136 Nd		7850	200	8000	80	0.8	R			IRS		83A106 *
* ¹³⁶ La-C _{11,333}	M-A=-85	5935(32) keV	for mixt	ure gs+m at 25	55(9) keV					~		Nubase **
$*^{136}$ Pm $-C_{11,333}$	M-A=-71	1091(28) keV	for mixtu	ure gs+m at 16	50(130) ke	eV						Nubase **
$*^{136}$ Pm ^m $-^{133}$ Cs _{1.023}	Slightly co	ontaminated b	y ground	-state, original	error (20)) increa	sed					00Be42 **
$*^{136}$ Pm(β^+) 136 Nd	E ⁻ =4732(70) probably	from high	n spin isomer	going							AHW **
*	to seve	eral high spin	levels are	ound 2100								NDS941**

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹³⁷ La-Cu uz		-93556	30	-93506	14	1.7	U			GS2	1.0	03Li.A
137 Ce $-C_{11,417}$		-92101	85	-92194	14	-1.1	Ū			GS2	1.0	03Li.A *
137 Nd $-C_{11,417}$		-85438	30	-85433	12	0.2	1	17	17 ¹³⁷ Nd	GS2	1.0	03Li.A
137 Pm $-C_{11,417}$		-79608	62	-79521	14	1.4	U			GS2	1.0	03Li.A *
137 Sm $-C_{11,417}$		-73025	69	-73030	50	0.0	_			GS2	1.0	03Li.A *
	ave.	-73030	50			0.0	1	78	78 ¹³⁷ Sm			average
¹³⁷ Pr- ¹³³ Cs _{1.030}		8095	15	8090	13	-0.3	1	71	71 ¹³⁷ Pr	MA5	1.0	00Be42
137 Nd $-^{133}$ Cs $_{1.030}$		11947	14	11952	12	0.3	1	78	78 ¹³⁷ Nd	MA5	1.0	00Be42
137 Pm $-^{133}$ Cs $_{1.030}$		17864	14				2			MA5	1.0	00Be42
137 Sm $-^{133}$ Cs $_{1.030}$		24350	78	24360	50	0.1	R			MA5	1.0	00Be42 *
$^{137}I(\beta^{-}n)^{136}Xe$		1850	30	1851	27	0.0	2					84Kr.B
130 Xe(n, γ) 137 Xe		4025.5	0.5	4025.53	0.11	0.1	U					77Fo02 Z
		4025.8	0.3			-0.9	U			D I		77Pr07 Z
136Va(311a d)137Ca		4025.53	0.11	1016	7	0.2	2	24	24 136 Va	Bdn ChD		03F1.A
$136 P_0(r_{A0})^{137} P_0$		1918	12	1916	/	-0.2	1	54	34 ¹⁰⁰ Xe	Cnk MMn		81Ha08
$\operatorname{Da}(\Pi,\gamma)^{\operatorname{Da}}$ Da		6905.34	0.10	0905.01	0.08	0.7	_			Mtn		901s07 Z
		6905.70	0.12			-0.8				Rdn		93B003 Z
	ave	6905.61	0.10			0.0	1	100	99 ¹³⁷ Ba	Duii		average
$^{136}Ce(n \gamma)^{137}Ce$	ave.	7481 3	0.00	7481 54	0.16	0.6	_	100)) Du			81Ko A Z
00(11,7) 00		7481.58	0.17	/ 10110 1	0110	-0.3	_			Bdn		03Fi.A
	ave.	7481.54	0.16			0.0	1	100	62 136Ce			average
$^{137}\text{Te}(\beta^{-})^{137}\text{I}$		7030	300	6940	120	-0.3	3					85Sa15
4 /		6925	130			0.1	3			Bwg		87Gr.A
137 I(β^{-}) 137 Xe		5880	60	5877	27	-0.1	R			Bwg		87Gr.A
$^{137}Cs(\beta^{-})^{137}Ba$		1175.55	0.26	1175.63	0.17	0.3	-					78Ch22 *
		1175.69	0.23			-0.3	-					83Be18 *
	ave.	1175.63	0.17			0.0	1	100	100 ¹³⁷ Cs			average
137 Ce(β^+) 137 La		1222.1	1.6				2		107			81Ar.A
137 Pr(β^+) 137 Ce		2702	10	2701	9	-0.1	1	87	62 ¹³⁷ Ce			73Bu17
137 Nd(β^+) 137 Pr		3690	54	3597	16	-1.7	1	9	5 ¹³ /Pr	-		85Af.A *
$^{137} Pm^{m} (\beta^{+})^{137} Nd$		5690	130	5660	50	-0.3	-			IRS		83Al06 *
		5650	60 50			0.1	-	71	70 137 p m	Dbn		95 Ve08 *
$137 \mathbf{c} \dots (\mathbf{\rho} + 137 \mathbf{p} \dots \mathbf{m})$	ave.	5660	50	5000	50	0.0	1	/1	70 ¹³⁷ Pm ^m	Dha		average
$^{137}C_{2}$ C	M A_ 9	5900 5665(20) IraX	/0 / fon mint	5900	50 54 20 keV	0.0	1	55	30 ¹⁶ Pm	Don		95 Ve08
$*^{137}$ Pm C	M = A = -0 M = A = -7	(29) KeV	/ for mixt	ure g_{s+m} at 2	50(50) 1/	v N						Nubaca state
* $FIII = C_{11.417}$ * ¹³⁷ Sm C	M = A = -7	4079(28) Kev	/ for mixt	ure gs+m at 1	20(30) K	v						Nubase **
$*^{137}$ Sm 133 Cs	Might he	a mixture of	r for finat	mer sav autho	oon so ke	•						00Be42 **
* 511 C51.030	$D_{1}=2$	24447(14) uu	for mixtu	re gs+m at 18	0#50 keV	∕: M−A	=-67	941(13	6			Nubase **
$*^{137}$ Cs(β^{-}) ¹³⁷ Ba	$E^{-}=513.8$	39(0.26) to 137	Ba^m at 66	51.660		,			,			NDS947**
$*^{137}$ Cs $(\beta^{-})^{137}$ Ba	$E^{-}=514.0$	03(0.23) to 137	Ba ^m at 66	51.660								NDS947**
$*^{137}$ Nd(β^+) ¹³⁷ Pr	$E^{+} = 2592$	2(54) to 75.5	level									NDS **
$*^{137}$ Pm ^m (β^+) ¹³⁷ Nd	$E^{+} = 4132$	2(+150-115)	to 137 Nd/	ⁿ at 519.6								NDS947**
$*^{137} Pm^{m} (\beta^{+})^{137} Nd$	$E^+ = 4110$	0(60) to 11/2	^{- 137} Nd ^m	at 519.6								NDS947**
138p.m. C		00007	20	00070	10	0.0	~			002	1.0	021: 4
138 Pr ^m – C _{11.5}		-88896	30	-88872	19	0.8	2			GS2	1.0	03L1.A
$-C_{11.5}$		-88060	20	-88050	15	0.1	0			GSI	1.0	00Ka25
138 Pm C		- 86000	141	80452	30	1.5	ĸ			GS1	1.0	00Pa23
$r_{11.5}$		-80242	35	-80452	50	-1.5	2			GS2	1.0	03LiA *
¹³⁸ Sm-C		-76766	30	-76756	13	0.1	Ŕ			GS2	1.0	03Li A
¹³⁸ Eu-C		-66291	30	10150	15	5.5	2			GS2	1.0	03Li.A
$^{138}Cs - ^{133}Cs$		9157	14	9158	10	0.0	1	49	49 ¹³⁸ Cs	MA1	1.0	99Am05
¹³⁸ Nd- ¹³³ Cs _{1.038}		10093	14	10091	13	-0.2	2	.,		MA5	1.0	00Be42

Item		Input va	ilue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
138 Pm ^m $ ^{133}$ Cs _{1.038}		17721	14				2			MA5	1.0	00Be42
138 Sm $-^{135}$ Cs $_{1.038}$		21387	14	21385	13	-0.2	2		0 126 0	MA5	1.0	00Be42
¹³⁸ Ce ⁻¹³⁰ Ce		-1158	20	-1181	17	-0.5	1	12	8 ¹³⁰ Ce	M17	2.5	66Be10
$^{137}Ba(n,\gamma)^{138}Ba$		8611.72	0.04	8611.72	0.04	0.0	I U	100	99 ¹³⁸ Ba	MMn		901s07 Z
		8011.5	0.15			1.5	U			Ltn Ddn		958005
$1381(\theta - 138\mathbf{V}_{0})$		8011.03	0.18			0.5	2			Bun		03F1.A
$138 \mathbf{V}_{0}(B^{-})^{138} \mathbf{C}_{0}$		7820	70 50	2740	40	0.7	2			ымд		8/01.A 72Mo22
Xe(p) Cs		2830	80	2740	40	_1.2	2			Tre		72W033
$^{138}Ce^{x}(IT)^{138}Ce^{x}$		40	23			1.2	2			115		82Au01
$^{138}C_{8}(\beta^{-})^{138}B_{2}$		5388	25	5374	9	-0.6	_			Gsn		81De25
es(p) 24		5370	15	0071	-	0.3	_			McG		84He.A
	ave.	5375	13			0.0	1	51	51 138Cs			average
138 Pr(β^+) 138 Ce		4437	10				2					71Af05
138 Pr ^{<i>m</i>} (β^+) 138 Ce		4801	20	4785	20	-0.8	R					64Fu08
138 Nd(β^+) 138 Pr		2020	100	1113	19	-9.1	С					61Bo.B
138 Pm(β^+) 138 Nd		7090	100	7078	30	-0.1	R			IRS		83A106
		7080	60			0.0	R			Dbn		95Ve08
138 Pm ^{<i>m</i>} (β^+) ¹³⁸ Nd		7000	250	7107	18	0.4	U					81De38 *
* ¹³⁸ Pm-C _{11.5}	M-A=-7	4730(130) k	eV for m	ixture gs+m a	nt 30(30) keV						Nubase **
$*^{138}$ Pm $-C_{11.5}$	M-A=-7	4927(28) ke	V for mix	ture gs+m at	30(30)	keV						Nubase **
$*^{138}$ Pm ^{<i>m</i>} (β^+) ¹³⁸ Nd	E ⁺ =3900	0(200) to spi	n 5 and 6	levels at 199	0.5, 213	34.3 and	1 222	2.0				NDS935**
¹³⁹ Nd-Cu soa		-87840	79	-88022	28	-2.3	1	12	12 ¹³⁹ Nd	GS2	1.0	03Li.A *
139 Sm $-C_{11.583}$		-77704	30	-77703	12	0.0	R		12 1.0	GS2	1.0	03Li.A
-11.583		-77711	30			0.3	R			GS2	1.0	03Li.A *
¹³⁹ Eu-C _{11 582}		-70215	30	-70208	14	0.2	R			GS2	1.0	03Li.A
139 Pm $-^{133}$ Cs _{1.045}		15604	15	15607	14	0.2	1	93	93 139Pm	MA5	1.0	00Be42
139 Sm $-^{133}$ Cs $_{1.045}$		21101	14	21099	12	-0.1	2			MA5	1.0	00Be42
$^{139}\text{Eu} - ^{133}\text{Cs}_{1.045}$		28597	16	28595	14	-0.1	2			MA5	1.0	00Be42
$^{138}Cs^{x} - ^{139}Cs_{496} ^{137}Cs_{504}$		770	40	799	25	0.3	U			P23	2.5	82Au01
138 Ba(n, γ) 139 Ba		4723.43 4723.20	0.04 0.14	4723.43	0.04	0.0 1.6	1 U	100	99 ¹³⁹ Ba	MMn Bdn		90Is07 Z 03Fi.A
¹³⁸ La(d,p) ¹³⁹ La		6553	3	6553.4	2.6	0.1	2			Tal		71Du02
¹³⁹ La(d,t) ¹³⁸ La		-2522	5	-2520.8	2.6	0.2	2			Tal		72La20
139 I(β^{-}) 139 Xe		6806	23				4			Bwg		92Gr06
139 Xe(β^{-}) 139 Cs		5020	60	5057	21	0.6	3			Trs		78Wo15
		5062	22			-0.2	3			Bwg		92Gr06
$^{139}Cs(\beta^{-})^{139}Ba$		4214	4	4213	3	-0.3	2			McG		84He.A
120		4211	5			0.4	2			Gsn		92Pr04
139 Ba(β^-) 139 La		2307	5	2317.6	2.4	2.1	-			NG		75F107
		2316	4			0.4	-	50	50 139T -	McG		84He.A
$139C_{2}(a)^{139}I_{2}$	ave.	2312	37	270	7	1.0	1	59	08 139 Co			average
$^{139}\text{Pr}(B^+)^{139}\text{Co}$		2120	2	279	20	0.1	1	100	98 139 Dr			Averag *
$139 Nd(B^+) 139 Dr$		2129	50	2129.2	3.0 26	0.1	1	100	26 139 NA			01ALA 75V/v02
$^{139}Pm(B^+)^{139}Nd$		4450	100	2032	20	0.9	1	20	20 Nu			75 Vy02 *
$\operatorname{Fin}(\mathcal{P})$ Nu		4430	40	4495	23	_1 1	_			IRS		834106
		4470	50			0.5	_			Dbn		95Ve08
	ave.	4507	30			-0.4	1	69	62 ¹³⁹ Nd	Bon		average
139 Sm $(\beta^+)^{139}$ Pm		5430	150	5116	17	-2.1	U					82De06
		5510	150			-2.6	В			IRS		83A106 *
$^{139}\text{Eu}(\beta^+)^{139}\text{Sm}$		6080	50	6982	17	18.0	С			Dbn		95Ve08
* ¹³⁹ Nd-C _{11,583}	M-A=-8	1707(30) ke	V for mix	ture gs+m at	231.15	keV						NDS013**
* ¹³⁹ Sm-C _{11,583}	M-A=-7	1930(28) ke	V for 139	Sm ^m at Eexc=	457.40	keV						NDS013**
$*^{139}$ Ce(ε) 139 La	Average p	K=0.73(0.01) to 165.	86 level from	10 refe	erences:						AHW **
*	pK=0	.76 (0.04)										54Pr31 **
*	pK=0	.73 (0.01)										56Ke23 **
*	pK=0	.68 (0.02)										67Ma07 **
*	pK=0	.75 (0.01)										68Ad08 **
*	pK=0	.69 (0.02)										68Va08 **
*	рк=0	./16(0.02)										/2Ca0/ **

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
* * * ¹³⁹ Nd(β^+) ¹³⁹ Pr * ¹³⁹ Sm(β^+) ¹³⁹ Pm	pK=0 pK=0 pK=0 pK=0 $E^+ = 1770$ $E^+ = 4735$.78 (0.02) .726(0.010) .801(0.034) .705(0.020) 0(50); and 117 5(+180-130)	'0(50) from from ¹³⁹ S	$m^{139}Nd^m$ at 2 m^m at 457.8 to	31.15 to 5 ¹³⁹ Pm"	821.98 ¹ at 188.	level 7					72Sc08 ** 75Ha43 ** 75Pl06 ** 76Ha36 ** NDS897** NDS897**
¹⁴⁰ Nd-Cu co		-90448	30				2			GS2	1.0	03Li A
$^{140}Pm^{m}-Cu$		-83532	30	-83503	14	1.0	R			GS2	1.0	03Li A
140 Sm-Cu cm		-81018	30	-81005	13	0.4	R			GS2	1.0	03Li A
¹⁴⁰ Gd-C _{11.667}		-66326	30	01000	10	0.11	2			GS2	1.0	03Li.A
$^{140}Cs - ^{133}Cs_{1072}$		16836	14	16841	9	0.4	_			MA1	1.0	99Am05
0.000		16857	14		-	-1.1	_			MA4	1.0	99Am05
	ave.	16847	10			-0.5	1	79	79 ¹⁴⁰ Cs			average
$^{140}Ba - {}^{133}Cs_{1.052}$		10150	14	10164	9	1.0	1	37	37 ¹⁴⁰ Ba	MA1	1.0	99Am05
140 Pm ^m $ ^{133}$ Cs _{1.055}		16064	16	16056	14	-0.5	2			MA5	1.0	00Be42
140 Sm $ ^{133}$ Cs $_{1.053}$		18557	15	18554	13	-0.2	2			MA5	1.0	00Be42
¹⁴⁰ Ce ⁻¹³⁸ Ce ^{1.055}		-543	8	-553	11	-0.5	1	28	28 ¹³⁸ Ce	M17	2.5	66Be10
¹³⁸ Ce(t,p) ¹⁴⁰ Ce		8184	15	8176	10	-0.6	_			LAI		72Mu09
¹⁴⁰ Ce(p,t) ¹³⁸ Ce		-8167	20	-8176	10	-0.4	_			Brk		77Sh06
¹³⁸ Ce(t,p) ¹⁴⁰ Ce	ave.	8178	12	8176	10	-0.2	1	68	68 ¹³⁸ Ce			average
$^{139}La(n,\gamma)^{140}La$		5160.97	0.05	5160.98	0.04	0.1	_			MMn		90Is09
		5161.00	0.10			-0.2	-			Bdn		03Fi.A
	ave.	5160.98	0.04			0.0	1	100	59 ¹⁴⁰ La			average
¹⁴⁰ Ho(p) ¹³⁹ Dy		1093.9	10.				3					99Ry04
40 Xe(β^{-}) ¹⁴⁰ Cs		4060	60				2			Trs		78Wo15
$^{140}Cs(\beta^{-})^{140}Ba$		6212	20	6220	10	0.4	-			Gsn		92Pr04
		6199	25			0.9	-		1.40	Ida		93Gr17
	ave.	6207	16			0.9	1	40	21 ¹⁴⁰ Cs			average
140 Ba(β^{-}) ¹⁴⁰ La		1060	20	1050	8	-0.5	-					49Be36
		1050	20			0.0	-					59Bo61
		1055	30			-0.2	_		a= 140 m			65Bu07
140- (0) 140-	ave.	1055	13			-0.4	1	40	37 ¹⁴⁰ Ba			average
$^{140}La(\beta^{-})^{140}Ce$		3760.2	2.0	3762.2	1.8	1.0	1	84	45 ¹⁴⁰ Ce			72Na04
140 Pr(β^+) 140 Ce		3388	6		20		2					68Ab17
140 Nd(ε) 140 Pr		160	60	444	29	4.7	В					72Ba91
140 Pm(β^+) 140 Nd		6080	100	6045	24	-0.3	U			ma		75Ke09
		6090	40			-1.1	3			IKS		83A106
$140 \mathbf{p}_m m(\mathbf{R}+140 \mathbf{N}d)$		6484	30 70	6470	20	0.8	J D			Dbh		95 Ve08
140 Sm(c) ¹⁴⁰ Pm		2400	200	2750	40	-0.2	D U					97De04
$^{140}\text{Eu}(B^+)^{140}\text{Sm}$		3400 8400	400	2730	40 50	-2.2	U			IBI		01Ei03
Eu(p) Sin		8470	400	8470	50	0.2	3			Dbn		911103 95Ve08
$^{140}Gd(B^+)^{140}Eu$		4800	400	5200	60	1.0	U U			I BI		91Ei03
140 Tb $(\beta^+)^{140}$ Gd		11300	800	5200	00	1.0	3			LBL		91Fi03
140 Tb $(\beta^+)^{140}$ Gd	Lower lin	nit	000				5			LDL		91Fi03 *
¹⁴¹ Pr-C _{11.75}		-92374	30	-92347.2	2.6	0.9	U			GS2	1.0	03Li.A
¹⁴¹ Nd-C _{11.75}		-90401	30	-90390	4	0.4	U			GS2	1.0	03Li.A
11.13		-90365	30			-0.8	U			GS2	1.0	03Li.A
¹⁴¹ Sm-C _{11.75}		-81496	62	-81524	9	-0.4	U			GS2	1.0	03Li.A
$^{141}\text{Eu}-\text{C}_{11.75}$		-75048	42	-75069	14	-0.5	U			GS2	1.0	03Li.A
¹⁴¹ Gd-C _{11.75}		-67881	30	-67874	21	0.2	2			GS2	1.0	03Li.A
11.75		-67867	30			-0.2	2			GS2	1.0	03Li.A
¹⁴¹ Tb-C _{11.75}		-58552	113				2			GS2	1.0	03Li.A

Α.	Н.	Wapstra	et al.	/Nuclear	Physics A	729	(2003)	129-336

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
	$^{141}Cs - ^{133}Cs_{1.060}$		20269	16	20267	11	-0.1	1	50	50 ¹⁴¹ Cs	MA4	1.0	99Am05
	$^{141}Ba - ^{133}Cs_{1.060}$		14625	15	14632	9	0.5	_			MA1	1.0	99Am05
	1.000		14631	16			0.1	_			MA4	1.0	99Am05
$\begin{tabular}{ l l l l l l l l l l l l$		ave.	14628	11			0.4	1	63	63 ¹⁴¹ Ba			average
$ \begin{tabular}{ $	141 Pm $-^{133}$ Cs $_{1.060}$		13776	15				2			MA5	1.0	00Be42
	141 Sm $-^{133}$ Cs $_{1.060}$		18692	14	18697	9	0.4	1	44	44 ¹⁴¹ Sm	MA5	1.0	00Be42 *
	$^{141}\text{Eu} - {}^{133}\text{Cs}_{1.060}$		25164	15	25152	14	-0.8	1	82	82 ¹⁴¹ Eu	MA5	1.0	00Be42 *
	$^{140}Cs - ^{141}Cs _{894} ^{151}Cs _{.107}$		-970	40	-1046	12	-0.8	U	10	11 1410	P23	2.5	82Au01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{141}Cs(p n)^{140}Ba$		/35	30	723 5729 14	13	-0.4	I	18	II II Cs	DNa		84Kr.B
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ce(II, γ) ¹¹ Ce		5428.0	0.0	3428.14	0.10	-0.8	U			DINII DTn		70Ge05 Z
			5428.01	0.20			_0.7	_			Rdn		OJEi A
		ave	5428.12	0.12			0.4	1	100	54 ¹⁴¹ Ce	Duii		average
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	141 Ho(p) 140 Dv	uve.	1177 4	8	1177	7	-0.1	3	100	54 66			98Da03
	no(p) by		1172.9	20.	11//	,	0.2	3					99Rv04 *
	141 Xe(β^{-}) ¹⁴¹ Cs		6150	90			•	2			Trs		78Wo15
	$^{141}Cs(\beta^{-})^{141}Ba$		5242	15	5249	11	0.4	1	53	36 ¹⁴¹ Cs	Gsn		92Pr04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{141}\text{Ba}(\beta^{-})^{141}\text{La}$		3208	35	3213	9	0.1	_			Gsn		81De25
			3217	20			-0.2	_			McG		84He.A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ave.	3215	17			-0.1	1	26	20 ¹⁴¹ Ba			average
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	141 La(β^{-}) 141 Ce		2502	4	2502	4	0.0	1	96	95 ¹⁴¹ La	McG		84He.A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	141 Ce(β^{-}) ¹⁴¹ Pr		584	3	580.8	1.1	-1.1	_					50Fr58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			585	4			-1.1	-					52Ko27
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			576.4	2.0			2.2	-					55Jo02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			581.4	2.0			-0.3	-					68Be06
			582.2	2.6			-0.5	_		(= 141 m			79Ha09
$ \frac{1}{14^{1}} \operatorname{Pm}(\beta^{-})^{14^{1}} \operatorname{Pm}(\beta^{+})^{14^{1}} \operatorname{Nd}(\beta^{+})^{14^{1}} \operatorname{Pm}(\beta^{+})^{14^{1}} \operatorname{Pm}($	14122140+1412	ave.	580.6	1.1	1000	•	0.1	1	92	47 ¹⁴¹ Pr			average
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\operatorname{Nd}(\beta^+)$		1816	8	1823.0	2.8	0.9	2					73Bu21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141 Dm $(\theta^{+})141$ N.d		1824	3	2675	14	-0.5	2 D					70Ga.A *
	$Pm(p^+)^{m}Nd$		3/30	40	30/5	14	-1.4	В					70Cn29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	141 Sm $(B^+)^{141}$ Pm		4580	50	4584	16	0.5	U					77Ke03 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\operatorname{Sin}(p)$ I in		4463	50 60	4504	10	2.0	U			IRS		83A106
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			4524	80			0.8	Ŭ			IRS		93A103 *
	$^{141}\text{Eu}(\beta^+)^{141}\text{Sm}$		6030	100	6012	14	-0.2	Ũ					77De25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			5950	40			1.6	_			IRS		83A106
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6035	60			-0.4	U					85Af.A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			5550	100			4.6	В			IRS		93A103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5980	40			0.8	-			Dbn		95Ve08 *
		ave.	5965	28			1.7	1	26	18 ¹⁴¹ Eu			average
	* ¹⁴¹ Nd-C _{11.75}	M-A=-83	3418(28) ke'	V for ¹⁴¹ N	d^m at Eexc=	756.51	κeV						NDS012**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ¹⁴¹ Sm-C _{11.75}	M-A=-75	5825(28) ke	V for mixt	ure gs+m at	176.0 ke	eV						NDS012**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* ¹⁴¹ Eu-C _{11.75}	M-A=-69	$\frac{1}{2858(28)}$ ke	V for mixt	ure gs+m at	96.45 ke	eV						NDS012**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	****Gd-C _{11.75}	M-A=-64	2840(28) Ke ⁻ 1541(24) I	V forG	d ^m at Eexc=.	3//.8 Ke	ev V						NDS012**
* $^{311-}$ CS _{1.060} $D_M^{-18094(14)}$ and $D_M^{-1807(14)}$ from 311 at 173.8 000842 ** 141 Eu- 132 CS _{1.060} Slight (< 10%) isomeric contamination cannot be excluded 000842 ** 141 Ho(β^{140} Dy Ep=1230(20) from 141 Ho" at 66(2) $015e03$ ** 141 Sm(β^{+}) 141 Pr Was erroneously quoted 77Ga.A in the 1993 tables GAu ** 141 Sm(β^{+}) 141 Pr E ⁺ = 3180(50), 3100(50) to 403.85, 438.29 levels and E ⁺ = 1670(70), 1600(70) from 171 Sm [*] at 175.8 to 2091.66, 2119.0 levels NDS918** 141 Sm(β^{+}) 141 Pm Q ⁺ = 4700(80) from 141 Sm [*] at 175.8 to 2091.66, 2119.0 levels NDS918** 141 Eu(β^{+}) 141 Sm E ⁺ = 4960(40) to 1.58 level NDS918** 142 Ea $^{-133}$ Cs _{1.068} 25270 16 25276 11 0.4 1 51 51 142 Cs MA4 1.0 99Am05 17420 16 0.7 - MA4 1.0 99Am05 17420 16 0.7 - MA4 1.0 99Am05 ave. 17415 11 1.5 1 37 37 142 Ba average	$*^{10} ID - C_{11.75}$	$M - A = -3^{2}$	4541(54) Ke $1(14)$ and D	V IOF IIIXL 10070()	ure gs+m at 141	0#200 K	ev 175 0						Nubase **
	* $SII = CS_{1.060}$	$D_M = 18094$	$H(14)$ and D_l	$M^{=100/0}$	instion conn	ot be av	aludad						00Be42 **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* $Eu = CS_{1.060}$	$E_{p=12200}$	10%) isolited 20) from ¹⁴¹	Hom at 66		ot be ex	ciuded						015:02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* $HO(p) Dy$ * $^{141}Nd(B^+)^{141}Dr$	Was error	20) Hom	d 77Ga A	(2) in the 1003	tables							GAU **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$*^{141}$ Sm $(\beta^+)^{141}$ Pm	$F^+ - 3180$	(50) 3100(4	50) to 403	85 438 29 h	aule							NDS918**
	* 511(p) 111	and E ⁴	$^{+} = 1670(70)$	1600(70))	01015							77Ke03 **
	*	from 1	41 Sm ^m at 17	5.8 to 209	, 1.66, 2119.0	levels							NDS918**
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$*^{141}$ Sm $(\beta^+)^{141}$ Pm	$O^+ = 4700$	(80) from 14	41 Sm ^m at 1	75.8								NDS918**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$*^{141}$ Eu $(\beta^+)^{141}$ Sm	E ⁺ =4960	(40) to 1.58	level									NDS918**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{142}Cs - ^{133}Cs_{1.069}$		25270	16	25276	11	0.4	1	51	51 ¹⁴² Cs	MA4	1.0	99Am05
17420 16 0.7 - MA4 1.0 99Am05 ave. 17415 11 1.5 1 37 37 ¹⁴² Ba average	$^{142}Ba - ^{133}Cs_{1.068}$		17410	15	17431	7	1.4	_			MA1	1.0	99Am05
ave. 17415 11 1.5 1 37 37 ¹⁴² Ba average	1.008		17420	16		-	0.7	_			MA4	1.0	99Am05
1/2		ave.	17415	11			1.5	1	37	37 ¹⁴² Ba			average
-87136 30 -87126 27 0.3 2 GS2 1.0 03Li.A	¹⁴² Pm-C _{11.833}		-87136	30	-87126	27	0.3	2			GS2	1.0	03Li.A

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Referenc	e
142 Sm 133 Cs		16173	14	16175	6	0.1	1	19	19 ¹⁴² Sm	MA5	1.0	00Be42	
$^{142}Eu^{m} - ^{133}Cs$		24909	15	24910	13	0.1	2	1)	17 511	MA5	1.0	00Be42	
$^{142}Eu^{m} - C$		24909	30	24910	13	0.1	P			GS2	1.0	031 ; A	
^{142}Cd C		71884	20	-70007	15	-0.1	2			G\$2	1.0	021 ; A	
$^{142}C_{9}$ $^{140}C_{9}$		3818	30	3805.5	2.6	17	1	12	0 ¹⁴² Ce	M17	2.5	66Be10	
$^{140}C_{8} - ^{142}C_{8} - ^{132}C_{8}$		2050	40	2038	12	-1.7	II.	12	9 00	D23	2.5	82 Au01	
$^{141}C_{s} - ^{142}C_{s} - ^{137}C_{s}$		-2930	40	-2958	12	_0.1	U U			P23	2.5	82Au01	
$138 C s^{x} - 142 C s - 137 C s$		-550	40	-000	25	-0.3	U U			P23	2.5	82Au01	
$^{141}C_{s} = ^{142}C_{s} = ^{140}C_{s}$		663	10	668	12	0.4	U U			D23	2.5	86Au02	
$^{140}Ce(t p)^{142}Ce$		4112	5	4116.0	24	-0.1	1	23	$17 {}^{142}Ce$	I 33	2.5	72Mu002	
$^{142}Nd(p t)^{140}Nd$		9150	20	9364	2.4	10.7	R	23	17 00	Osa		71Va10	<u>ب</u>
141 Pr (p $_{2}$) ¹⁴² Pr		5843.14	0.10	58/3 15	20	-10.7	Б			MMn		81Ko11	$\hat{\mathbf{z}}$
11(11,7) 11		5843.14	0.10	5645.15	0.08	_0.1	_			Rdn		03Ei A	L
	ave	5843.15	0.02			0.1	1	100	53 141 pr	Dun		average	
$^{142}Xe(\beta^{-})^{142}Cs$	ave.	5040	100			0.0	2	100	55 11	Tre		78Wo15	
$^{142}C_{8}(\beta^{-})^{142}B_{2}$		7280	40	7308	11	0.7	1 U			Bwg		87Gr A	
Cs(p) Ba		7200	15	7508	11	0.7	1	51	12 142 Ce	Gen		07Dr04	
$^{142}\mathbf{B}_{2}(\beta^{-})^{142}\mathbf{I}_{2}$		2200	25	2212	5	-0.5	II.	51	42 03	USII		921104 83Ch30	
Ba(p) La		2200	23	2212	5	0.5	1	01	54 142 Do	MaC		03CII39	
$142 \mathbf{I}_{0} (\theta^{-}) 142 \mathbf{C}_{0}$		4510	5	4504	5	-0.9	1	04 77	54 Da 70 1421 о	McG		04HC.A	
La(p) Ce $142p_{rr}(\rho_{-})142NI4$		4310	0	4304	5	-1.0	1	//	70 La	MCG		64De12	
PI(p) Nd		2104	2	2102.5	1.5	-0.8	_					75P.00	
	01/0	2150	17			0.2	1	62	52 142 Dr			/ JKa09	
$142 \mathbf{p}_{m}(\boldsymbol{\rho}^{+}) 142 \mathbf{N} d$	ave.	4800	1./	4708	25	0.2	I D	82	55 PI			average	
$PIII(p^2)$ No		4800	80	4798	23	0.0	R D			IDC		00Ma.A	
		4000	160			-1.0	II.			IND		01E:02	
142 S m(B^{+}) 142 Bm		4000	70	2164	26	-0.5	C			LDL		60Mo A	
$142 E_{\mu}(B^+) 142 S_{\mu}$		2030	100	2104	20	2.7	U U					82Cr A	
$Eu(p^{+})$ Sin		7400	200	7070	30	2.7	U			IDI		01E:02	
		7000	20			2.2	2			LDL		91FI05 04Do26	
$142 E_{1}m(R^{+}) 142 Sm$		7073 8150	100	9127	14	0.1	2 11			Don		75V 020	
$\operatorname{Eu}(p)$ Sin		8150	50	8137	14	-0.1	U			IPS		83 A 106	
		7480	100			-0.7	в			IRS		93A103	*
		8150	60			0.0	U D			Dhn		93A103	Ť
$^{142}Gd(B^+)^{142}Eu$		4200	300	4360	40	-0.2	U U			LBI		01Ei020	
142 Tb(β^+) 142 Gd		10400	700	4300	300#	0.5	D			LDL		01Ei03	<u>ب</u>
$^{142}Dv(\beta^+)^{142}Tb$		7100	200	9900 m	300#	-0.7	1			LDL		01Ei03	Ť
$*^{142}$ Nd(p t) ¹⁴⁰ Nd	Disagraa	e etrongly wi	th 140 Nd	C			4			LDL		AHW	
$*^{142} En^m (R^+)^{142} Sm$	Maggices	i half life 73	4(0.5) s.	-C corresponds t	o ¹⁴² Fu ^m							GAn y	**
$* Lu(p) Shi*^{142}Tb(B^+)^{142}Gd$	Systemat	i nan-me 75	142	Th 500 more	bound							GAu -	**
* 10(p) Ou	Systemat	icai trenus st	iggest	10 500 11010	bound							UAu	**
143Ba-133Cs1 075		22268	16	22266	14	-0.1	1	79	79 ¹⁴³ Ba	MA1	1.0	99Am05	
$^{143}Pm - ^{133}Cs_{1.075}$		12567	15	12572	4	0.3	U			MA5	1.0	00Be42	
143 Sm $-^{133}$ Cs $_{1.075}$		16268	15	16268	4	0.0	U			MA5	1.0	00Be42	
¹⁴³ Sm-C _{11,017}		-85347	30	-85372	4	-0.8	U			GS2	1.0	03Li.A	*
$^{143}Eu - ^{133}Cs_{1.077}$		21947	14	21937	12	-0.7	2			MA5	1.0	00Be42	
¹⁴³ Eu-C _{11 017}		-79706	30	-79702	12	0.1	R			GS2	1.0	03Li.A	
¹⁴³ Gd-Cu arz		-73012	56	-73250	220	-43	С			GS2	1.0	03Li A	*
¹⁴³ Tb-Cu or		-64879	64				2			GS2	1.0	03Li.A	*
¹⁴¹ Cs- ¹⁴³ Cs 402 ¹³⁹ Cs 507		-230	40	-200	16	0.3	Ū			P23	2.5	82Au01	
00,493 00,507		-115	22	200	10	-1.5	Ŭ			P33	2.5	86Au02	
142Cs-143Cs 407 141C8 504		647	15	654	16	0.2	1	18	9 ¹⁴³ Cs	P33	2.5	86Au02	
$^{142}Ce(n,\gamma)^{143}Ce$		5145.9	0.5	5144.84	0.09	-2.1	_		. 05			76Ge02	
(,)) 00		5144.78	0.15	21	0.07	0.4	_			Ptn		80Ba.A	Z
		5144.81	0.12			0.2	_			Bdn		03Fi.A	-
	ave.	5144.84	0.09			0.0	1	100	67 ¹⁴² Ce			average	
142 Nd(n, γ) ¹⁴³ Nd		6123.62	0.08	6123.57	0.07	-0.6	_			MMn		82Is05	Z
		6123.41	0.14			1.1	_			Bdn		03Fi.A	_
	ave.	6123.57	0.07			0.0	1	100	62 ¹⁴² Nd			average	
						0.0	-						

Item	Input value			Adjusted	value	v _i	Dg	Sig	Mair	n flux	Lab	F	Reference
¹⁴² Nd(³ He,d) ¹⁴³ Pm		-1195	5	-1194.0	2.4	0.2	1	23	23 1	¹⁴³ Pm	McM		80St10 >
$^{143}Cs(\beta^{-})^{143}Ba$		6240	70	6264	22	0.3	U				Bwg		87Gr.A
		6270	25			-0.2	1	76	69 ¹	¹⁴³ Cs	Gsn		92Pr04
143 Ba(β^{-}) ¹⁴³ La		4240	50	4251	18	0.2	-						79Sc11
		4259	40			-0.2	_				Gsn		81De25
		4210	70			0.6	U	24	20.1	43 -	Bwg		87Gr.A
$1431 \circ (R^{-}) 143C_{2}$	ave.	4250	30	2425	15	0.0	1	34	20 .	1431 a			average
$^{143}C_{2}(B^{-})^{143}D_{r}$		3425 1460 6	1/	5425 1461 5	15	0.0	1	80	67 1	¹⁴³ Co			841809 77Do18
$143 \mathbf{p}_r (\beta^-)^{143} \mathbf{N}_d$		032	2.	033.0	1.0	1.0	1	65	07	Ce			//Kalo /0Ee18
$\Pi(p)$ Nu		935	2	955.9	1.4	-0.5	_						76Ra33
	ave.	933.5	1.4			0.3	1	92	84 1	¹⁴³ Pr			average
143 Sm $(\beta^+)^{143}$ Pm		3461	40	3443	4	-0.5	Ū	-			Dbn		94Po26
$^{143}\text{Eu}(\beta^+)^{143}\text{Sm}$		5100	50	5281	12	3.6	В						74Ch21
		5240	70			0.6	U				IRS		83A106
		5250	80			0.4	U				IRS		93A103
		5236	30			1.5	R				Dbn		94Po26
143 Gd(β^+) 143 Eu		6010	200	12			3				IRS		93A103 >
* ¹⁴³ Sm-C _{11.917}	M-A=-	78746(28) 1	keV for ¹	⁴³ Sm ^m at Ee	exc=75	3.99 k	eV						NDS01b**
$*^{143}$ Gd-C _{11.917}	M-A=-	-67934(28)	ceV for r	nixture gs+r	n at 15	2.6 ke	V						Ens02 **
$*^{143}$ Tb-C _{11.917}	M-A=-	-60434(32)	eV for r	nixture gs+r	n at 0#	100 ke	V						Nubase **
$^{143}C_{4}(\rho^{+})^{143}E_{11}$	Based of O^+	$n^{10}Nd(^{3}He)$	$(a)^{143}Cd^{1}$	1 Q = -8/.6(0)	1.9)								AHW **
****Gd(<i>p</i> *)***Eu	Q = 61	60(200) If of	n •••Ga	at 152.6									ND591a**
¹⁴⁴ Ba- ¹³³ Cs _{1.083}		25347	15	25348	14	0.1	1	91	91 ¹	¹⁴⁴ Ba	MA1	1.0	99Am05
¹⁴⁴ Eu- ¹³³ Cs _{1.083}		21223	17	21212	12	-0.6	1	47	47 ¹	¹⁴⁴ Eu	MA5	1.0	00Be42
¹⁴⁴ Eu-C ₁₂		-81117	30	-81183	12	-2.2	1	15	15 ¹	¹⁴⁴ Eu	GS2	1.0	03Li.A
$^{144}Gd-C_{12}$		-77037	30				2				GS2	1.0	03Li.A
144 Tb-C ₁₂		-66955	30				2				GS2	1.0	03Li.A >
144 Dy-C ₁₂		-60746	33				2		1	44	GS2	1.0	03Li.A
144 Sm $-^{144}$ Nd		1911.9	1.1	1912.2	1.9	0.1	1	49	43 1	⁴⁴ Sm	H25	2.5	72Ba08
$^{142}Cs - ^{144}Cs_{.592} ^{159}Cs_{.409}$		-60	40	-53	19	0.1	U				P23	2.5	82Au01
$142_{C_{2}}$ $144_{C_{2}}$ $141_{C_{2}}$ $141_{C_{2}}$		-920	50	-88/	28	0.3	U				P23	2.5	82Au01
$C_{S} = C_{S,329} = C_{S,671}$		290	40 21	614	27	-0.2	1	27	18 1	143 Ce	P23	2.5	86Au01
$^{143}C_{8} - ^{144}C_{8} - ^{142}C_{8}$		-790	50	-687	25	0.7	II.	21	10	Cs	P23	2.5	82Au01
144 Sm(³ He ⁶ He) ¹⁴¹ Sm		-8693	12	-8697	9	-0.3	1	52	49 ¹	¹⁴¹ Sm	MSU	2.5	78Pa11
144 Sm(p,t) ¹⁴² Sm		-10649	15	-10640	6	0.6	1	14	12 1	¹⁴² Sm	Ham		73Oe02
143 Nd(n, γ) ¹⁴⁴ Nd		7817.11	0.07	7817.03	0.05	-1.1	_				MMn		82Is05 Z
		7816.93	0.08			1.3	_				ILn		91Ro.A 7
		7816.94	0.23			0.4	U				Bdn		03Fi.A
	ave.	7817.03	0.05			0.0	1	100	66 ¹	¹⁴⁴ Nd			average
¹⁴³ Nd(³ He,d) ¹⁴⁴ Pm		-804	5	-790.8	2.2	2.6	1	20	20 1	¹⁴⁴ Pm	McM		80St10 >
¹⁴³ Nd(³ He,d) ¹⁴⁴ Pm- ¹⁴² Nd() ¹⁴³ Pm	l	402.7	1.6	403.1	1.5	0.3	1	89	60 ¹	¹⁴³ Pm			75Ma04
144 Sm(p,d) 143 Sm $ ^{148}$ Gd() 147 Gd		-1536	2	-1536.0	2.0	0.0	1	100	100 1	⁴³ Sm			86Ru04
$^{144}Cs(\beta^{-})^{144}Ba$		8560	80	8499	26	-0.8	-				Bwg		87Gr.A
		8462	35			1.1	-	~	c = 1	141 a	Gsn		92Pr04
$ 44\mathbf{p}_{-}(\theta_{-}) 44\mathbf{r}_{-}$	ave.	8480	30	2120	50	0.7	1	63	57	441 -	D		average
$144_{\rm L} = (\theta^{-})^{144} C_{\rm P}$		3055	100	5120	50	12.4	I D	49	4/ -	La	вwg		8/Gf.A 7011-07
$La(\beta)$ Ce		4300 5435	00	5540	30	12.4	D				Bwa		791K07 87Gr A
		5540	100			0.0	0				Kur		02Sh B
		5540	100			0.0	_				Kur		02Sh16
	ave.	5480	70			0.9	1	53	53 ¹	¹⁴⁴ La			average
144 Ce(β^{-}) 144 Pr		315.6	1.5	318.7	0.8	2.0	_						66Da04
SI /		320	1		-	-1.3	_						76Ra33
	ave.	318.6	0.8			0.0	1	100	100^{-1}	¹⁴⁴ Ce			average
144 Pr(β^{-}) ¹⁴⁴ Nd		2996	3	2997.5	2.4	0.5	_						59Po77
		3000	4			-0.6	-						66Da04
	ave.	2997.4	2.4			0.0	1	100	100 1	¹⁴⁴ Pr			average
$^{144}\text{Eu}(\beta^+)^{144}\text{Sm}$		6330	30	6350	11	0.7	-				IRS		83A106
		6287	30			2.1	-				Dbn		94Po26

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Ma	in flux	Lab	F	Reference
¹⁴⁴ Sm(p,n) ¹⁴⁴ Eu		-7110.0	30.	-7133	11	-0.8	_			144			65Me12
$^{144}\text{Eu}(\beta^+)^{144}\text{Sm}$	ave.	6315	17	6350	11	2.0	1	40	38	¹⁴⁴ Eu			average
$^{144}\text{Gd}(\beta^+)^{144}\text{Eu}$		4300	400	3862	30	-1.1	U						70Ar04
$*^{144}$ Ib-C ₁₂	M-A=-	-619/1(28)	keV for	$1110^{\prime\prime\prime}$ at Ee	xc=396.	9 keV							Ens01 **
****Nd(*He,d)***Pm	Based o	n **Nd(*H	e,a) ^{- · ·} Pi	n Q=-87.6(t	1.9)								AHW **
¹⁴⁵ Cs- ¹³³ Cs _{1.090}		38588	12	38584	12	-0.4	1	94	94	¹⁴⁵ Cs	MA8	1.0	03We.A
¹⁴⁵ Pm-C _{12.083}		-87255	30	-87251	3	0.1	U				GS2	1.0	03Li.A
145 Sm $-C_{12.083}$		-86535	30	-86590	3	-1.8	U				GS2	1.0	03Li.A
$^{145}\text{Eu} - ^{133}\text{Cs}_{1.090}$		19338	17	19323	4	-0.9	U				MA5	1.0	00Be42
$^{145}Gd-C_{12.083}$		-78287	30	-78291	20	-0.1	2				GS2	1.0	03Li.A
145mi G		- 78294	30			0.1	2				GS2	1.0	03L1.A *
145 Dr. $C_{12.083}$		- /0/26	61				2				GS2	1.0	03L1.A *
$142C_{0}$ $145C_{0}$ $139C_{0}$		-02575	49 50	151	12	0.7	2				0.52	1.0	03L1.A *
$^{144}C_{9} - ^{145}C_{9} - ^{139}C_{9}$		240 450	50	151	12	-0.7	U				P23	2.5	82Au01 82Au01
143 Cs -145 Cs 141 Cs 141 Cs		430	30 40	418	27	-0.5	U				P23	2.5	82Au01 82Au01
$144C_{s} - 145C_{s} - 142C_{s}$		320	40	-304	25	0.1	1	35	33	¹⁴⁴ Cs	F23	2.5	86Au02
$^{144}C_{s} - ^{145}C_{s} $ $^{143}C_{s}$		600	40	617	20	0.0	1 U	55	55	Cs	P23	2.5	82Au01
144 Nd(n γ) ¹⁴⁵ Nd		5755 3	07	5755 29	0.25	0.0	U				1 25	2.5	75Na A
		5756.9	2.0	5155.27	0.25	-0.8	Ŭ						77Mc09
		5755.26	0.25			0.1	1	99	71	¹⁴⁵ Nd	Bdn		03Fi.A
¹⁴⁴ Nd(³ He,d) ¹⁴⁵ Pm		-680	5	-683.9	2.2	-0.8	1	19	18	¹⁴⁵ Pm	McM		80St10 *
¹⁴⁴ Nd(³ He,d) ¹⁴⁵ Pm- ¹⁴³ Nd() ¹⁴⁴ Pm	I	105.2	1.6	106.9	1.5	1.1	1	87	50	¹⁴⁴ Pm			75Ma04
144 Sm(n, γ) 145 Sm		6757.1	0.3	6757.10	0.30	0.0	1	99	71	145 Sm			79Wa22
¹⁴⁴ Sm(³ He,d) ¹⁴⁵ Eu		-2184	4	-2178.0	2.7	1.5	-				Mun		82Sc25
		-2174	4			-1.0	-						84Ru.A
	ave.	-2179.0	2.8			0.3	1	92	89	¹⁴⁵ Eu			average
145 Tm(p) 144 Er		1740.1	10.				3						98Ba13
$^{145}Cs(\beta^{-})^{145}Ba$		7358	70				2				Gsn		81De25
		7930	75	7360	70	-7.6	C				Bwg		87Gr.A
$ 45\mathbf{p}_{-1}(\theta-1) 45\mathbf{r}_{-1} $		/805	50	5570	110	-10.1	В				GSN		92Pr04
$145 L_{\alpha}(\beta^{-})^{145}C_{\alpha}$		4923	80	3370	110	0.1	2				Dwg		87Gr A
$La(\beta)$ Ce $^{145}Ce(\beta^{-})^{145}Pr$		2/00	100	2530	40	0.4	2				ыwg		67Ho10
		2490	100	2550	40	-0.7	2						80Ya07
		2530	50			0.1	2				Bwg		87Gr.A
145 Pr(β^{-}) 145 Nd		1805	10	1805	7	0.0	1	50	50	¹⁴⁵ Pr			59Dr.A
145 Pm(ε) 145 Nd		143	15	163.4	2.2	1.4	U						59Br65
		150	5			2.7	1	19	18	¹⁴⁵ Pm			74To04
145 Sm(ε) 145 Pm		607	6	616.0	2.4	1.5	_						71My01
		622	5			-1.2	_						83Vo10
	ave.	616	4			0.0	1	40	26	¹⁴⁵ Pm			average
145 Gd(β^+) 145 Eu		5070	60	5071	19	0.0	R						79Fi07
		5090	90			-0.2	0				IRS		83Ve.A
145		5070	80			0.0	U				IRS		85A113
$^{145}\text{Tb}^{m}(\beta^{+})^{145}\text{Gd}$		6700	200	7050#	120#	1.7	C				ma		86Ve.A *
1450 (0+)1457		6400	150	7500	70	4.3	В				IRS		93AI03
145C4 C	м .	/300	200 IraV f-	/390 145 c 4m - + F	/0	1.5	U				IKS		95AI03
* Gu=C _{12.083}	M A	65991(28)	keV for	Gu" at Ee	x c = /49.	1 KeV							LIISUI **
* 10-C _{12.083}	M A-	-03001(28) 58230(20)	kev IOF	mixture gs+1	n at 0#10 n at 110	2 koV							NDS024
* $Dy - C_{12.083}$ * ¹⁴⁴ Nd(³ He d) ¹⁴⁵ Pm	NI-A=-	-36230(30) n ¹⁴⁶ Nd(31	ACV 101	$m \Omega = 87.60$	11 at 118 (0)	.∠ Ke V							AHW
* $145 \text{Th}^{m}(\beta^{+})^{145} \text{CA}$	$F^+ - 22$	100(200) to 2	7387 3 0	11 Q==07.0(0 /2= level									NDS034++
······································	L _33	00(200) 10 2	2502.59	2 10,001									1120704**

A.H.	Wapstra	et al./	Nuclear	Physics A	729	(2003)	129–336
------	---------	---------	---------	-----------	-----	--------	---------

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹⁴⁶ Pm-Cuauz		-85289	30	-85304	5	-0.5	U			GS2	1.0	03Li.A
$^{146}\text{Eu} - ^{133}\text{Cs}$		21029	15	21020	7	-0.6	1	20	20 ⁻¹⁴⁶ Eu	MA5	1.0	00Be42
¹⁴⁶ Th-C		-72464	77	-72750	50	-3.8	Ċ	20	20 20	GS2	1.0	03LiA *
$^{146}Dy - C$		-67150	30	-67155	29	_0.2	1	94	94 ¹⁴⁶ Dv	GS2	1.0	03L i A
^{146}Nd $^{35}Cl - $ ¹⁴⁴ Nd ^{37}Cl		5982.8	11	5979 76	0.29	_11	ц.	77	J- Dy	H25	2.5	72Ba08
$^{145}C_{e}$ $^{146}C_{e}$ $^{140}C_{e}$		5982.8	80	670	60	-1.1	U			D23	2.5	82Au01
$144C_{\text{c}} = 146C_{\text{c}} = 143C_{\text{c}}$		320	50	-070	40	-0.5	U			P23	2.5	82Au01
145 Co 146 Co 143 Co 143 Co		320	20	260	40 50	1.0	1	20	20 146 Ca	1 23 D22	2.5	86Au02
$145_{C_2} - 146_{C_2} - 144_{C_3} - 144_$		-440	20	-300	30	1.0	1	39	30 °Cs	P33	2.5	86Au02
$146 \text{ cm} (\text{m})^{142} \text{ M}^4$		-/30	30	-590	40	1.9	1	24 40	21 ***Cs	P33	2.5	80Au02
144 g (311) 146 g		2524.2	4.	2528.4	2.9	1.0	1	49	4/ 1.0 Sm			8/Me08 Z
1465 He,p) 145 P		2/9/	12	2793	6	-0.4	1	25	23 115Eu			84Ru.A
¹⁴⁰ Nd(d, ³ He) ¹⁴³ Pr		-3095	10	-3095	7	0.0	1	50	50 ¹⁴⁵ Pr	KVI		79Sa.A
143 Nd(n, γ) 140 Nd		7565.28	0.10	7565.23	0.09	-0.5	-			MMn		821s05 Z
		7565.05	0.18			1.0	_		146	Bdn		03F1.A
146 - 2 146 -	ave.	7565.23	0.09			0.1	1	100	72 ¹⁴⁰ Nd			average
146 Sm(3 He, α) 145 Sm		12161	5	12162	3	0.2	1	37	28 ⁻¹⁴⁶ Sm			86Ru04 *
¹⁴⁶ Tm(p) ¹⁴⁵ Er		1126.8	5.	1127	4	0.0	3					93Li18
		1127.8	10.			-0.1	3			ORp		01Ry01
$^{146}\text{Tm}^{m}(\text{p})^{145}\text{Er}$		1197.3	5.	1198	4	0.0	3			Dap		93Li18
		1198.3	10.			-0.1	3			ORp		01Ry01
$^{146}Cs(\beta^{-})^{146}Ba$		9310	60	9380	40	1.2	-			Bwg		87Gr.A
		9375	50			0.1	-			Gsn		92Pr04
	ave.	9350	40			0.8	1	93	51 ¹⁴⁶ Ba			average
146 Ba(β^{-}) ¹⁴⁶ La		4280	100	4120	40	-1.6	-			Gsn		81De25
		4030	50			1.9	-			Bwg		87Gr.A
	ave.	4080	40			1.0	1	90	49 ¹⁴⁶ Ba			average
146 La(β^{-}) 146 Ce		6380	70	6550	50	2.5	_			Trs		82Br23
		6620	70			-1.0	_			Bwg		87Gr.A
	ave.	6500	50			1.1	1	88	58 ¹⁴⁶ La	-		average
$^{146}Ce(\beta^{-})^{146}Pr$		1100	80	1040	40	-0.8	_					54Be10
4		1050	100			-0.1	_					67Ho19
		951	50			1.7	_					80Ya07
		1065	100			-0.3	_					81Eb01
	ave.	1010	40			0.8	1	94	70 146Ce			average
146 Pr(β^{-}) 146 Nd		4150	200	4220	60	0.3	U					54Be10
		4250	200			-0.2	U					65Ra02
		4080	100			1.4	_					68Da13
		4140	100			0.8	_					78Ik03
	ave.	4110	70			1.5	1	76	76 ¹⁴⁶ Pr			average
146 Pm(β^{-}) 146 Sm		1542	3				2					74Sc06
$^{146}\text{Eu}(\beta^+)^{146}\text{Sm}$		3871	10	3880	6	0.9	_					62Fu16
		3871	20			0.4	_					64Ta11
		3896	20			-0.8	_			Got		88Sa06
	ave.	3875	8			0.5	1	52	45 ¹⁴⁶ Eu			average
146 Tb(β^+) 146 Gd		8240	150	8320	50	0.6	0			IRS		83A106
		7910	150			2.8	В			IRS		93A103 *
		8310	50			0.3	1	81	81 ¹⁴⁶ Tb	Dbn		94Po26
146 Dv(β^+) 146 Th		5160	100	5220	50	0.6	1	25	19 ¹⁴⁶ Th	IRS		93A103
* ¹⁴⁶ Tb=Cusura	M-A=-f	57424(28) ke	V for mix	ture g_{s+m} at	150#100) keV	•	20	17 10	mus		Nubase **
$*^{146}$ Sm $(^{3}$ He $\alpha)^{145}$ Sm	$0 - 0(^{148})$	$Gd(^{3}He \alpha))$		and Bo man	1000100							AHW **
$*^{146}$ Tb(β^+) ¹⁴⁶ Gd	Reported	half-life 24	$1(0.5) \le co$	rresponds to 1	46Tb^m							GAn **
* 10(p) Gu	0-80	160(100) keV	1(0.5)3 co	Th ^m at estima	ted Fev	c-150#	100 1	eV				GAu **
*	Q=ot	000(100) Ke v	nom	10° at estima	leu Lex	c=130#	100 6	le v				GAu **
$^{147}Cs - ^{133}Cs_{1.105}$		48640	64	48630	60	-0.1	1	79	79 ¹⁴⁷ Cs	MA8	1.0	03We.A
$^{147}\text{Eu} - ^{133}\text{Cs}_{1.105}$		21215	16	21222	3	0.4	U			MA5	1.0	00Be42
$^{147}\text{Tb}-C_{12.25}$		-75934	34	-75955	13	-0.6	U			GS2	1.0	03Li.A *
$^{147}\text{Dy}-\text{C}_{12.25}^{12.25}$		-68909	30	-68909	21	0.0	2			GS2	1.0	03Li.A
- 12.25		-68908	30			0.0	2			GS2	1.0	03Li.A *

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
	¹⁴⁷ Ho-C _{12,25}		-59944	30				2			GS2	1.0	03Li.A
	$^{147}\text{Eu} - {}^{142}\text{Sm}_{1.035}$		4516	17	4517	6	0.0	1	15	12 142 Sm	MA7	1.0	01Bo59
	$^{145}Cs - {}^{147}Cs {}_{493} {}^{1.05}I43Cs {}_{507}$		-87	22	-102	29	-0.3	1	27	21 ¹⁴⁷ Cs	P33	2.5	86Au02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{147}\text{Eu}(\alpha)^{143}\text{Pm}$		2990.6	10.	2990.3	3.0	0.0	U					62Si14 Z
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			2987.2	5.			0.6	1	33	18 ¹⁴³ Pm			67Go32 Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	146 Nd(n, γ) 147 Nd		5292.19	0.15	5292.20	0.09	0.1	_			ILn		75Ro16 Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			5292.19	0.11			0.1	-			Bdn		03Fi.A
		ave.	5292.19	0.09			0.1	1	100	77 ¹⁴⁷ Nd			average
	¹⁴⁷ Tb(p) ¹⁴⁶ Gd		-1945	18	-1948	12	-0.2	R					87Sc.A
	¹⁴⁷ Tm(p) ¹⁴⁶ Er		1058.2	3.3				3					93Se04
	$^{147}\text{Tm}^{m}(\text{p})^{146}\text{Er}$		1118.5	3.9				3			Dap		93Se04
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	147 Ba(β^{-}) 147 La		5750	50	6250#	200#	10.0	D			Bwg		87Gr.A *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	147 La(β^{-}) 147 Ce		4945	55	5180	40	4.3	в			Bwg		87Gr.A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			5150	40			0.8	4			Kur		95Ik03
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			5370	100			-1.9	4			Kur		02Sh.B
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{147}Ce(\beta^{-})^{147}Pr$		3290	40	3426	20	3.4	В			Bwg		87Gr.A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3426	20				3			Kur		95Ik03
$ {}^{14}\text{Pr}(\beta^{-})^{147}\text{Nd} = 2'9'0 100 = 2'6'7 2'3 -0.5 U = Kur = 9'5'k'0'3 = 2'7'11 = 2'8 = -0.5 2 = Kur = 9'5'k'0'3 = 2'7'11 = 2'8 = -0.5 2 = Kur = 9'5'k'0'3 = -0.1 - 5'1 = 5'0'14'7'5'3'1 = 2'2'4'3 = 1.3 = -0.1 - 5'1 = 5'0'14'7'5'3'1 = 2'2'4'3 = 1.3 = -0.1 - 5'1 = 5'3'1'7'3'3'1 = 2'2'4'3 = 0.4 -0.9 - 0.9 - 6'6'1'3'3'3'3'1'2'1'5'3' = -0.5 1 = 3'1 = 18'1'7'5'3'1'3'3' = -0.5 - 0.5 1 = 5'1 = 5'1'7'5''3'1'3'3' = -0.5 - 0.5 1 = 5'1'5''3''3''3' = -0.5 - 0.5 $	1477 (0.) 1475 (3380	100			0.5	U			Kur		02Sh.B
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{147} Pr(\beta^{-})^{147} Nd$		2790	100	2697	23	-0.9	U					81Ya06
$ \begin{tabular}{ l l l l l l l l l l l l l$	1472		2711	28			-0.5	2	~ ~	= 0.147 m	Kur		951k03
$ {}^{147} Pm(\beta^{-})^{147} Sm = 223.2 0.5 224.1 0.3 1.9 - 581432 224.5 0.4 -0.9 - 66Hs01 220.5 0.4 -0.9 - 66Hs01 220.5 0.4 -0.9 - 66Hs01 220.5 0.4 -0.9 - 66Hs01 220.9 0.4 -0.9 - 0.7 U -0.7 U -0.7$	147 Nd(β^{-}) 147 Pm		894.6	1.0	896.0	0.9	1.4	1	80	58 ¹⁴⁷ Pm			67Ca18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	147 Pm(β^{-}) ¹⁴⁷ Sm		223.2	0.5	224.1	0.3	1.9	-					50La04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			224.3	1.3			-0.1	-					58Ha32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			224.5	0.4			-0.9	1	00	5 c 147 c			00HSU1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$147 \Gamma_{rr} (\theta^{+}) 147 \Gamma_{rr}$	ave.	224.0	0.5	1721 6	2.2	0.4	1	98	56 ¹⁴⁷ Sm			average
	147CA(R+) 147En		2195	5	1/21.0	2.3	-0.5	1	21	10 147 Eu			80Bu04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\operatorname{Ga}(p^+)$ Eu		2185	3	2187.4	2.8	0.5	1	51	18 ··· Eu			80 Vy01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$147 \text{Th}(\theta^{+}) 147 \text{Cd}$		2199	17	4611	12	-0.7	U					045010 92Va06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$10(p^{-1})$ Gd		4700	90 60	4011	12	-1.0	P			Gat		85 VEUO *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4490	15			0.1	2			GSI		91Ke11 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	147 Dy(β^+) 147 Th		6334	60	6564	23	3.8	ĉ			051		85ΔfΔ *
	Dy(p) 10		6480	100	0504	25	0.8	U U			IRS		85A108 *
	* ¹⁴⁷ Tb-C	M-A=-7	0707(28) ke	V for mix	ture gs+m at	50.6 ke	v	0			into		Ens99 **
	* ¹⁴⁷ Dv-C	M-A=-6	3437(28) ke	V for 1471	Dv^m at Eexc=	=750 5 kg	eV						NDS928**
	$*^{147}Ba(\beta^{-})^{147}La$	Systemati	cal trends su	ggest 147	Ba + 500	10010 10							GAu **
	$*^{147}$ Tb $(\beta^+)^{147}$ Gd	$E^+ = 2460$	0(80) to 115	2.2 and 12	292.3 levels.	reinterpr	reted						AHW **
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$*^{147}$ Tb(β^+) ¹⁴⁷ Gd	$0^+ = 466$	0(15) from ¹	47Tb^m at	50.6(0.9)	r-							87Li09 **
	$*^{147}$ Dv(β^+) ¹⁴⁷ Tb	$E^+ = 6012$	2(60) from ¹	47 Dv ^m at	750.5 to 147 T	b^m at 50	.6(0.9)						NDS928**
	$*^{147}$ Dy $(\beta^+)^{147}$ Tb	$O^+ = 718$	0(100) from	147 Dv ^m a	t 750.5 to ¹⁴⁷	Tb^m at 5	50.6(0.9)					NDS928**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Q 110	0(100) 11011	29 4		10 400	0.0(0.)	,					1120720
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁴⁸ Eu- ¹³³ Cs ₁		23315	15	23318	11	0.2	1	53	53 ¹⁴⁸ Eu	MA5	1.0	00Be42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁴⁸ Tb-C _{12,222}		-75692	41	-75728	15	-0.9	Ū			GS2	1.0	03Li.A *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	148 Dv $-^{133}$ Cs		32394	16	32382	11	-0.8	R			MA5	1.0	00Be42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5 -51.113	ave.	-72852	12			0.1	1	93	93 ¹⁴⁸ Dv			average
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁴⁸ Ho-C _{12,222}		-62282	139				2			GS2	1.0	03Li.A *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{148}\text{Eu} - {}^{142}\text{Sm}_{1.042}$		6451	17	6450	11	-0.1	1	44	36 ¹⁴⁸ Eu	MA7	1.0	01Bo59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁴⁸ Nd ³⁵ Cl ₂ - ¹⁴⁴ Nd ³⁷ Cl ₂		12703.6	2.1	12706.2	1.8	0.5	1	12	11 ¹⁴⁸ Nd	H25	2.5	72Ba08
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	148 Sm 35 Cl ₂ $-^{144}$ Sm 37 Cl ₂		8721.4	2.6	8723.4	2.1	0.3	1	10	8 ¹⁴⁴ Sm	H25	2.5	72Ba08
	¹⁴⁸ Nd ³⁵ Cl- ¹⁴⁶ Nd ³⁷ Cl		6725.7	0.9	6726.4	1.8	0.3	1	61	60 ¹⁴⁸ Nd	H26	2.5	73Me28
$^{148}\text{Eu}(\alpha)^{144}\text{Pm}$ 2703.2 30. 2694 10 -0.3 1 11 11 ^{148}Eu 64To04	¹⁴⁵ Cs- ¹⁴⁸ Cs 202 ¹⁴³ Cs 202		-370	90	-370	230	0.0	1	100	100 ⁻¹⁴⁸ Cs	P33	2.5	86Au02
	$^{148}\text{Eu}(\alpha)^{144}\text{Pm}^{.552}$		2703.2	30.	2694	10	-0.3	1	11	11 ¹⁴⁸ Eu			64To04

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
148 Gd(α) 144 Sm		3271.29	0.03	3271.21	0.03	0.0	1	100	89 ¹⁴⁸ Gd			73Go29 Z
148 Sm(p,t) 146 Sm		-6011	8	-6001.1	3.0	1.2	1	14	12 146Sm	Min		72De47
(T))		-6018	15			1.1	U			Ham		74Oe03
148 Gd(p,t) 146 Gd		-7843	4	-7843	4	-0.1	1	93	91 ¹⁴⁶ Gd	Liv		86Ma40
¹⁴⁸ Nd(d, ³ He) ¹⁴⁷ Pr		-3726	40	-3754	23	-0.7	R			KVI		79Sa.A
¹⁴⁸ Nd(d,t) ¹⁴⁷ Nd		-1072	4	-1075.6	1.6	-0.9	1	17	17 ¹⁴⁸ Nd	McM		77St22
147 Sm $(n, \gamma)^{148}$ Sm		8139.8	1.2	8141.41	0.28	1.3	F					69Re04 Z
		8141.1	1.5			0.2	U					70Bu19 Z
		8141.8	0.8			-0.5	_					71Gr37 Z
		8141.3	0.3			0.4	-			Bdn		03Fi.A
	ave.	8141.36	0.28			0.2	1	97	64 ¹⁴⁸ Sm			average
148Gd(p,d)147Gd-148Sm()147Sm		-842	2	-842.7	1.2	-0.3	-					86Ru04
¹⁴⁸ Gd(d,t) ¹⁴⁷ Gd- ¹⁴⁸ Sm() ¹⁴⁷ Sm		-843	2			0.2	_					86Ru04
148 Gd(3 He, α) 147 Gd $-^{148}$ Sm() 147 Sm	L	-842	3			-0.2	_					86Ru04
¹⁴⁸ Gd(p,d) ¹⁴⁷ Gd- ¹⁴⁸ Sm() ¹⁴⁷ S	ave.	-842.4	1.3			-0.2	1	92	84 ¹⁴⁷ Gd			average
148 Ba $(\beta^{-})^{148}$ La		5115	60				5			Bwg		90Gr10
$^{148}La(\beta^{-})^{148}Ce$		7310	140	7260	50	-0.3	4			Trs		82Br23 *
.		7255	55			0.1	4			Bwg		90Gr10
		7650	100			-3.9	С			Kur		02Sh.B
148 Ce(β^{-}) 148 Pr		2060	75	2140	14	1.1	U			Bwg		87Gr.A
-		2140	14				3			Kur		95Ik03
148 Pr(β^{-}) ¹⁴⁸ Nd		4800	200	4883	26	0.4	U					79Ik06
		4965	100			-0.8	U			Bwg		87Gr.A
		4890	50			-0.1	2			-		88Ka14
		4880	30			0.1	2			Kur		95Ik03
		4930	100			-0.5	U			Kur		02Sh.B
148 Pm(β^{-}) 148 Sm		2480	15	2470	6	-0.6	R					62Sc04
$^{148}\text{Eu}(\beta^+)^{148}\text{Sm}$		3122	30	3040	10	-2.7	В					63Ba32
		3150	30			-3.7	В					70Ag01
148 Tb(β^+) 148 Gd		5630	80	5735	14	1.3	F					76Cr.B *
		5835	70			-1.4	U					83Ve06 *
		5710	100			0.3	U			Got		85Sc09 *
		5390	100			3.5	В			Got		85Ti01 *
		5760	80			-0.3	U			IRS		93A103 *
		5752	40			-0.4	1	12	12 ¹⁴⁸ Tb	GSI		95Ke05 *
148 Dy $(\beta^+)^{148}$ Tb		2682	10	2681	10	-0.1	1	95	88 ¹⁴⁸ Tb	GSI		95Ke05 *
$^{148}\text{Ho}^{m}(\beta^{+})^{148}\text{Dy}$		9400	250	*			В			IRS		93A103
* ¹⁴⁸ Tb-C _{12.333}	M-A=-	70462(28) 1	keV for n	nixture gs+	m at 90).1 keV						NDS004**
* ¹⁴⁸ Ho-C _{12.333}	M-A=-	-57815(30) l	keV for n	nixture gs+	m at 40	0#100	ke₩	1				Nubase **
$*^{148}$ La(β^{-}) ¹⁴⁸ Ce	$E^{-}=586$	2(100) supp	osed to g	to levels	around	E=145	0(1)	00)				90Gr10 **
$*^{148}$ Tb(β^+) 148 Gd	$E^{+} = 46$	10(80) assur	ned to gr	ound-state	0							76Cr.B **
*	F: si	nce ¹⁴⁸ Tb g	s 2^- , trar	nsition to 14	⁸ Gd gs	weak						AHW **
$*^{148}$ Tb(β^+) ¹⁴⁸ Gd	$E^{+} = 22$	10(70) from	$^{148}{\rm Tb}^{m}$:	at 90.1 to 20	593.3 le	evel						NDS902**
*	and	$E^+ = 4560(3)$	80) main	ly to 748.5	level. I	Discrep	ant,	not ı	ised			NDS902**
$*^{148}$ Tb(β^+) ¹⁴⁸ Gd	$p^{+} = 0.2$	71(0.10) giv	ves $E^+ =$	1920(30) fr	om 148	Tb ^m at	90.	1 to 2	2693.3 leve	1		85Sc09 **
*	but a	assuming 5(5)% side	feeding; co	mpare	ref.						90Sa32 **
$*^{148}$ Tb(β^+) 148 Gd	KL/β^+ =	1.54(0.09)	to 1863.4	2 level => 0	$Q^{+} = 52$.95(45)						85Ti01 **
* 148-0 148-0	but a	assuming 7(7)% side	feeding; co	mpare	1990S	a32					AHW **
$*^{140}$ Tb(β^+) ¹⁴⁸ Gd	Q ⁺ =57	00(80); and	5910(80) from ¹⁴⁸ T	b^m at 9	0.1						NDS902**
$*^{148}$ Tb(β^+) ¹⁴⁸ Gd	$Q^{+} = 57$	50(40); and	5846(50) from ¹⁴⁸ T	b^m at 9	0.1						NDS902**
$*^{148}$ Dy $(\beta^+)^{148}$ Tb	GSI ave	rage of E ⁺ =	=1043(10)) and 1036	(10) of	ref.						91Ke11 **
*	to 62	20.24 level										NDS902**
$^{149}\text{Eu} - ^{133}\text{Cs}_{1,120}$		23849	17	23825	5	-1.4	U			MA5	1.0	00Be42
$^{149}\text{Tb}-\text{C}_{12,417}$		-76730	32	-76754	5	-0.8	U			GS2	1.0	03Li.A *
$^{149}\text{Dy} - {}^{133}\text{Cs}_{1.120}$		33278	109	33199	9	-0.7	U			MA5	1.0	00Be42

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹⁴⁹ Dy-C _{12,417}		-72698	30	-72695	9	0.1	1	10	10 ¹⁴⁹ Dy	GS2	1.0	03Li.A *
$^{149}\text{Ho}-\text{C}_{12,417}$		-66179	34	-66225	20	-1.4	R			GS2	1.0	03Li.A *
$^{149}\text{Er}-\text{C}_{12,417}$		-57694	30				2			GS2	1.0	03Li.A *
$^{149}\text{Eu} - {}^{142}\text{Sm}_{1.040}$		6909	18	6889	7	-1.1	1	16	11 142 Sm	MA7	1.0	01Bo59
149 Dy $-^{142}$ Sm _{1.049}		16249	16	16262	10	0.8	1	39	29 ¹⁴⁹ Dy	MA7	1.0	01Bo59
¹⁴⁹ Sm ³⁵ Cl- ¹⁴⁷ Sm ³⁷ Cl		5239.8	0.8	5236.9	1.0	-1.4	1	23	14 149 Sm	M21	2.5	75Ka25
$^{149}Gd(\alpha)^{145}Sm$		3102.3	10.	3099	3	-0.3	_					65Ma51 Z
		3096.2	10.			0.3	_			ORa		66Wi12 Z
		3099.1	5.			0.1	_			Dba		67Go32 Z
	ave.	3099	4			0.1	1	58	51 ¹⁴⁹ Gd			average
149 Tb(α) 145 Eu		4074.4	3.	4077.5	2.2	1.1	-			Dba		67Go32 Z
		4073.8	7.			0.5	U					74To07 *
		4081.8	5.			-0.8	-					82Bo04 Z
		4082.8	4.			-1.3	-			Daa		96Pa01
	ave.	4078.1	2.2			-0.3	1	95	84 ¹⁴⁹ Tb			average
149 Sm(n, α) 146 Nd		9429	4	9435.5	1.2	1.6	1	9	6^{-149} Sm	McM		67Oa01
148 Nd(n, γ) 149 Nd		5038.76	0.10	5038.79	0.07	0.3	-			ILn		76Pi04 Z
		5038.82	0.11			-0.3	-		1.10	Bdn		03Fi.A
	ave.	5038.79	0.07			0.0	1	100	99 ¹⁴⁹ Nd			average
¹⁴⁸ Nd(³ He,d) ¹⁴⁹ Pm		455	5	453	3	-0.3	1	47	42 ¹⁴⁹ Pm	McM		80St10 *
¹⁴⁹ Sm(d, ³ He) ¹⁴⁸ Pm		-2064	6	-2066	6	-0.3	2		1.40			88No02
148 Sm(n, γ) 149 Sm		5872.5	1.8	5871.1	0.9	-0.8	1	24	14 ⁻¹⁴⁹ Sm			70Sm.A
140		5850.8	0.6			33.8	С					82Ba15
149 Er(ϵ p) 148 Dy		7080	470	6829	30	-0.5	U			LBL		89Fi01
$^{149}La(\beta^{-})^{149}Ce$		6450	200	5900#	300#	-2.8	D			Kur		02Sh.B *
$^{149}Ce(\beta^{-})^{149}Pr$		4190	75	4360	50	2.3	В			Bwg		87Gr.A
		4380	60			-0.3	3			Kur		951k03
1495 (0) 149311		4310	100	2220	00	0.5	3			Kur		02Sh.B
149 Pr(β^-) 149 Nd		3000	200	3320	80	1.6	2			• •		67Va14
1492110->1492		3390	90	1 (00)	2	-0.7	2	10	11 1490	Kur		951k03
149 p (0 =)149 g		1669	10	1690	3	2.1	1	12	II ····Pm			64G008
$r^{(p)}$ pm($p^{(p)}$) $r^{(p)}$ Sm		10/2	2	1071	4	-0.7	_					60Ar05
		1062	2			4.5	1	40	47 149 Day			/8Re01
149 Eu(a) 149 Em	ave.	1067	5	605	4	0.7	1	49	4/ Pm 12 149En			average
149Cd(a) 149Eu		1208	10	1212	4	1.5	1	14	15 Eu 20 149Eu	Cat		63AU.A
149 Th (R+) 149 C d		2625	10	1515	4	0.9	1	40	20 Eu	CEL		045C.D
$149 \text{D}_{\text{c}}(\theta^{+})^{149} \text{T}_{\text{b}}$		3035	10	303/	4	0.2	1	19	11 10 10 10 149 D	GSI		91Ke06 *
$149 \text{ Lp}(\beta^+)^{149} \text{ Dy}$		5/9/	15	5/81	9	-1.2	1	40	40 ^m Dy			91Ke11 *
$HO(p^{-1})$ Dy		6000	20	0027	10	-0.5	2			CSI		01Ko11
149Er(c)149Ho		8610	20 650	7950	30	1.0	1 L			LBI		91Ke11
* ¹⁴⁹ Th C	M = A = C	71456(28) ka	V for miv	ture œ⊥m et '	35 78 ka	-1.0 V	0			LDL		591101 *
$*^{149}Dv - C$	$M = \Delta = - \theta$	55057(28) ke	V for ¹⁴⁹ I	uic gs∓ii at .)v ^m at Fexc='	2661.1 ke	• •V						NDS94b**
* Dy-C _{12.417} * ¹⁴⁹ Ho-C	$M = \Delta = -6$	51621(28) ke	V for mix	ture $as \perp m$ at	48 80 ke	v						NDS94b**
$*^{149}$ Fr-C	M_A4	53000(28) ke	V for ¹⁴⁹ F	r^m at Fexc=7	40.00 Ke 41 8 keV	• ,						Fns95 **
$^{+149}$ Tb(α) ¹⁴⁵ Eu	$F(\alpha) = 30$	P(7) from ¹⁴	9Tb ^m at 3	5 78	+1.0 KC V							NDS0/b**
$*^{148}$ Nd(³ He d) ¹⁴⁹ Pm	Based on	¹⁴⁶ Nd(³ He d	10 at 5	87 6(0.9)								AHW **
$*^{149}La(B^{-})^{149}Ce$	Systemat	ical trends su	ordest 1491	= 57.0(0.9)	ound							CTh **
$*^{149}$ Th $(\beta^+)^{149}$ Gd	$E^+ = 185$	3(10) from ¹⁴	$^{49}\text{Th}^m$ at 3	15 78 to 795 8	2 level							NDS94b**
$*^{149}$ Dv(β^+) ¹⁴⁹ Th	Original	0-3812(10)	from F ⁺ -	=1965(10) +0	825 16 14	vel cor	recter	1				GAn **
* D)(P) 10	to F ⁺	= 1950(13)	for backg	round substra	ction							GAu **
$*^{149}$ Er $(\varepsilon)^{149}$ Ho	KLM/ β^+	=0.68(0.34)	from ¹⁴⁹ E	r^m at 741.8 to	4699.71	evel						NDS94b**
¹⁵⁰ Tb ^m -C		-75850	30				2			GS2	1.0	03I i A
$^{10}-C_{12.5}$		40150	29	40146	15	-0.1	4			MA5	1.0	00Be42
110- CS _{1.128}	01/0	40130	29	+0140	15	-0.1	1	53	53 150 HA	MAJ	1.0	average
	ave.	40132	∠ 1			0.7	1	55	55 ··· H0			average

A.H.	Wapstra	et al./	Nuclear	Physics A	729	(2003)	129–336
------	---------	---------	---------	-----------	-----	--------	---------

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹⁵⁰ Ho-C ₁₂₅		-66499	40	-66504	15	-0.1	U			GS2	1.0	03Li.A *
$^{150}\text{Er}-\text{C}_{12.5}$		-62060	30	-62086	18	-0.9	1	38	38 ¹⁵⁰ Er	GS2	1.0	03Li.A
¹⁵⁰ Nd ³⁵ Cl ₂ - ¹⁴⁶ Nd ³⁷ Cl ₂		13672.5	1.8	13674.1	2.5	0.4	1	30	28 ¹⁵⁰ Nd	H25	2.5	72Ba08
¹⁵⁰ Sm ³⁵ Cl ⁻¹⁴⁸ Sm ³⁷ Cl ²		5404.8	0.6	5403.0	0.9	-1.2	1	39	22 150 Sm	M21	2.5	75Ka25
¹⁵⁰ Nd- ¹⁵⁰ Sm		3617.0	1.2	3615.3	2.4	-0.6	1	62	58 ¹⁵⁰ Nd	H25	2.5	72Ba08
¹⁵⁰ Nd- ¹⁴⁸ Nd		3988	3	3997.6	2.9	1.3	1	15	10 ¹⁵⁰ Nd	M17	2.5	66Be10
150 Gd(α) 146 Sm		2804.9	10.	2808	6	0.3	-					62Si14
		2792.6	18.			0.8	-		. 150			65Og01
150-20146-20	ave.	2802	9	2505	-	0.7	1	45	39 ¹⁵⁰ Gd			average
150 Tb(α) ¹⁴⁰ Eu		3585.5	5.	3587	5	0.3	1	92	81 156 16			6/Go32 Z
$Dy(\alpha)$ Gu		4343.8	5.	4551.5	1.5	1.1	_					79Ho10 Z
		4351 3	3			0.4	_					82Bo04 *
		4352.4	2.			-0.5	_					82De11 Z
	ave.	4351.2	1.5			0.0	1	99	90 ¹⁵⁰ Dy			average
¹⁵⁰ Nd(d, ³ He) ¹⁴⁹ Pr		-4501	10	-4430	80	7.2	С			KVI		79Sa.A
149 Sm(n, γ) 150 Sm		7984.9	0.6	7986.7	0.4	3.1	F					69Re04 Z
		7986.7	1.5			0.0	-					70Bu19 Z
		7986.7	0.4			0.1	_		- 140 m	Bdn		03Fi.A
1501 ()149321	ave.	7986.7	0.4	12(0)(2.0	0.1	1	95	64 ¹⁴⁹ Sm			average
100Lu(p) 10 Y B		1269.0	4.	1209.0	2.8	0.0	2					84H0.A
150 L u ^m (p) ¹⁴⁹ Vb		1209.0	4.			0.0	3			Oak		933e04 00Gi01
$^{150}Ce(\beta^{-})^{150}Pr$		3010	90	3480	40	52	B			Bwo		87Gr A
		3480	40	5400	10	5.2	3			Kur		95Ik03
150 Pr(β^{-}) 150 Nd		5690	80	5386	26	-3.8	В			Bwg		87Gr.A
		5386	26				2			Kur		95Ik03
150 150		5290	100			1.0	U			Kur		02Sh.B
150 Pm(β^{-}) 150 Sm		3454	20				2					77Ho09
$^{150}\text{Eu}(\beta^{-})^{150}\text{Gd}$		978	10	971	4	-0.7	-					63Yo07 *
		968	4			0.9	-	01	5 4 150 Em			65Gu03 *
150 Tb $(B^+)^{150}$ Gd	ave.	909 4670	4	1658	8	0.0	1	31	10 ¹⁵⁰ Th			average 76Cr B
$^{150}\text{Tb}^{m}(\beta^{+})^{150}\text{Gd}$		4070 5040	100	5115	29	-0.3	U I	51	19 10	IRS		93A103
150 Ho(β^+) 150 Dy		6980	150	7369	15	2.6	В					84A136 *
(p-) =)		6560	100			8.1	в			IRS		93A103
150 Ho(ε) 150 Dy		6560	100			8.1	В			IRS		93A103
		7372	27			-0.1	1	29	27 ¹⁵⁰ Ho			00Ca.A
150 - 150		7444	126			-0.6	U					01Ro35
$^{150}\text{Ho}^{m}(\beta^{+})^{150}\text{Dy}$		7360	50	50.00	50		2			IRS		83A106
		6625 7060	120	/360	50	6.1	В			Got		85Sc09
$150 \text{Er}(\beta^+) 150 \text{Ho}$		4108	15	4115	14	5.8 0.5	1	82	62 150 Er	GSI		95A105 91Ke11
* ¹⁵⁰ H0-Cus	M - A = -61	4100 1948(28) ke	V for mi	xture øs+m a	1 - 10(5)	50) keV	1	02	02 LI	051		Nubase **
$*^{150}$ Dv(α) ¹⁴⁶ Gd	Recalibrat	ed as in ref.		intere go inte		(0) ILC (91Rv01 **
$*^{150}\text{Eu}(\beta^{-})^{150}\text{Gd}$	Q ⁻ =1020(10) from 150	Eu^m at 4	42.1								NDS866**
$*^{150}$ Eu(β^{-}) ¹⁵⁰ Gd	Q ⁻ =1010(4) from ¹⁵⁰ I	Eu^m at 42	2.1								NDS866**
$*^{150}$ Ho(β^+) 150 Dy	E ⁺ =4550	(150) to 139	95.0 and	1456.8 level	s							82No08 **
¹⁵¹ Eu- ⁸⁵ Rb _{1 776}		76520	15	76511.6	2.6	-0.6	U			MA5	1.0	00Be42
¹⁵¹ Tb-C _{12,583}		-76866	43	-76897	5	-0.7	U			GS2	1.0	03Li.A *
¹⁵¹ Dy-C _{12.583}		-73809	30	-73815	4	-0.2	U			GS2	1.0	03Li.A
¹⁵¹ Ho-C _{12.583}		-68323	33	-68312	13	0.3	U			GS2	1.0	03Li.A *
¹⁵¹ Er-C _{12.583}		-62528	30	-62551	18	-0.8	2			GS2	1.0	03Li.A
151Th(a)147T-		-62540	30	2400	A	-0.4	2	F 0	40.151.77	GS2	1.0	03L1.A *
151 Dv(α) ¹⁴⁷ C 4		5499.6 4175 7	5. E	3490 4170 5	4 26	-0./	1	38	49 ¹³¹ Ib			0/G032 67Gc22 7
$Dy(\alpha) = Ga$		41/5./ 4181-1	э. з	41/9.5	2.0	-0.5	2					82Bo04 7
151 Ho(α) ¹⁴⁷ Tb		4696 3	5	4695.0	18	-0.3	3			GSa		79Ho10 *
		4695.8	3.			-0.3	3					82Bo04 *
		4693.8	3.			0.4	3					82De11 *
		4694.9	5.			0.0	3			Daa		96Pa01 *

Item	Input value		Adjusted value		v _i	v _i Dg			in flux	Lab	F	Reference	
151 Fu(n t) 149 Fu		-5872	5	-5873	4	-0.3	1	55	53	¹⁴⁹ Fu	Min		75Ta12
$^{150}Nd(n,\gamma)^{151}Nd$		5334.55	0.2	5334.55	0.10	0.0	2	55	55	Du	ILn		76Pi13 Z
		5334.55	0.11		0.2.0	0.0	2				Bdn		03Fi.A
¹⁵⁰ Nd(³ He,d) ¹⁵¹ Pm		1503	5	1501	4	-0.4	1	81	77	¹⁵¹ Pm	McM		80St10 *
150 Sm(n, γ) 151 Sm		5596.42	0.20	5596.46	0.11	0.2	_				ILn		86Va08 Z
		5596.44	0.13			0.1	-				Bdn		03Fi.A
	ave.	5596.43	0.11			0.2	1	100	59	¹⁵¹ Sm			average
$^{151}Eu(p,d)^{150}Eu$		-5721	9	-5709	6	1.4	1	48	46	¹⁵⁰ Eu			82So.B
151 Yb(ε p) 150 Er		9000	300				2						86To12 *
¹⁵¹ Lu(p) ¹⁵⁰ Yb		1241.0	2.8	1010		0.1	3						93Se04
151 Lum(p) 150 Y b		1318.8	10.	1318	6	-0.1	0				Daa		99B114 *
$151 \text{ Dr}(R^{-}) 151 \text{ N/4}$		5270	100	4192	22	0.2	4				Kur		02Sn.B
PI(p) Nd		4170	10	4162	23	1.2	3				Бwg Ida		90Gr10 93Gr17 *
		4210	30			-0.9	3				Kur		95Ik03
151 Nd(β^{-}) 151 Pm		2480	50	2442	4	-0.8	Ŭ				Kur		95Ik03
$^{151}\text{Pm}(\beta^{-})^{151}\text{Sm}$		1195	10	1187	5	-0.8	1	23	23	¹⁵¹ Pm			64Be10
$^{151}\text{Sm}(\beta^{-})^{151}\text{Eu}$		75.9	0.6	76.6	0.5	1.2	1	81	55	¹⁵¹ Eu			59Ac28
$^{151}\text{Gd}(\varepsilon)^{151}\text{Eu}$		463	3	464.2	2.8	0.4	1	86	84	151Gd			83Vo10
151 Tb $(\beta^+)^{151}$ Gd		2562	5	2565	4	0.7	_						77Cr05
		2566	12			-0.1	-						84Sc18
	ave.	2563	5			0.6	1	66	51	¹⁵¹ Tb			average
$^{151}{\rm Er}(\beta^+)^{151}{\rm Ho}$		5130	110	5366	20	2.1	в						98Fo06
$^{151}Lu^m(IT)^{151}Lu$		77	5				4				Daa		99Bi14
* ¹⁵¹ Tb-C _{12.583}	M-A=-71	551(28) ke	V for mi	xture gs+m a	t 99.54	keV							Ens99 **
* ¹⁵¹ Ho-C _{12.583}	M-A=-63	622(28) ke	V for mi	xture gs+m a	t 41.0 k	eV							NDS972**
$*^{151}\text{Er}-\text{C}_{12.583}$	M-A=-55	670(28) ke	V for ¹⁵¹	Er^m at $Eexc=$	2585.5	keV	1 * * 2		1.0				NDS972**
$*^{15}HO(\alpha)^{17}ID$	E=4523.8((5,Z) to (147)	D^{m} at 50	(0.9); 4610	.8(5,Z)	from 15	• Ho"	at 41	1.1(0).2			911008 **
$*^{151}H_0(\alpha)^{147}T_b$	E=4521.5(.	(3, Z) to (147)	D^{m} at 50	6(0.9); 4611	2(4, Z)	from 15	1 Hon	at 41	1.1(0).2			911008 **
151 Ho(α) ¹⁴⁷ Th	E=4321.2(.	$(5, \mathbf{Z})$ to 147	$^{D^{m}}$ at 50	(0.9); 4007	.2(4,2)	ITOIN **	- H0-	· at 41).2			911008 ** 06Pe01 +++
$* H0(0) He d)^{151}Pm$	$E(\alpha)=4521$ Based on ¹	46 Nd(³ He c	10 at 3 1) ¹⁴⁷ Pm (D = -87.6(0.9)									ΔHW **
$*^{151}$ Yh(en) ¹⁵⁰ Fr	E(n) estim:	ated 7300(3	(00) to le	vels around 1	700								GAu **
*	"Statis	tical p's ori	ginate fr	om $11/2^{-}$ iso	mer."								86To12 **
$*^{151}Lu^{m}(p)^{150}Yb$	Derived fro	$m^{151}Lu^{m}($	IT)=77(5	5)									99Bi14 **
$*^{151} Pr(\beta^{-})^{151} Nd$	Two highes	st Q ⁻ =4135	5(50),413	37(40)									AHW **
	0												
$C_{12} H_8 - {}^{152}Sm$	1	142867.0	5.0	142867.8	2.7	0.1	U				M22	2.5	75Ka25
152 Eu-C _{12.667}	-	-78347	50	-78255.5	2.6	1.8	U				GS2	1.0	03Li.A *
152 Tb-C _{12.667}	-	-76212	159	-75930	40	1.8	U				GS2	1.0	03Li.A *
152 Dy-C _{12.667}	-	-75278	30	-75282	6	-0.1	U				GS2	1.0	03Li.A
¹⁵² Ho-C _{12.667}	-	-68248	58	-68286	15	-0.7	U				GS2	1.0	03Li.A *
$^{152}\text{Er}-\text{C}_{12.667}$	-	-64962	30	-64950	11	0.4	R				GS2	1.0	03L1.A
$152 \text{ Im} - \text{C}_{12.667}$	-	-55578	79	10200.0	1.1	0.2	2				GS2	1.0	03L1.A *
$102 \mathrm{Sm} \mathrm{Sm} $		10810.8	2.0	10809.9	1.1	-0.2	1	10	c	152 c	H25	2.5	72Ba08
152 Sm 35 Cl 150 Sm 37 Cl		5402.7	1.4	5407.0	0.7	2.1	1	10	8	152 Sm	M21	2.5	75Ka25
$^{152}Dv(\alpha)^{148}Gd$		3728.0	8	3726	4	_0 2	2	11	0	SIII	19121	2.5	65Ma51 7
Dy(u) Ou		3726.0	5	5720	-	0.1	2						67Go32 Z
152 Ho(α) ¹⁴⁸ Tb		4506.9	3.	4507.3	1.3	0.1	2						82Bo04 *
		4508.0	2.			-0.3	2						82De11 Z
		4505.8	3.			0.5	2						82To14
		4507.9	3.			-0.2	2						87St.A Z
152 Er(α) 148 Dy		4935.2	5.	4934.4	1.6	-0.1	2						79Ho10
		4934.6	3.			0.0	2						82Bo04 Z
		4934.3	2.			0.1	2						82De11 Z

Item		Input va	lue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹⁵⁰ Nd(t,p) ¹⁵² Nd		4125	30	4129	24	0.1	1	67	66 ¹⁵² Nd	Ald		72Ch11
151 Sm $(n, \gamma)^{152}$ Sm		8257.6	0.8	8257.6	0.6	0.0	1	60	44 ¹⁵² Sm			71Gr22 Z
$^{151}Eu(n,\gamma)^{152}Eu$		6306.70	0.10	6306.72	0.10	0.2	1	99	59 ¹⁵² Eu	ILn		85Vo15 Z
152 - 152		6307.11	0.14			-2.8	в			Bdn		03Fi.A
152 Pr(β^{-}) 152 Nd		6350	120	1104	10	0.5	2			Kur		95Ik03
132 Nd(β^-) 132 Pm		1088	27	1104	19	0.6	-			V····		93Sh23
	0710	1120	30			-0.5	1	05	51 152 Day	Kur		951K03
$152 pm (\beta^{-})^{152} sm$	ave.	3600	20	3506	26	0.1	I	65	31 PIII			average
I III(p) = SIII		3520	150	3500	20	-0.3	U					72Wa04
		3400	200			0.5	Ŭ					75Wi08
		3500	100			0.1	_					77Ya07
		3500	40			0.2	-			Kur		95Ik03
	ave.	3500	40			0.2	1	49	49 ¹⁵² Pm			average
152 Pm ^m (β^-) 152 Sm		3603	100	3650	80	0.5	2					71Da19
152 - (0+)152 a		3753	150	1054.0	0.7	-0.7	2					72Wa04
$^{152}\text{Eu}(\beta^+)^{152}\text{Sm}$		18/1	5	18/4.3	0.7	0.7	U					58A199 *
		1870.8	2			1.7	0					$\frac{02L010}{72Sv02}$ *
		1872.8	1.5			1.7	_					725V02 77Mi A
	ave.	1872.1	1.2			1.8	1	35	20 ¹⁵² Sm			average
$^{152}Eu(\beta^{-})^{152}Gd$		1809	10	1819.7	1.2	1.1	U					58A199 *
4		1827	7			-1.0	U					60La04
		1806	4			3.4	U					69An18 *
152 Tb(β^+) 152 Gd		3990	40				3					76Cr.B *
152 Ho(β^+) 152 Dy		6690	100	6516	15	-1.7	В			IRS		83A106 *
		6270	140			1.8	U			IDC		Averag *
$152 Vh(B^+) 152 Tm$		0225 5465	90			3.2	В 2			IKS Got		93A103 *
$*^{152}Fu=C$	M	5405 315(35) keV	195 for mixtur	e αs⊥m⊥n at .	45 5998	and 147	3 86 ke	v		Got		905a.A ND\$969**
* ¹⁵² Tb-C.	M - A = -707	740(29) keV	for mixtur	e gs+m + n at 50	1 74 keV	//////////////////////////////////////	.00 KC					NDS969**
* ¹⁵² Ho-C _{12.667}	M-A=-634	192(28) keV	for mixtur	e gs+m at 160	D(1) keV							NDS969**
$*^{152}$ Tm $-C_{12.667}$	M-A=-517	720(54) keV	for mixtur	e gs+m at 10	0#80 keV	V						Nubase **
$*^{152}$ Ho(α) ¹⁴⁸ Tb	$E(\alpha)=4389$	1(3,Z); and	4455.1(3,Z) from ¹⁵² Ho	m to 1481	b^m						82Bo04 **
*	combin	ed with 152H	$0^{m}(IT)^{-148}$	$Tb^m(IT)=160$	(1)-90.1	(0.3)						87St.A **
$*^{152}$ Eu(β^+) 152 Sm	$E^+ = 895(5)$) fron ¹⁵² Eu ⁿ	¹ at 45.599	4								NDS899**
$*^{152}$ Eu(β^+) 152 Sm	$E^+ = 890(5)$) from ¹⁵² Eu	m at 45.599	94								NDS899**
$*^{152}$ Eu(β^{-}) 152 Gd	Q ⁻ =1855(1	0) from ¹⁵² E	u^m at 45.6	00								NDS969**
$*^{152}$ Eu(β)) 152 Gd	Q = 1852(4)) from 15° Eu	" at 45.60	0	244.00							NDS969**
$*^{152}H_{0}(B^{+})^{152}D_{V}$	$E^+ = 2830($ $E^+ = 2200($	15) 8(4)% to 100) from 15	2 ground-sta 2 U o ^m of 16	ate, $5.2(1)\%$ t	$1.9^{\pm}10$	ol						ND5899**
$*^{152}Ho(B^+)^{152}Dv$	E = 3390(From adopt	ed KI M/B^+	-0.97(0.13)	0(1) 10 2437.	10 100	ei						δ/SLA ** ΔHW **
* 110(p) by	from ¹⁵²	${}^{2}\text{Ho}^{m}$ at 160	(1) to 2437	1 8 ⁺ level								87St A **
*	after ex	tra 3(2)% sic	le feeding	correction; se	e ref.							90Sa32 **
*	$p^{+} = 0.5$	52(0.04)/.96	7 gives KL	$M/\beta^+=0.86(0$	0.14)							85Sc09 **
*	KLM/β	+=1.12(0.10)) after 0.9	67(0.008) sid	e feeding	g correct	ion					90Sa32 **
$*^{152}$ Ho(β^+) ¹⁵² Dy	Q ⁺ =6270(90); and 633	0(100) fro	m 152 Ho ^m at	160(1)							87St.A **
¹⁵³ Eu- ⁸⁵ Rh		80021	16	80008 8	2.6	-0.8	U			MA5	1.0	00Be42
$^{153}Ho-C_{12.575}$		-69814	37	-69801	6	0.3	Ŭ			GS2	1.0	03Li.A *
153 Er-C _{12.75}		-64942	30	-64937	9	0.2	1	10	10 ¹⁵³ Er	GS2	1.0	03Li.A
153 Dy(α) ¹⁴⁹ Gd		3560.0	8.	3559	4	-0.1	_					65Ma51 Z
		3554.9	5.			0.8	-					67Go32 Z
	ave.	3556	4			0.6	1	70	48 ¹⁵³ Dy			average
153 Ho(α) 149 Tb		4052.3	5.	4052	4	-0.1	2					68Go.C *
153-0 140-		4051.0	5.	1000 0		0.1	2					71To01 *
$^{1.53}$ Er(α) 149 Dy		4804.5	3.	4802.3	1.4	-0.7	-					82Bo04 Z
		4802.0	2.			0.2	-					82Dell Z
		4802.8	3. 4			-0.2	_			Daa		0/SC.A Z
	ave.	4802.3	1.4			-0.1	1	100	78 ¹⁵³ Er	Dua		average
							-					

Item		Input va	lue	Adjusted v	alue	v _i	Dg	Sig	Main flux	Lab	F	Reference
153 Tm(α) 149 Ho		5252.3	5.	5248.1	1.5	-0.8	U					79Ho10 *
		5246.1	3.			0.7	3					82Bo04 *
		5249.2	2.			-0.5	3					82De11 *
		5247.7	3.			0.1	3			_		87Sc.A *
152 0 152 0		5249.5	5.			-0.3	U			Daa		96Pa01
152 Sm(n, γ) 153 Sm		5867.1	0.4	5868.40	0.13	3.2	F					69Re04 Z
		5868.4	0.3			0.0	_ 					71Be41 Z
		5868.40	0.7			0.0	U			Bdn		02Ei A
	ave	5868.40	0.13			0.0	1	100	100 153 Sm	Dun		average
152Eu(n 20)153Eu	ave.	8550.28	0.13	8550.29	0.12	0.0	1	100	74 ¹⁵³ Eu	IIn		85Vo15 7
$^{152}Gd(n, \gamma)^{153}Gd$		6247.27	0.12	6246.94	0.12	-0.9	2	100	/+ Lu	ILn		85Vo15 Z
Gu(ii,7) Gu		6246.89	0.14	0210.91	0.15	0.4	2			ILn		93Sp.A
		6247.48	0.21			-2.6	В			Bdn		03Fi.A
153 Pr(β^{-}) 153 Nd		5720	100				3			Kur		02Sh.B
153 Nd(β^{-}) 153 Pm		3336	25				2			Ida		93Gr17
•		3260	100	3336	25	0.8	U			Kur		02Sh.B
153 Pm(β^{-}) 153 Sm		1863	15	1881	11	1.2	1	52	52 ¹⁵³ Pm	Ida		93Gr17
153 Tb(β^+) 153 Gd		1573	5	1570	4	-0.7	1	61	58 ¹⁵³ Tb			78Cr02
153 Dy(β^+) 153 Tb		2171	2	2170.5	1.9	-0.3	1	94	52 ¹⁵³ Dy			78Gr13
$^{153}Lu^{m}(IT)^{153}Lu$		80	5	80	5	0.0	R					157Ta-4
172		80	5				10					97Ir01
* ¹⁵³ Ho-C _{12.75}	M - A = -6	64997(28) keV	for mixt	ure gs+m at 68	8.7 keV							NDS982**
$*^{153}$ Ho(α) ¹⁴⁹ Tb	$E(\alpha)=40$	13.1(5,Z) from	153Ho ^m	at 68.7(1.0)								94Xu09 **
$*^{153}$ Ho(α) ¹⁴⁹ Tb	$E(\alpha)=39$	10(5) to ¹⁴⁹ Tb ⁷	ⁿ at 35.78	8	152-							NDS94b**
$*^{155}$ Tm(α) ¹⁴⁹ Ho	$E(\alpha)=51$	14.2(5,Z) conta	ains a 8%	5.6(0.3) lowe	r 155 Tm	$m^{m}(\alpha)$ b	ranch	1				87Sc.A **
$*^{153}$ Tm(α) ¹⁴⁹ Ho	$E(\alpha)=510$	08.2(3,Z) cont	ains a 8%	5.6(0.3) lowe	r ¹⁵⁵ Tm	$m^{m}(\alpha)$ b	ranch	1				87Sc.A **
$*^{155}\text{Tm}(\alpha)^{149}\text{Ho}$	$E(\alpha)=51$	11.2(2,Z) contained to $10.6(2,Z)$	ains a 8%	5.6(0.3) lowe	r ¹⁵⁵ I m	$m(\alpha)$ b	ranch	1				8/Sc.A **
$*^{100} \operatorname{Im}(\alpha)^{100} \operatorname{Ho}$	$E(\alpha)=51$	10.6(3,Z); and	5105.0(4	+,Z) for lower	1 m ^m	(α) bra	псп					8/SC.A **
$C_{12} H_{10} - {}^{154}Sm$		156035.7	4.0	156041.0	2.7	0.5	1	7	7 ¹⁵⁴ Sm	M22	2.5	75Ka25
¹⁵⁴ Tb-C _{12.833}		-75376	115	-75320	50	0.5	R			GS2	1.0	03Li.A *
154 Dy $-^{133}$ Cs $_{1.158}$		33903	19	33911	8	0.4	1	19	19 ¹⁵⁴ Dy	MA5	1.0	00Be42 *
154 Ho-C _{12.833}		-69348	82	-69398	9	-0.6	U			GS2	1.0	03Li.A *
154 Tm $-C_{12.833}$		-58480	48	-58432	15	1.0	U		154 -	GS2	1.0	03Li.A *
¹⁵⁴ Sm ⁵⁵ Cl ⁻¹⁵² Sm ⁵⁷ Cl		5427.2	0.4	5426.9	0.9	-0.3	1	86	66 ¹³⁴ Sm	M21	2.5	75Ka25
¹⁵⁴ Sm- ¹⁵⁴ Gd		1342.8	0.8	1343.7	1.4	0.4	1	47	27 ¹³⁴ Sm	M21	2.5	75Ka25
$^{154}Sm - C_{12}H_9$		-148211.0	8.0	-148216.0	2.7	-0.3	U	02	01 1540	M21	2.5	75Ka25
154 Dy(α) 150 Gd		2946.4	5.	2946	5	-0.1	1	93	81 ¹³⁴ Dy			6/Go32 Z
$Ho(\alpha)^{100}$ I b		4041.3	5.	4041	4	0.0	2					68G0.C Z
$15411_{0}m(\alpha)$ 150 Thm		2810.2	10	2022	5	0.0	2					743C19 Z
$HO(\alpha) = HO(\alpha)$		3824.0	10.	3823	5	_0.4	3					74Sc19 Z
154 Er(α) 150 Dy		4280.5	5	4279 9	2.6	_0.1	_					68Go C Z
$EI(\alpha) = Dy$		4279.5	3.	-1279.9	2.0	0.2	_					82Bo04 Z
	ave.	4279.7	2.6			0.1	1	98	90 ¹⁵⁴ Er			average
154 Tm(α) 150 Ho		5096.7	5.	5093.8	2.6	-0.6	2					79Ho10 Z
111(0) 110		5092.7	3.	007010	2.0	0.4	2					82Bo04
$^{154}\mathrm{Tm}^m(\alpha)^{150}\mathrm{Ho}^m$		5174.8	5.	5171.7	1.6	-0.6	3					79Ho10 Z
		5170.8	3.			0.3	3					82Bo04 Z
		5171.7	2.			0.0	3					82De11 Z
154 Yb(α) 150 Er		5473.4	5.	5474.2	1.7	0.2	2					79Ho10 Z
		5474.7	2.			-0.2	2					82De11 Z
		5473.4	4.			0.2	2			Daa		96Pa01
¹⁵⁴ Sm(d, ³ He) ¹⁵³ Pm		-3623	25	-3572	11	2.0	-					76Su.B
154 Sm(t, α) 153 Pm		10748	20	10748	11	0.0	-			LAl		78Bu18
¹⁵⁴ Sm(d, ³ He) ¹⁵³ Pm	ave.	-3592	16	-3572	11	1.3	1	48	48 ¹⁵³ Pm	l I		average
153 Eu(n, γ) 154 Eu		6442.2	0.3	6442.23	0.24	0.1	-			ILn		87Ba52 Z
		6442.2	0.4			0.1	-			Bdn		03Fi.A
152	ave.	6442.20	0.24			0.1	1	99	73 ¹⁵⁴ Eu			average
133 Gd(n, γ) 154 Gd		8895.25	0.30	8894.71	0.17	-1.8	-			ILn		85Vo15 Z
		8894.47	0.20			1.2	_			ILn		93Sp.A Z

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference	
153 Gd(n, γ) 154 Gd	ave.	8894.71	0.17	8894.71	0.17	0.0	1	100	97 ¹⁵³ Gd			average	
154 Pr(β^{-}) 154 Nd		7490	100				4			Kur		02Sh.B	
154 Nd(β^{-}) 154 Pm ^m		2687	25				3			Ida		93Gr17	
¹⁵⁴ Pm ^m (IT) ¹⁵⁴ Pm		210	70	120	120	-1.3	В					72Ta13	
		-30	20			7.5	В					90So08	
154 Pm(β^{-}) 154 Sm		3900	200	3960	40	0.3	U					71Da28	
		4190	170			-1.3	U					72Ta13	
		3940	50			0.5	2					73Pr05	
		3940	200			0.1	U			T 1		74Ya07	
$154 \mathbf{D} \dots m(\theta - 154 \mathbf{C} \dots$		4056	100	4090	110	-0.9	2			Ida		93Gr17	
$p = p m^{m}(p)^{m} m$		3900	200	4080	110	0.9	2					71Da28	
		3880	200			-1.7	2					721a15 74V207	
$154 \text{En}(B^{-})^{154} \text{Gd}$		1078	200	1068.8	1.1	1.0	1 U					60L 204	
Eu(p) Ou		1967	2	1908.8	1.1	-1.3	_					77R a08	
		1975	3			-2.1	_					81Bu A	
	ave	1969 5	17			-0.4	1	47	27 ¹⁵⁴ Gd			average	
154 Tb $(\beta^+)^{154}$ Gd		3562	50	3550	50	-0.2	2					70Ag03	
$^{154}\text{Ho}^{m}(\beta^{+})^{154}\text{Dv}$		6000	100	5992	29	-0.1	Ū			IRS		83Al.A	
		6070	80			-1.0	U			IRS		93A103	
$^{154}\text{Tm}^{m}(\beta^{+})^{154}\text{Er}$		8232	150	8250	50	0.1	U			Dbn		94Po26	
* ¹⁵⁴ Tb-C _{12 833}	M-A=-70)142(43) keV	/ for mixt	ure gs+m+n a	t 12(7) ar	nd 200#	150 k	eV				Nubase **	
* ¹⁵⁴ Dy- ¹³³ Cs _{1,158}	No contam	ination obse	rved, but	contamination	n by ¹⁵⁴ T	ь						00Be42**	
*	cannot	be excluded	l									00Be42**	
* ¹⁵⁴ Ho-C _{12.833}	M-A=-64	1478(28) keV	/ for mixt	ure gs+m at 2	38(30) ke	eV						Nubase **	
$*^{154}$ Tm $-C_{12.833}$	M-A=-54	1438(32) keV	/ for mixt	ure gs+m at 7	0(50) keV	V						Nubase **	
¹⁵⁵ Tb-C _{12,917}		-76431	30	-76495	13	-2.1	U			GS2	1.0	03Li.A	
155 Dy $-C_{12.917}$		-74227	30	-74246	13	-0.6	U			GS2	1.0	03Li.A	
¹⁵⁵ Ho-C _{12.917}		-70867	30	-70897	19	-1.0	2			GS2	1.0	03Li.A	
¹⁵⁵ Er-C _{12.917}		-66785	30	-66791	7	-0.2	U			GS2	1.0	03Li.A	
¹⁵⁵ Tm-C _{12.917}		-60814	33	-60801	14	0.4	U			GS2	1.0	03Li.A *	
¹⁵⁵ Gd ³⁵ Cl- ¹⁵³ Eu ³⁷ Cl		4345.4	2.4	4341.8	1.2	-0.6	U			H25	2.5	72Ba08	
155 Er(α) 151 Dy		4118.3	5.				3					74To07 Z	
$^{155}\text{Tm}(\alpha)^{151}\text{Ho}$		4579.3	10.	4572	5	-0.6	4					71To01 *	
		4568.1	10.			0.4	4					71To01 *	
155 7 1 () 151 10		4570.1	8.	5005 6		0.2	4					92Ha10 *	
155 Y b(α) 151 Er		5344.1	5.	5337.6	2.3	-1.3	3					79Ho10	
		5330.0	5. 4			0.2	2					82B004 Z	
		5340.1	4.			0.6	3			Daa		911006 06Po01	
155 L u(α) 151 Tm		5796.9	+. 5	5802.7	2.6	-0.0	11			Daa		80Ho12	
Lu(u) III		5797.9	5	5002.7	2.0	1.2	11					91To08	
		5805.1	5.			-0.5	11			Daa		96Pa01	
		5811.2	5.			-1.7	11			Ara		97Da07	
155 Lu ^m (α) ¹⁵¹ Tm ^m		5723.0	10.	5730.5	2.8	0.7	12					89Ho12	
		5727.1	5.			0.7	12			ORa		91To08	
		5732.2	5.			-0.3	12			Daa		96Pa01	
		5734.2	5.			-0.7	12			Ara		97Da07	
155 Lu ⁿ (α) 151 Tm		7574.9	15.	7584	3	0.2	U					89Ho12	
154 155		7586.2	5.			-0.5	R			Daa		96Pa01 *	
154 Sm(n, γ) 155 Sm		5806.8	0.6	5806.96	0.27	0.3	2					82Ba15 Z	
154-		5807.0	0.3			-0.1	2		a a 155-	ILn		82Sc03 Z	
154 Eu $(n,\gamma)^{155}$ Eu		8151.3	0.4	8151.4	0.4	0.3	1	98	92 ¹⁵⁵ Eu	ILn		86Pr03	
13 Gd(n, γ) 133 Gd		6435.11	0.30	6435.22	0.18	0.4	-			ILn		86Sc25 Z	
		6435.29	0.23			-0.3	1	00	50 154 0 1	Bdn		03F1.A	
	ave.	6435.22	0.18			0.0	1	99	50 1.4 Gd			average	
Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference	3
--	------------	-------------	----------------------	----------------------------------	--------------------	----------------	---------	-----	-----------------------	-----	-----	---------------------	----
155 Ta(p) 154 Hf		1776	10				3			Arn		98Uu A	
$155 Nd(B^{-})$ 155 Pm		4222	150	4500#	150#	19	D			Ida		93Gr17	*
$^{155}Pm(\beta^{-})^{155}Sm$		3224	30	-15001	1500	1.7	3			Ida		93Gr17	
155 Sm(β^{-}) 155 Fu		1607	25	1627.2	12	0.8	U			Ida		93Gr17	
$^{155}Fu(\beta^{-})^{155}Gd$		252	5	252.7	1.2	0.0	_			Iua		54Le08	
$Eu(\beta)$ Ou		245	5	232.1	1.2	1.5	_					58G156	
		245	5			1.5	_					59Am16	
	91/0	245	20			1.5	1	17	0 ¹⁵⁵ Gd			overage	
$155 Dy(B^+) 155 Th$	ave.	247.5	2.9	2004 5	1.0	1.0	2	17	9 Gu			62Do12	
Dy(p) 10		2099	2	2094.5	1.9	-0.8	2					00FC15	
$155H_{0}(B^{+})155D_{V}$		2094	20	3120	22	0.2	D					70Du04	
1551 - m(TTT) 1551 - m		10.0	20	3120	22	0.9	n n					1507- 4	
		19.9	6.2	20	0	0.0	K 11					1391a-4 07De07	
1551n(TT)1551		1701	0.2	1791.0	2.0	0.0	D					9/Da0/	1
Lu (II) Lu		1701	2	1/81.0	2.0	0.0	K 11					1311III+4 06De01	÷
15577	M A 4	1/01			-+ 11/0	1	11					90Pa01	
$m = C_{12.917}$	M-A=-:	1 (28) 1	ev for f	nixture gs+n	1 at 41(0) kev						Ens95	**
$*^{155}$ Im(α) 151 Ho	First assi	gned to	I m ^m but	belongs to	² Im gs							941010	**
$*^{155}$ Im(α) ¹⁵¹ Ho	Doublet 1	rom groun	d-state a	nd isomer, le	ss than 5	o kev a	part					90Po13	**
$*^{155}Lu^{n}(\alpha)^{1517}Im$	Replaced	by authors	value fo	or $^{155}Lu^{\prime\prime}(IT)$								AHW	**
$*^{155}$ Nd(β^{-}) 155 Pm	Systemat	ical trends	suggest	¹⁵⁵ Nd + 330								GAu	**
¹⁵⁶ Tb-C ₁₂	-	-75165	40	-75253	5	-2.2	U			GS2	1.0	03Li.A	*
¹⁵⁶ Ho-C ₁₂		-70082	114	-70160	50	-0.7	0			GS1	1.0	00Ra23	*
		-70161	48				2			GS2	1.0	03Li.A	*
¹⁵⁶ Fr-C.		-68907	30	-68935	26	-0.9	2			GS2	1.0	03L i A	
156 Tm $-C_{13}$		-61044	30	-61020	17	0.8	ũ			GS2	1.0	03L i A	
156 Yb-C		-57202	30	-57182	12	0.0	R			GS2	1.0	03L i A	
$^{156}\text{Er}(\alpha)^{152}\text{Dv}$		3100.0	70	3/87	25	5.4	C			052	1.0	05Ka A	
$^{156}Tm(\alpha)^{152}H_{0}$		1241.6	10	1211	25	0.2	2					71To10	
$\operatorname{III}(\alpha)$ Ho		4341.0	10.	4344	/	0.2	3					81Ga36	
156 Vb(α) 152 Er		4945.0	10.	4811	4	-0.2	3					77Ha48	
$10(\alpha)$ Ei		4813.0	10.	4011	4	-0.5	3					70Ho10	
		4810.6	10.			0.1	3			Daa		06Pa01	
$1561 \text{ m}(\alpha)^{152} \text{Tm}$		5502.7	10	5506	2	0.1	11			GSo		70Ho10	
$Lu(\alpha)$ III		5502.7	10.	5590	3	0.2	2			Dha		02Po14	
		5507.0	J. 4			0.0	2			Doa		92F014 06Do01	
$1561 mm(\alpha)^{152} Tmm$		57127	4. 5	5711.4	26	-0.5	1			GSo		70Ho10	7
Lu (u) Thi		5700.7	5.	5/11.4	2.0	-0.4	4			Dha		02De14	2
		5709.7	э. °			0.4	4			Dba		92P014	
		57117	0. 4			0.2	4			Dee		92Ha10	
15611f(~)152Vh		6022.0	4.	6029	4	-0.1	4			Daa		70He10	
$\operatorname{Hi}(\alpha)^{n-1}$		6033.0	10.	0028	4	-0.4	4			Dee		/9H010	
15611991 (7097.2	4.	7097	4	0.2	4 D			Daa		96Pa01	
$154 g (\alpha) = 156 g$		1981.2	4.	/98/	4	0.1	K	1.4	14 1560	Daa		96Pa01	*
154 Sm(t,p) 156 Sm		4556	25	4570	9	0.5	1	14	14 150 Sm	Ald		66Bj01	
¹⁵⁴ Eu(t,p) ¹⁵⁶ Eu		6003	10	6009	5	0.6	1	29	28 ¹³⁰ Eu	LAI		84La06	*
155 Gd(n, γ) 150 Gd		8536.8	0.5	8536.39	0.07	-0.8	U		156	ILn		82Ba28	_
		8536.39	0.07			0.0	1	100	61 ¹⁵⁶ Gd	MMn		82Is05	Ζ
155 157 159 150		8536.04	0.19			1.9	В		156	Bdn		03Fi.A	
155 Gd(α ,t) 156 Tb $-^{158}$ Gd() 159 Tb		-821.9	3.6	-822	4	0.0	1	100	100 ¹⁵⁶ Tb	McM		75Bu02	
¹⁵⁶ Dy(d,t) ¹⁵⁵ Dy		-3184	10				2			Kop		70Gr46	
¹⁵⁶ Ta(p) ¹⁵⁵ Hf		1028.6	13.	1014	5	-1.2	U			Dap		92Pa05	
		1013.6	5.				3			Dap		96Pa01	
$^{156}\text{Ta}^m(p)^{155}\text{Hf}$		1110.2	12.	1114	7	0.3	3			Dap		93Li34	
		1115.2	8.			-0.2	3			Dap		96Pa01	
156 Nd(β^{-}) 156 Pm		3690	200				3			Kur		02Sh.B	
156 Pm $(\beta^{-})^{156}$ Sm		5155	35	5150	30	-0.1	2			Stu		90He11	
		5110	100			0.4	2			Kur		02Sh.B	
156 Sm $(\beta^{-})^{156}$ Eu		721	10	723	8	0.2	_					63Gu04	
		721	15		-	0.1	_					65Wi08	
	ave	721	8			0.2	1	90	86 ¹⁵⁶ Sm			average	
$^{156}Eu(\beta^{-})^{156}Gd$		2430	10	2449	5	1.9	_	20	55 DII			62Ew01	
		2460	10		-	-1.1	_					63Th02	

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Referenc	e:
$^{156}\text{Eu}(\beta^{-})^{156}\text{Gd}$		2450	15	2449	5	0.0	_					64Pe17	
		2478	20			-1.4	U					67Va23	
	ave.	2446	6			0.5	1	68	68 ¹⁵⁶ Eu			average	
156 Ho(β^+) 156 Dy		4400	400	5180	50	1.9	F					76Gr20	
157-101-157		5050	90			1.4	В					02Iz01	
$^{156}\text{Er}(\beta^+)^{156}\text{Ho}$		1670	70	1140	50	-7.5	В					82Vy06	
156 Tm(β^+) 156 Er		7458	50	7373	29	-1.7	R			Dbn		94Po26	
157 157		7390	100			-0.2	U					95Ga.A	
$^{150}\text{Hf}^m(\text{IT})^{150}\text{Hf}$		1959 1959	1 1	1959.0	1.0	0.0	R 5					152Yb+4 96Pa01	4
* ¹⁵⁶ Tb-C ₁₃	M-A=-	69968(32) k	eV for m	ixture gs+m+	-n at 54	(3)and	88.4	keV				Nubase	**
* ¹⁵⁶ Ho-C ₁₃	M-A=-	65230(100)	keV for	mixture gs+n	n+n at 5	2.4 and	1 1 0 0	#501	кeV			Nubase	**
* ¹⁵⁶ Ho-C ₁₃	M-A=-	65304(28) k	eV for m	ixture gs+m+	-n at 52	.4 and	100#	50 ke	eV			Nubase	**
$*^{156}$ Hf ^m (α) ¹⁵² Yb	Replaced	d by authors	value for	r ¹⁵⁶ Hf ^m (IT)								AHW	**
* ¹⁵⁴ Eu(t,p) ¹⁵⁶ Eu	Q=5569	(10) to 434.2	3 3 ⁻ lev	el								91Ba06	**
¹⁵⁷ Ho. C		71724	30	71744	26	0.7	2			GS2	1.0	031 ; A	
157 Er C		68084	30	-/1/44	20	-0.7	2			GS2	1.0		
157 Tm C		63027	30				2			GS2	1.0		
157 Vh C		57280	20	57272	11	0.6	1	12	12 157 Vh	G\$2	1.0	021 ; A	
157 L n C		-37389	21	-37372	20	1.0	Ċ	15	15 10	G\$2	1.0	03LI.A	
157 Vb(α) 153 Er		4622.0	7	-49902	20	-1.9	C			032	1.0	77Ho49	*
$10(\alpha)$ EI		4622.0	10	4021	0	-0.1	_					70Ho10	
	91/9	4623.0	6			-0.2	1	05	84 157 Vh			2Verage	
$1571 \mu(\alpha)^{153} Tm$	ave.	5007.2	5	5107.2	2.0	-0.2	1	95	04 10	Dhe		01Lo15	
$Lu(\alpha)$ IIII		5111.5	5.	5107.5	2.9	2.0	P			Dba		91Le13	*
157 L $\mu^{m}(\alpha)^{153}$ Tm		5128.9	10	5128.3	2.1	-0.0	II			IRa		79Δ116	* 7
		5131.8	5	5128.5	2.1	-0.1	4			пха		79Ho10	7
		5133.7	5			-1.0	4					83To01	z
		5128.9	5			-0.1	0			Dba		91Le15	2
		5118.7	5.			1.9	4			Dou		91To09	
		5125.8	6.			0.4	4					92Ha10	
		5132.0	5.			-0.7	4			Dba		92Po14	
		5127.9	4.			0.1	4			Daa		96Pa01	
157 Hf(α) 153 Yb		5869.4	10.	5880	3	1.0	3					73Ea01	Ζ
		5884.1	5.			-0.8	3					79Ho10	Ζ
		5879.1	4.			0.2	3			Daa		96Pa01	
157 Ta(α) 153 Lu ^m		6277.2	4.	6275	8	-0.6	R			Ara		97Ir01	*
$^{157} \text{Ta}^{m}(\alpha)^{153} \text{Lu}$		6381.9	10.	6377	4	-0.5	9			GSa		79Ho10	
		6375.8	4.			0.2	9			Daa		96Pa01	*
157 Ta ^{<i>n</i>} (α) ¹⁵³ Lu		7946.9	8.	7948	8	0.0	R			Daa		96Pa01	*
156 Gd(n, γ) 157 Gd		6359.80	0.15	6359.80	0.15	0.0	1	99	59 157 Gd	ILn		87Sp.A	Ζ
156 Gd(α ,t) 157 Tb $-^{158}$ Gd() 159 Tb		-616.2	2.0	-613.9	0.8	1.2	1	16	9 ¹⁵⁹ Tb	McM		75Bu02	
¹⁵⁶ Dy(d,p) ¹⁵⁷ Dy		4748	10	4745	6	-0.3	_			Tal		68Be.A	
		4753	10			-0.8	_			Kop		70Gr46	
	ave.	4751	7			-0.8	1	66	34 ¹⁵⁷ Dy	-		average	
¹⁵⁷ Ta(p) ¹⁵⁶ Hf		925.0	17.	935	10	0.6	0		-	Dap		96Pa01	
		933.0	7.			0.2	R			Ara		97Ir01	*
157 Pm(β^{-}) 157 Sm		4360	100				3			Kur		02Sh.B	
157 Sm $(\beta^{-})^{157}$ Eu		2700	200	2730	50	0.2	U					73Ka23	
-		2734	50				2			Ida		93Gr17	
$^{157}\text{Eu}(\beta^{-})^{157}\text{Gd}$		1350	20	1363	5	0.7	_					64Sh21	
·• ·		1370	20			-0.3	_					66Fu05	
	ave.	1360	14			0.2	1	12	11 ¹⁵⁷ Eu			average	
157 Tb(ε) 157 Gd		60.0	0.3	60.05	0.30	0.2	1	98	94 ¹⁵⁷ Tb			92Ra18	
157 Ho(β^+) 157 Dy		2540	50	2599	25	1.2	R					72To05	

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Referenc	e
$^{157}{\rm Er}(\beta^+)^{157}{\rm Ho}$		3470	80	3410	40	-0.8	U					75Al.A	
-		3805	100			-4.0	F			Dbn		94Po26	*
157 Tm(β^+) 157 Er		4480	100	4710	40	2.3	В			IRS		93A103	
		4482	100			2.3	В			Dbn		94Po26	
157 Yb(β^+) 157 Tm		5074	100	5267	30	1.9	В			Dbn		94Po26	
$^{157}Lu^{m}(IT)^{157}Lu$		32	2	21.0	2.0	-5.5	0			Dba		91Le15	
		21	2			0.0	R			DI		153Tm+4	1
157 T-m (TT) 157 T-		21	2	22	-	0.0	2			Dba		92P014	*
1a. (11). 1a		22	5	22	Э	0.0	K 0					150HI+1 07Ir01	
157Tan (IT)157Tam		1571	7	1571	7	0.0	P					971101 153I u⊥4	i
		1571	7	1371	,	0.0	9			Daa		96Pa01	
* ¹⁵⁷ Lu-C12.092	M-A=-	-46417(28) k	eV for m	nixture gs+m	at 21.00	2.0) ke	v			Duu		Nubase	**
$*^{157}Lu(\alpha)^{153}Tm$	$E(\alpha)=4^{\circ}$	225(5) to 153	Γm^m at 4	3.2(0.2)	ut 21.0(2.0) 10						89Ko02	**
$*^{157}Lu(\alpha)^{153}Tm$	$E(\alpha)=49$	939(5) to ¹⁵³	Γm^m at 4	3.2(0.2); repl	aced by	¹⁵⁷ Lu	m(IT)				NDS982	**
$*^{157} Ta(\alpha)^{153} Lu^{m}$	Replace	d by $^{153}Lu^m$	IT)					/				AHW	**
$*^{157} Ta^{m}(\alpha)^{153} Lu$	Reassign	ned.										97Ir01	**
$*^{157} Ta^{n}(\alpha)^{153} Lu$	Replace	d by authors	value for	$157 \text{Ta}^n(\text{IT})$								AHW	**
$*^{157}$ Ta(p) ¹⁵⁶ Hf	Use inst	ead 157 Tam(I	T)									AHW	**
$*^{157} \text{Er}(\beta^+)^{157} \text{Ho}$	E ⁺ =25	25(100) to gs	s yielding	g 3547(100)								94Po26	**
*	Rath	ner 24% to 17	74.53 159	% to 391.32 -	->+24	58						NDS966	**
$*^{157}Lu^{m}(IT)^{157}Lu$	Derived	from ¹⁵⁷ Lu ^m	$(\alpha)^{-157}$ L	$u(\alpha)$ differen	nce							NDS966	**
¹⁵⁸ Ho-C		-71101	67	-71059	29	0.6	R			GS2	1.0	03I i A	*
158 Er-C _{12.167}		-70220	110	-70107	27	1.0	U			GS1	1.0	00Ra23	
		-70107	30			0.0	1	81	81 ¹⁵⁸ Er	GS2	1.0	03Li.A	
¹⁵⁸ Tm-C _{12,167}		-63080	110	-63020	27	0.5	U			GS1	1.0	00Ra23	
13.107		-63020	30			0.0	1	81	81 ¹⁵⁸ Tm	GS2	1.0	03Li.A	
158 Yb $-^{142}$ Sm _{1,113}		34252	22	34251	9	-0.1	_			MA7	1.0	01Bo59	
1.115	ave.	34256	14			-0.4	1	44	30 158 Yb			average	
¹⁵⁸ Lu-C _{13 167}		-50720	30	-50687	16	1.1	R			GS2	1.0	03Li.A	
¹⁵⁸ Dy ³⁵ Cl ⁻¹⁵⁶ Dy ³⁷ Cl		3081.4	3.3	3076	6	-0.6	1	54	54 156Dy	H25	2.5	72Ba08	
158 Yb(α) 154 Er		4174.9	10.	4172	7	-0.2	_					77Ha48	
		4164.6	12.			0.6	-					92Ha10	
	ave.	4171	8			0.2	1	79	70 ¹⁵⁸ Yb			average	
$^{158}Lu(\alpha)^{154}Tm$		4792.2	10.	4790	5	-0.2	3			IRa		79Al16	Ζ
150 151		4789.5	5.			0.1	3					83To01	Ζ
158 Hf(α) 154 Yb		5406.0	5.	5404.7	2.7	-0.2	3					79Ho10	Ζ
		5401.4	5.			0.7	3					83To01	Ζ
158m () 154x		5406.1	4.	(101		-0.3	3			Daa		96Pa01	
150 Ta(α) 154 Lu		6124.4	8.	6124	4	-0.1	9			Daa		96Pa01	
$158\pi m(m) 154\pi m$		6123.3	5.	(205.0	2.0	0.1	9			Ara		9/Da0/	
$1a^{(\alpha)}(\alpha)^{(\alpha)}$ Lu		6208.5	0. 4	6205.0	2.8	-0.6	10			Dee		/9H010	
		6205.4	4. 5			_0.4	10			Daa Ara		90F a01 97Da07	
$158W(\alpha)^{154}Hf$		6600.4	30	6613	3	0.1	I			GSa		81Ho10	4
w(u) III		6609.7	30	0015	5	0.4	U			Daa		96Pa01	~
		6612.7	3			0.1	3			Ara		00Ma95	
$^{158}W^{m}(\alpha)^{154}Hf$		8495.5	30.	8502	7	0.2	U			GSa		89Ho12	
		8506.8	24.	0002		-0.2	Ŭ			Daa		96Pa01	
		8501.6	7.				3			Ara		00Ma95	
¹⁵⁸ Dy(p,t) ¹⁵⁶ Dy		-7535	15	-7543	6	-0.5	1	14	14 156Dv	Pri		77Ko04	
158 Gd(t, α) 157 Eu $^{-156}$ Gd() 155 Eu		-512	5	-512	5	0.1	1	89	89 ¹⁵⁷ Eu	LAI		79Bu05	
157 Gd(n, γ) 158 Gd		7937.39	0.07	7937.39	0.06	0.0	_			MMn		82Is05	Ζ
-		7937.39	0.17			0.0	-			Bdn		03Fi.A	
	ave.	7937.39	0.06			0.0	1	99	70 ¹⁵⁸ Gd			average	

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹⁵⁸ Gd(d,t) ¹⁵⁷ Gd- ¹⁵⁹ Tb() ¹⁵⁸ Tb		195.0	1.5	195.8	0.6	0.5	1	17	16 ¹⁵⁸ Tb	McM		84Bu14
$^{157}Gd(\alpha,t)^{158}Tb-^{158}Gd()^{159}Tb$		-196.6	1.0	-195.8	0.6	0.8	1	39	37 ¹⁵⁸ Tb	McM		84Bu14 *
¹⁵⁸ Dy(d,t) ¹⁵⁷ Dy		-2804	10	-2798	6	0.6	_			Tal		68Be.A
		-2804	10			0.6	-			Kop		70Gr46
170 - 170	ave.	-2804	7			0.8	1	66	66 ¹⁵⁷ Dy			average
158 Pm(β^{-}) 158 Sm		6120	100				4					02Sh.A
$^{138}Sm(\beta^{-})^{138}Eu$		1999	15	2400	00	0.5	3			Ida		93Gr17
$^{136}\text{Eu}(\beta)^{136}\text{Gd}$		3550	120	3490	80	-0.5	2					65Sc19
¹⁵⁸ Tb(c) ¹⁵⁸ Cd		1222.1	100	1210.5	0.0	0.5	1	10	8 158 Th			85Vo13 *
$^{158}\text{Tb}(B^-)^{158}\text{Dv}$		952	10	934.9	2.6	-17	Ū	10	0 10			68Sc04
10(p) 2)		933	6	20112	2.0	0.3	1	19	16 ¹⁵⁸ Dv			85Vo03
158 Ho(β^+) 158 Dy		4350	100	4221	27	-1.3	U		. ,			61Bo24 *
		4230	30			-0.3	2					68Ab14 *
158 Er(β^+) 158 Ho		1710	40	890	40	-20.6	F					82Vy06 *
158 Tm(β^+) 158 Er		6530	100	6600	30	0.7	-			IRS		93A103
		6624	60			-0.4	-		159	Dbn		94Po26
1587 () 1587 1	ave.	6600	50	0000		0.0	1	37	19 ¹⁵ °Er			average
156 Lu(ε) 156 Yb		8960	200 M.C	8800	17	-0.8	U	0.1170	1 17			95Ga.A
$*^{156}HO - C_{13.167}$	M-A=-0	148(29) K	e v for m	$1 \times 17 \text{ gs} + \text{m}$	+n at 6/	.200 and	d 18	0#70	ĸev			NDS963**
$*^{157}Gd(\alpha t)^{158}Th = {}^{158}Gd(\alpha t)^{158}$	Volue 109	2(1.0) for	(0)	2=0017.8	anorau	eu						75Pu02 **
* Gu((a,t) = 10 - Gu() $*^{158}Tb(c)^{158}Gd$	nI = 0.680	(0.01) to 11	87 147 1	evel recalcu	cu lated O							ΔHW **
* 10(2) Gu	F ⁺ =	780(80) N(T^{158} Er((B^+) : reinterr	reted							AHW **
$*^{158}$ Ho(β^+) 158 Dv	$E^+ = 289$	0(20), 700(50 to 31	7.11 - 637.66	and 24	36-260)5 le	vels.				NDS892**
*	and E	$z^+ = 1300(3$	0), 1850((25)				,				68Ab14 **
*	from	158 Hom at 6	7.25 to 1	920.24-194	0.72 an	d 1441.	75 le	vels,				NDS892**
*	$E^+ =$	700(60) NO)T ¹⁵⁸ Er((β^+) ; reinterp	preted							AHW **
$*^{158}$ Er(β^+) ¹⁵⁸ Ho	$p^+ = 0.3($	0.1) from a	nnih.γco	oinc. to 146.9	90 level	1						96Go06 **
$*^{158}$ Er(β^+) 158 Ho	F: Q<155	50 from upp	er limit o	on p+								75Bu.A **
¹⁵⁹ Dy-C _{13 25}		-74285	30	-74260.8	2.9	0.8	U			GS2	1.0	03Li.A
¹⁵⁹ Ho-C _{13.25}		-72365	71	-72288	4	1.1	U			GS2	1.0	03Li.A *
¹⁵⁹ Er-C _{13.25}		-69290	30	-69316	5	-0.9	U			GS2	1.0	03Li.A
159 Tm $-C_{13.25}$		-65025	30				2			GS2	1.0	03Li.A
159 Yb $-^{142}$ Sm $_{1.120}$		35035	24	35029	19	-0.3	2			MA7	1.0	01Bo59
159 Yb-C _{13.25}		-59960	30	-59950	20	0.3	R			GS2	1.0	03Li.A
¹⁵⁹ Lu-C _{13.25}		-53420	61	-53370	40	0.8	2			GS2	1.0	03L1.A *
159 Th 35 Cl 155 Cd 37 Cl		-46044	32	-46005	18	1.2	1 1	10	7 159 Th	GS2	1.0	03L1.A
159 Th 35 Cl 157 Cd 37 Cl		0023.04 1333 3	1.05	4336 7	0.8	-0.5	I	10	/ 10	П41 H25	2.5	83Dy04 72Bo08
		4337.01	0.61	4550.7	0.8	-0.2	1	27	20 ⁻¹⁵⁹ Th	H41	2.5	85Dv04
$^{159}Lu(\alpha)^{155}Tm$		4534.3	10.	4500	40	-0.8	R	27	20 10	IRa	2.5	80A114
		4531.3	10.			-0.7	R					92Ha10
159 Hf(α) 155 Yb		5221.2	10.	5225.0	2.7	0.4	U					73Ea01 Z
		5226.2	5.			-0.2	4					79Ho10 Z
		5223.0	5.			0.4	4					83To01 Z
		5219.6	6.			0.9	4					92Ha10
159 m () 155 m		5229.8	5.		~	-0.9	4			Daa		96Pa01
$135 \operatorname{Ta}(\alpha)^{135} \operatorname{Lu}^{m}$		5658.6	5.	5661	9	0.5	R			Daa		96Pa01
159 Tom(oc) 155 L v		5745 9	5. 6	5715	2	-0.1	K 10			Ara		9/Da0/ *
$\operatorname{Ia}(\alpha)$ Lu		5743.8	0. 5	5745	3	-0.2	10			Daa		96Pa01
		5744.8	5			0.2	10			Ara		97Da07
$^{159}W(\alpha)^{155}Hf$		6444.5	6.	6450	4	1.0	3			. . .u		81Ho10 *
		6441.4	5.			1.8	Ū			Daa		92Pa05
		6454.7	5.			-0.8	3			Daa		96Pa01
158 Gd(n, γ) 159 Gd		5943.07	0.15	5943.09	0.12	0.1	_			ILn		87Sp.A Z
		5943.1	0.2			0.0	-		150	Dbn		03Gr13
	ave.	5943.08	0.12			0.1	1	100	93 ¹⁵⁹ Gd			average

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Maiı	n flux	Lab	F	Reference	
158 Gd(α ,t) 159 Tb $-^{164}$ Dy() 165 Ho		-85.7	2.2	-89.0	1.1	-1.5	1	25	13	¹⁵⁹ Tb	McM		84Bu14	
¹⁵⁹ Tb(d,t) ¹⁵⁸ Tb- ¹⁶⁴ Dy() ¹⁶³ Dy		-474.3	1.0	-475.0	0.6	-0.7	1	39	36	¹⁵⁸ Tb	McM		84Bu14	
¹⁵⁸ Dy(d,p) ¹⁵⁹ Dy		4608	10	4608.1	2.7	0.0	U				Tal		68Be.A	
		4600	10			0.8	U				Kop		70Gr46	
159 Sm(β^{-}) 159 Eu		3840	100				2						02Sh.A	
159 Gd(β^{-}) 159 Tb		969.0	1.5	970.5	0.7	1.0	1	25	17	¹⁵⁹ Tb			77Bo.A	
159 Dy(ϵ) 159 Tb		365.9	1.3	365.6	1.2	-0.3	1	81	68	¹⁵⁹ Dy			68My.A	
159 Ho(β^+) 159 Dy		1837.6	6.	1837.6	2.7	0.0	2						79Ad08	
		1837.6	3.			0.0	2						82Vy02	
159 Er(β^+) 159 Ho		2768.5	2.0				3						84Ka.A	
159 Tm(β^+) 159 Er		3850	100	3997	28	1.5	U				IRS		93A103	
150		3670	100			3.3	В				Dbn		94Po26	
159 Yb(β^+) 159 Tm		5050	200	4730	30	-1.6	U				IRS		93A103	
150		4554	150			1.2	U				Dbn		94Po26	
$^{159}Lu(\beta^+)^{159}Yb$		5850	150	6130	40	1.9	U				IRS		93A103	
150 150		5803	150			2.2	U				Dbn		94Po26	
$^{159}\text{Ta}^{m}(\text{IT})^{159}\text{Ta}$		63.7	5.2	64	5	0.0	R						163Re-4	
150		63.7	5.2				10				Ara		97Da07	
* ¹⁵⁹ Ho-C _{13.25}	M - A = -	67304(28) k	eV for m	nixture gs+m	at 205.9	91 keV							NDS945*	*
* ¹⁵⁹ Lu-C _{13,25}	M-A=	49710(28) k	eV for m	nixture gs+m	at 100#	80 keV	7						Nubase **	*
$*^{159}$ Ta(α) ¹⁵⁵ Lu ^m	Replaced	l by 155 Lu ^m (IT)										AHW **	*
$*^{139}W(\alpha)^{135}Hf$	See ¹⁵⁸ W	(α) remark											AHW *	*
¹⁶⁰ Er-C _{12,222}		-70916	30	-70917	26	0.0	2				GS2	1.0	03Li.A	
160 Tm $-C_{12,222}$		-64773	127	-64740	40	0.3	U				GS1	1.0	00Ra23 :	*
- 13.335		-64755	39			0.5	2				GS2	1.0	03Li.A	*
160 Yb $-^{142}$ Sm _{1,127}		33120	20	33125	17	0.2	2				MA7	1.0	01Bo59	
160 Yb-C _{13 333}		-62440	120	-62448	18	-0.1	U				GS1	1.0	00Ra23	
13.335		-62438	30			-0.3	R				GS2	1.0	03Li.A	
¹⁶⁰ Lu-C _{13 333}		-53967	61				2				GS2	1.0	03Li.A	*
160 Hf-C _{13 333}		-49334	30	-49316	12	0.6	R				GS2	1.0	03Li.A	
160 Gd 35 Cl ₂ $ ^{156}$ Gd 37 Cl ₂		10831.70	1.27	10831.6	0.8	0.0	1	6	4	¹⁶⁰ Gd	H41	2.5	85Dy04	
160Gd 35Cl-158Gd 37Cl		5900.0	0.5	5900.3	0.7	0.3	1	34	27	¹⁶⁰ Gd	M21	2.5	75Ka25	
		5899.88	0.96			0.2	1	9	7	¹⁶⁰ Gd	H41	2.5	85Dy04	
160Dy 35Cl-158Dy 37Cl		3731.8	2.3	3738.1	2.5	1.1	1	19	18	¹⁵⁸ Dy	H25	2.5	72Ba08	
$^{160}Gd^{-160}Dy$		1854.5	0.8	1856.6	1.4	1.1	1	46	24	¹⁶⁰ Gd	H25	2.5	72Ba08	
160 Hf(α) 156 Yb		4892.2	10.	4902.4	2.6	1.0	4						73Ea01 7	Ζ
		4905.0	5.			-0.5	4						79Ho10 Z	Ζ
		4904.0	5.			-0.3	4						83To01 7	Ζ
		4901.8	6.			0.1	4						92Ha10	
		4902.8	10.			0.0	4						95Hi12	
		4900.8	6.			0.3	4				Daa		96Pa01	
160 Ta(α) 156 Lu		5449.5	5.				4				Daa		96Pa01	
160 Ta ^m (α) 156 Lu ^m		5550.9	5.	5548	3	-0.5	5						79Ho10 2	Z
		5538.7	6.			1.5	5						92Ha10	
		5552.1	5.			-0.8	5				Daa		96Pa01	
$^{160}W(\alpha)^{156}Hf$		6072.1	10.	6065	5	-0.6	5						79Ho10	
		6063.9	5.			0.3	5				Daa		96Pa01	
160 Re(α) 156 Ta		6704.9	16.	6715	10	0.6	0				Daa		92Pa05	
		6711.1	16.			0.2	R				Daa		96Pa01	
¹⁵⁸ Gd(t,p) ¹⁶⁰ Gd		4912.0	2.2	4912.7	0.7	0.3	1	10	7	¹⁶⁰ Gd	McM		89Lo07	
¹⁶⁰ Gd(p,t) ¹⁵⁸ Gd		-4919	5	-4912.7	0.7	1.3	U				Min		73Oo01	
¹⁶⁰ Dy(p,t) ¹⁵⁸ Dy		-6924	5	-6926.8	2.3	-0.6	-				Min		73Oo01	
		-6925.1	3.4			-0.5	-				McM		88Bu08 >	*
	ave.	-6924.8	2.8			-0.7	1	67	66	¹⁵⁸ Dy			average	
160 Gd(t, α) 159 Eu $-^{158}$ Gd() 157 Eu		-666	5	-666	5	0.0	1	100	100	¹⁵⁹ Eu	LAl		79Bu05	
159 Tb(n, γ) 160 Tb		6375.45	0.3	6375.21	0.13	-0.8	_						74Ke01 7	Z
		6375.13	0.15			0.5	-				Bdn		03Fi.A	
	ave.	6375.19	0.13			0.1	1	99	94	¹⁶⁰ Tb			average	

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Mai	n flux	Lab	F	Referenc	e
¹⁶⁰ Re(p) ¹⁵⁹ W		1269.1	6.	1278	8	1.5	0				Dap		92Pa05	_
		1279.1	9.			-0.1	4				Dap		96Pa01	
160 Eu(β^{-}) 160 Gd		3900	300	4580#	200#	2.3	D						73Da05	
		4200	200			1.9	D						73Mo18	*
160 Ho(β^+) 160 Dy		3290	15				2						66Av03	*
160 Tm(β^+) 160 Er		5600	300	5760	40	0.5	U						75St12	
160 - 160		5890	100			-1.3	R				IRS		93A103	
$^{100}Lu(\beta^+)^{100}Yb$		7210	240	7900	60	2.9	В				-		83Ge08	
160		7300	100		-	6.0	В				IRS		93A103	
* ¹⁶⁰ Tm-C _{13.333}	M-A=	-60300(110)) keV foi	r mixture gs+	m at 70)(20) ke	٧						NDS968	**
* ¹⁶⁰ Tm-C _{13.333}	M-A=	-60283(28)	keV for	mixture gs+n	1 at 70(20) kev	/						NDS968	**
$*^{100}Lu - C_{13,333}$	M-A=	-50270(28)	keV for	mixture gs+n	1 at 0#1	00 ke v	·						Nubase :	**
* ¹⁶⁰ Dy(p,t) ¹⁵⁰ Dy	Q = Q(n)	Dy(p,t) = -1	1477.9(3	.4), see ¹⁰⁴ Dy	/(p,t)								AHW :	**
$*^{100}Eu(\beta)^{100}Gd$	System	atical trends	suggest	¹⁰⁰ Eu 470 les	s boun	d							GAu	**
$*^{100}\text{Ho}(\beta^+)^{100}\text{Dy}$	E' =57	0(15) to 169	4.374	level; and I()45(15)								NDS932	**
*	froi	n ¹⁰⁰ Ho ^m at	59.98 to	1285.59 and	1286.6	9 level	s						NDS932	**
¹⁶¹ Tm-C _{12,417}		-66451	30				2				GS2	1.0	03Li.A	*
161 Yb $-^{142}$ Sm _{1,124}		34071	19	34068	16	-0.2	2				MA7	1.0	01Bo59	
161 Yb-C _{12,417}		-62120	110	-62098	17	0.2	U				GS1	1.0	00Ra23	
15.417		-62107	30			0.3	R				GS2	1.0	03Li.A	
$^{161}Lu - C_{13,417}$		-56428	30				2				GS2	1.0	03Li.A	
161 Hf-C _{13,417}		-49733	30	-49725	24	0.3	1	65	65	¹⁶¹ Hf	GS2	1.0	03Li.A	
¹⁶¹ Dy ³⁵ Cl ⁻¹⁵⁹ Tb ³⁷ Cl		4535.0	1.0	4536.7	1.3	0.7	1	29	15	¹⁵⁹ Tb	H25	2.5	72Ba08	
$^{161}\mathrm{Hf}(\alpha)^{157}\mathrm{Yb}$		4717.0	10.	4698	24	-0.4	_						73Ea01	Ζ
		4725.2	10.			-0.5	_						82Sc15	Ζ
		4724.2	5.			-0.5	-						83To01	Ζ
		4716.4	7.			-0.4	-						92Ha10	
		4721.5	10.			-0.5	-						95Hi12	
	ave.	4721	3			-0.5	1	23	19	¹⁶¹ Hf			average	
$^{161}\mathrm{Ta}^{m}(\alpha)^{157}\mathrm{Lu}^{m}$		5278.9	5.	5353	29	1.5	U						79Ho10	Ζ
		5280.4	5.			1.5	U						92Ha10	
1/21 1/27		5271.2	7.			1.6	U				Daa		96Pa01	
$^{161}W(\alpha)^{157}Hf$		5923.4	5.	5923	4	-0.1	4				_		79Ho10	Ζ
1/1		5922.4	5.			0.1	4				Daa		96Pa01	
$^{161}\text{Re}^m(\alpha)^{157}\text{Ta}^m$		6439.3	10.	6430	4	-0.9	8				GSa		79Ho10	
		6425.0	6.			0.8	8				Daa		96Pa01	
161- 150-		6432.1	7.			-0.3	8				Ara		97lr01	
¹⁰¹ Dy(p,t) ¹³⁵ Dy		-6546	5	-6548.5	1.5	-0.5	-				Min		730001	
		-6547.9	2.5			-0.2	-	42	22	150 0	MCM		88Bu08	*
160 0 14 13 161 0 1	ave.	-6547.5	2.2			-0.4	1	43	32	Dy			average	
$160 \text{Gd}(\mathbf{n}, \gamma)^{161} \text{Gd}$		5635.4	1.0	(77.)	0.7	0.7	2	50	26	160 0 1			71Gr42	
$160 \text{Gd}(\alpha, t)$ $10 \text{Gd}(\alpha, t)$ $10 \text{Gd}(\alpha, t)$ $10 \text{Gd}(\alpha, t)$		6/8.0	1.0	6/7.3	0.7	-0.7	1	52	26	161 m	MCM		/5Bu02	
$160 \text{ p}(n,\gamma)^{161} \text{ p}$		/696.3	0.6	/696.6	0.5	0.4	1	83	//	Ib			/SHe.C	7
100 Dy(n, γ) 101 Dy		6454.40	0.09	6454.39	0.08	5 -0.2	-				ILn		865016	Z
		6454.34	0.14			0.3	1	100		160 D	Ban		03F1.A	
160 - 311 + 161 11 - 164 - (165 11-	ave.	0454.58	0.08	1406 5	2.0	0.0	1	100	100	161 LL	M-M		average	
$100 \text{ Dy}(5 \text{ He}, d)^{101} \text{ Ho} = 100 \text{ Dy}(100 \text{ Ho})^{100} \text{ Ho}$)	-1406.5	2.0	-1406.5	2.0	0.0	I	100	100	····Ho	MCM		/5Bu02	
$161 \mathbf{p} \circ m(\mathbf{p}) 160 \mathbf{W}$		1199.5	0. 7	119/	5	-0.4	D D				Ara		9/IIUI 071-01	
$61 \Sigma_{(0)} (2^{+}) [6] U_{-}$		1525.5	/.	1521	5	-0.3	ĸ				Ara		9/IIUI	*
$\operatorname{Er}(p^+)$ Ho		1980	18	1994	9	0.8	K						84Ka.A	
$\operatorname{Im}(p^{-})$ er		5100	200	5510	29	1.1	U				ШC		/5Ad08	
$ 6 _{\mathbf{V}_{1}} \langle \boldsymbol{\rho} + 6 _{\mathbf{T}_{1}}$		3180	100	1050	20	1.3	U				IKS		93AI03	
1 D(p) 1 m		3830	250	4050	50	0.8	U				Dk -		04D-26	
$1611 \dots (\theta^{+}) 161 \text{Vb}$		5200	200	5200	20	2.3	В				Don		94P020	
$Lu(p^{-})^{-1}$ YD		5300	100	5280	30	-0.2	U				IK3		93AIU3	
		3233	100			0.2	U				ווטע		741020	*

Item	Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{161}\mathrm{Re}^m(\mathrm{IT})^{161}\mathrm{Re}$	123.8	1.3	123.8	1.3	0.0	R					160W+1
* ¹⁶¹ Tm-C	$M_{-4} = -61895($	1.3 28) keV	for mixture	as⊥m	at 7 4 k	/ eV					9/Ir01 Ens00 **
$*^{161}$ Dv(p t) ¹⁵⁹ Dv	$\Omega = \Omega(^{164}Dv(pt))$	23) KeV	7(2.5)	gs⊤m	ai /.+ M	LC V					AHW **
$*^{161} \text{Re}^{m}(p)^{160} \text{W}$	Replaced by au	thor's re	sult for ¹⁶¹ R	$e^m(IT)$	¹⁶¹ Re						AHW **
$*^{161}Lu(\beta^+)^{161}Yb$	E ⁺ =3866(150)	to 367.	28 level								NDS008**
162 Tm $-C_{13.5}$	-65942	55	-66005	28	-1.2	R			GS2	1.0	03Li.A *
162 Yb $-^{142}$ Sm _{1.141}	32524	19	32528	16	0.2	2			MA7	1.0	01Bo59
¹⁶² Yb-C _{13.5}	$-64210 \\ -64223$	110 30	-64232	17	-0.2 -0.3	U R			GS1 GS2	1.0 1.0	00Ra23 03Li.A
162 Lu-C _{13.5}	$-56758 \\ -56781$	234 190	-56720	80	0.2 0.3	о 2			GS1 GS2	1.0 1.0	00Ra23 * 03Li.A *
¹⁶² Hf-C _{13.5}	-52756	30	-52790	10	-1.1	R			GS2	1.0	03Li.A
¹⁶² Er ³⁵ Cl ₂ - ¹⁵⁸ Gd ³⁷ Cl ₂	10577.5	2.7	10574.5	2.9	-0.4	1	18	16 ¹⁶² Er	H25	2.5	72Ba08
162 Er 35 Cl $-^{160}$ Gd 37 Cl	4674.6	1.9	4674.2	2.8	-0.1	1	36	32 ¹⁶² Er	H25	2.5	72Ba08
102 Hf(α) 138 Yb	4417.2	10.	4417	5	0.0	2					82Sc15
	4420.2	10.			-0.3	2					831001 92Ho10
	4416.0	10			0.5	2					95Hi12
162 Ta(α) 158 Lu	5003.8	10.	5010	50	0.1	4					86Ru05
	5007.9	5.			0.0	4					92Ha10
$^{162}W(\alpha)^{158}Hf$	5669.9	10.	5677.3	2.7	0.7	U					73Ea01 Z
	5668.0	10.			0.9	U					75To05 Z
	5677.5	5.			0.0	4					81Ho10 Z
	5681.6	4.			_0.7	4			Daa		82Dell Z
162 Re(α) 158 Ta	6240.3	5			-0.8	8			Δra		97Da07
$^{162}\text{Re}^{m}(\alpha)^{158}\text{Ta}^{m}$	6274 2	6	6274	3	0.0	9			7 11 a		79Ho10
	6278.3	6.	0271	0	-0.7	9			Daa		96Pa01
	6271.1	5.			0.6	9			Ara		97Da07
$^{162}Os(\alpha)^{158}W$	6778.8	30.	6767	3	-0.4	U			GSa		89Ho12
	6785.8	10.			-1.8	U			ORa		96Bi07
160 ~ () 162 ~ (6767.4	3.				4			Ara		00Ma95
160 Gd(t,p) 162 Gd	3999.5	3.8	50.15	25		2			McM	[89Lo07
$162 \text{ Er}(\mathbf{p}, t)^{160} \text{ Er}$	- /944	51	- /945	25	0.0	R	100	50 161 D	win		/4De31 *
$Dy(n,\gamma)$	8190.99	0.06	8190.99	0.06	0.0	1 11	100	52 ··· Dy	Rdn	1	821805 Z
161 Dv(³ He d) ¹⁶² Ho $^{-164}$ Dv() ¹⁶⁵ Ho	-945 3	3.0	-945	3	0.0	1	100	100 ⁻¹⁶² Ho	McM	r	75Bu02
162 Er(d.t) ¹⁶¹ Er	-2952	10	-2948	9	0.4	2	100	100 110	Kon		69Ti01
$^{162}\text{Gd}(\beta^{-})^{162}\text{Tb}$	1442	100	1390	40	-0.5	R			r		70Ch02
$^{162}\text{Tb}(\beta^{-})^{162}\text{Dy}$	2448	100	2510	40	0.6	2					66Fu08
	2523	50			-0.3	2					66Sc24
	2528	80			-0.3	2					77Ka08
162 Tm(β^+) 162 Er	4840	50	4859	26	0.4	2					63Ab02
	4705	70			2.2	2					74De47
	4900	100			-0.4	2			IRS		93Al03
$162 I u (B^+) 162 V b$	4692	270	6000	80	-0.7	2 11			Don		94P020 83Ge08
$Lu(p^*) = 10$	6960	100	0990	80	0.9	R			IRS		934103
	7111	150			-0.8	R			Dhn		94Po26 *
* ¹⁶² Tm-C ₁₂₅	M-A=-613590	28) keV	for mixture	gs+m	at 1300	40)	keV		2011		Nubase **
$*^{162}Lu - C_{13.5}$	M-A=-52730(130) ke'	V for mixtur	e gs+n	n+n at 1	120	#200 :	and 300#20	0 keV		AHW **
$*^{162}Lu-C_{13.5}$	M-A=-52751(28) keV	for mixture	gs+m+	-n at 12	20#2	200 ai	nd 300#200	keV		AHW **
$*^{162}$ Er(p,t) ¹⁶⁰ Er	Not resolved pe	ak. Orig	ginal uncerta	inty 28							GAu **
$*^{162}$ Lu(β^+) ¹⁶² Yb	$E^+ = 6006(150)$	to gs ar	nd 166.8 unk	nown	ratio						NDS919**

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig N	Aain flux	Lab	F	Reference
¹⁶³ Tm-C _{12,592}	_	-67327	30	-67349	6	-0.7	U			GS2	1.0	03Li.A
163 Yb $-^{142}$ Sm _{1,148}		33686	19	33687	16	0.1	2			MA7	1.0	01Bo59
¹⁶³ Yb-C _{13,583}	-	-63663	30	-63666	17	-0.1	R			GS2	1.0	03Li.A
$^{163}Lu - C_{13583}$	-	-58730	110	-58820	30	-0.8	U			GS1	1.0	00Ra23
13.303	-	-58821	30				2			GS2	1.0	03Li.A
¹⁶³ Hf-C _{13.583}	-	-52911	30				2			GS2	1.0	03Li.A
163 Ta $-C_{13,583}$	-	45780	30	-45670	40	3.7	С			GS2	1.0	03Li.A
163 Ta(α) 159 Lu		4741.5	15.	4749	5	0.5	3					83Sc18 *
		4746.7	10.			0.2	3					86Ru05
1623377 150376		4751.8	7.	5500	50	-0.4	3					92Ha10
$^{105}W(\alpha)^{139}Hf$		5520.3	5.	5520	50	0.0	5					73Ea01 Z
		5518.1	5.			0.0	5					79Ho10 Z
		5519.9	3. 6			0.0	5			Dee		82Dell Z
$163 \mathbf{P}_{e}(\alpha)^{159} \mathbf{T}_{2}$		6017.0	0. 5	6017	7	0.0	P			Ara		90Fa01 07Da07 *
$163 \mathbf{P}_{0}^{m}(\alpha)^{159} \mathbf{T}_{0}^{m}$		6067.2	5.	6068	2	-0.2	0			Ala		70Ho10
$\operatorname{Ke}(u)$ la		6067.2	0. 7	0008	3	0.2	9			Daa		96Pa01
		6069.2	7. 5			-0.2	9			Ara		97Da07
$^{163}Os(\alpha)^{159}W$		6674.1	30	6680	50	0.2	4			7114		81Ho10
05(0)		6678.2	10	0000	50	0.0	4			ORa		96Bi07
		6676.2	19.			0.0	4			Daa		96Pa01
162 Dy(n, γ) 163 Dy		6270.98	0.06	6271.01	0.05	0.4	_			MMn		82Is05 Z
- 5(,1) - 5		6271.00	0.09			0.1	_			ILn		89Sc31 Z
		6271.14	0.13			-1.0	_			Bdn		03Fi.A
	ave.	6271.01	0.05			0.0	1	100 9	3 ¹⁶² Dy			average
¹⁶² Dy(³ He,d) ¹⁶³ Ho- ¹⁶⁴ Dy() ¹⁶⁵ Ho		-734.3	1.0	-734.1	0.9	0.2	1	774	1 164 Dy	McM		75Bu02
¹⁶² Er(d,p) ¹⁶³ Er		4682	10	4678	5	-0.4	1	25 2	0 ¹⁶³ Er	Kop		69Tj01
163 Ho(ε) 163 Dy		2.56	0.05	2.555	5 0.016	6 -0.1	_					85Ha12 *
		2.60	0.03			-1.5	0					86Ya17
		2.561	0.020			-0.3	-					92Ha15
		2.54	0.03			0.5	-					93Bo.A *
		2.71	0.10			-1.5	U		162			94Ya07
1/2 - 1/2	ave.	2.555	0.016			0.0	1	100 5	8 163 Ho			average
$^{103}\text{Er}(\beta^+)^{103}\text{Ho}$		1210	6	1210	5	0.0	1	60 5	9 ¹⁰³ Er			63Pe16
$^{103}\text{Tm}(\beta^+)^{103}\text{Er}$		2439	3				2					82Vy07
105 Yb(β^+) 105 Tm		3370	100	3431	17	0.6	U					75Ad09
$^{103}Lu(\beta^+)^{103}Yb$		4860	170	4510	30	-2.0	В			The		83Ge08
163 p. m (m) 163 p.		4600	200			-0.4	U			IRS		93A103
¹⁰⁵ Re ^m (11) ¹⁰⁵ Re		115.1	4.0	115	4	0.0	R			A		16/lr-4
	Original	113.1	4.0 to 12 o 16	To shop and	to 163 To		9			Ala		9/Da0/ 86Du05.tut
$163 \mathbf{P}_{0}(\alpha)^{159} \mathbf{T}_{0}$	Damlacad	her outbon?	10 15 S	159 To m(IT)	10 1a							ALIW
$* \frac{163}{10} H_{0}(c)^{163} D_{V}$	Orig vol	by aution s	a) correct	ad to 2.561(0)	(0.20) fo	r duno	mia	offooto				АПW ** 975 p02 data
* H0(E) Dy	error	0 020 je sta	s) conect	du 10 2.301(0).020) 10	i uyna	mic	enects				87Sp02 **
$^{*}_{*^{163}\text{Ho}(s)^{163}\text{Dv}}$	Original	2616 < 0 < 2	694 68%	CL from 163	$D_{V} \perp (B)$	-)163 F	In .	T				97Ju01 **
* 110(2) Dy	corre	cted to 251	1<0<25	72.68% CL	Dy ₆₆ (p) 1	66					93Bo A **
	conc	cica to 251	1 \Q \25	2 00/0 02								J 5 D 6.7144
¹⁶⁴ Tm-C _{13,667}	-	-66440	30				2			GS2	1.0	03Li.A *
¹⁶⁴ Yb- ¹⁴² Sm _{1.155}		32429	19	32436	16	0.4	2			MA7	1.0	01Bo59
¹⁶⁴ Yb-C _{13.667}	-	-65690	104	-65511	17	1.7	U			GS1	1.0	00Ra23
	-	-65493	30			-0.6	R			GS2	1.0	03Li.A
¹⁶⁴ Lu-C _{13.667}	-	-58750	110	-58660	30	0.8	U			GS1	1.0	00Ra23
	-	-58661	30				2			GS2	1.0	03Li.A
¹⁶⁴ Hf-C _{13.667}	-	-55620	110	-55633	22	-0.1	U			GS1	1.0	00Ra23
164	-	-55596	30			-1.2	R			GS2	1.0	03Li.A
$^{104}\text{Ta}-\text{C}_{13.667}$	-	-46466	30				2			GS2	1.0	03Li.A

Item		Input va	llue	Adjusted	value	v _i	Dg	Sig	Ma	ain flux	Lab	F	Reference	ce
¹⁶⁴ Er ³⁵ Cl- ¹⁶² Er ³⁷ Cl		3373.3	1.3	3372.1	2.6	-0.4	1	66	47	¹⁶² Er	H25	2.5	72Ba08	
$^{164}W(\alpha)^{160}Hf$		5281.7	5.	5278.5	2.0	-0.6	5						73Ea01	Z
		5274.7	5.			0.8	5						75To05	Ζ
		5279.0	5.			-0.1	5						79Ho10	
		5279.2	3.			-0.2	5						82De11	Ζ
		5277.0	6.			0.3	5				Daa		96Pa01	
164 Re ^{<i>m</i>} (α) ¹⁶⁰ Ta		5922.7	10.	5930	50	0.1	5						79Ho10	
164 160		5928.9	7.			0.0	5				Daa		96Pa01	
$^{104}Os(\alpha)^{100}W$		6478.3	20.	6477	6	-0.1	U				OD		81Ho10	
		64/3.2	10.			0.4	6				Dea		96Bi07	
164D(4)163Th		64/9.4	1.			-0.3	0				Daa		96Pa01	
163 Dy(t, α) 164 Dy		7659 11	4	7659 11	0.07	0.1	2	100	50	163 Dec	MM		92Ga15	*
Dy(li,γ) Dy		7658.00	0.07	/038.11	0.07	13.1	C	100	52	Dy	WIWIII		00Eo A	Z
		7655.0	0.00			-13.1	B				Bdn		03Ei A	
163 Dv(³ He d) ¹⁶⁴ Ho $^{-164}$ Dv() ¹⁶⁵ Ho		-331.6	1.4	_330.7	1.1	0.6	1	67	67	¹⁶⁴ Ho	McM		75Bu02	*
164 Er(d t) 163 Er		_2593	10	-2590	5	0.0	1	23	21	163 Er	Kon		69Ti01	ŕ
164 Ir ^m (p) ¹⁶³ Os		-2393	9	1836	8	_0.3	5	23	21		Ivn		091j01 01Ke05	
n (p) 03		1818	14	1050	0	13	5				Arn		02Ma61	
164 Tb $(\beta^{-})^{164}$ Dv		3890	100			110	2						71Gu18	
$^{164}\text{Tm}(\beta^+)^{164}\text{Fr}$		3985	20	4061	28	38	ñ						67Vr04	*
1(p) Li		3989	50	1001	20	1.4	В				IRS		94Po26	*
$^{164}Lu(\beta^+)^{164}Yb$		6390	140	6380	30	-0.1	U						83Ge08	
		6290	90			1.0	U				IRS		93A103	*
		6255	120			1.0	U				Dbn		94Po26	*
$*^{164}$ Tm $-C_{13,667}$	M-A=	-61884(28)1	eV for r	nixture gs+n	n at 10(6) keV							Nubase	**
$*^{164}$ Dy(t, α) ¹⁶³ Tb	$Q - {}^{162}L$	Dy() ¹⁶¹ Tb=-1	23(4)+5	4-584=-65	3(4)								AHW	**
* ¹⁶³ Dy(³ He,d) ¹⁶⁴ Ho- ¹⁶⁴ D	See erra	itum											75Bu02	**
$*^{164}$ Tm(β^+) ¹⁶⁴ Er	$E^{+} = 29$	40(20) 29 to	gs 10 to	91.38 level									NDS016	5 * *
$*^{164}$ Tm(β^+) ¹⁶⁴ Er	$E^{+} = 29$	44(50) 29 to	gs 10 to	91.38 level									NDS016	j**
$*^{164}$ Lu(β^+) ¹⁶⁴ Yb	$Q^+ = 62$	250(90) partl	y to 123.	.31 level									NDS016	j**
$*^{164}$ Lu(β^+) ¹⁶⁴ Yb	$E^{+} = 51$	91(120) part	ly to 123	3.31 level									NDS016	j**
165 Tm $-^{142}$ Sm		30970	20	30976	7	03	1	13	11	¹⁴² Sm	MA7	1.0	01Bo59	
¹⁶⁵ Yb-C _{10.75}		-64721	30	20270		0.0	2	10	••	0	GS2	1.0	03Li.A	
$^{165}Lu-C_{12.75}$		-60602	30	-60593	28	0.3	2				GS2	1.0	03Li.A	
165 Hf-C _{12.75}		-55360	140	-55430	30	-0.5	U				GS1	1.0	00Ra23	
- 15.75		-55433	30				2				GS2	1.0	03Li.A	
¹⁶⁵ Ta-C _{12.75}		-49191	30	-49227	19	-1.2	R				GS2	1.0	03Li.A	
$^{165}W-C_{13.75}^{15.75}$		-41720	30	-41720	27	0.0	1	80	80	^{165}W	GS2	1.0	03Li.A	
$^{165}W(\alpha)^{161}Hf$		5031.0	5.	5032	30	0.0	_						75To05	Ζ
		5034.2	10.			0.0	-						84Sc06	*
	ave.	5032	4			0.0	1	36	20	^{165}W			average	
165 Re ^m (α) ¹⁶¹ Ta ^m		5631.7	10.	5649	4	1.7	13						78Sc26	*
		5643.0	10.			0.6	13				GSa		81Ho10	
		5664.5	4.			-3.8	F				Ora		82De11	*
		5655.4	5.			-1.2	13				Daa		96Pa01	*
165 Os(α) 161 W		6354.3	20.	6340	50	-0.4	5						78Ca11	
		6317.4	10.			0.4	5						81Ho10	
165× m () 161× m		6342.1	7.			-0.1	5				Daa		96Pa01	
$165 \text{ Ir}^{m}(\alpha)^{101} \text{ Re}^{m}$		6882.1	7.		0.05	• •	8				Ara		97Da07	-
$Dy(n,\gamma)$ Dy		5716.36	0.20	5715.96	0.05	-2.0	В				ILn		/9Br25	Z
		5715.90	0.06			0.0	2 11				IVIIVIN		021SU5	27
		5715.05	0.30			0.9	2				ILII Rdn		90Ka21	L
$^{165}H_{0}(\gamma n)^{164}H_{0}$		_7987	2	_7988.8	11	_0.1	1	32	33	164 Ho	MMr		85Te01	
110(7,11) 110		-1901	4	-1900.0	1.1	-0.9	1	55	55	110	14114111		0.5 1 50 1	

Item	Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Referen	ice
164 Er(n $\gamma)^{165}$ Er	6650.1	0.6	6650.1	0.6	-0.1	1	94	56 ¹⁶⁵ Fr			70Bo29) 7
164 Er(α t) 165 Tm $-^{168}$ Er() 169 Tm	-1298.0	2.0	-1296.9	1.5	0.1	1	58	50 ⁻¹⁶⁵ Tm	McM		75Bu02	, -
165 Lr ^m (p) ¹⁶⁴ Os	1717 5	7	1726	11	1.2	R	20	20 11	Ara		97Da07	,
$^{165}\text{Er}(\epsilon)^{165}\text{Ho}$	370	10	376.3	2.0	0.6	U					63Rv01	
	371	6	07010	2.0	0.9	1	12	10 ⁻¹⁶⁵ Er			63Zv01	
$^{165}\text{Tm}(\beta^+)^{165}\text{Er}$	1591.3	2.0	1592.4	1.5	0.5	1	58	48 ¹⁶⁵ Tm	ı		82Vv03	
165 Yb $(\beta^{+})^{165}$ Tm	2762	20	2649	28	-5.7	в					67Pa04	
$^{165}Lu(\beta^+)^{165}Yb$	4250	140	3840	40	-2.9	В					83Ge08	;
	3920	80			-0.9	R			IRS		93A103	
$*^{165}W(\alpha)^{161}Hf$	Originally assigned	168Re, re	-assigned by r	ef.							92Me1() **
$*^{165}W(\alpha)^{161}Hf$	Original $E(\alpha)=4894$	recalibra	ated using the	ir ¹⁶⁸ Os-	- ¹⁷⁰ Os	resu	ilts				GAu	**
$*^{165}$ Re ^m (α) ¹⁶¹ Ta ^m	Originally assigned	to ¹⁶⁶ Re									AHW	**
$*^{165}$ Re ^m (α) ¹⁶¹ Ta ^m	Originally assigned	to ¹⁶⁶ Re									AHW	**
$*^{165}\mathrm{Re}^{m}(\alpha)^{161}\mathrm{Ta}^{m}$	Due to a high spin is	somer									99Po09	**
¹⁶⁶ Lu=Cu, and	-60157	108	-60140	30	0.1	U			GS1	1.0	00Ra23	*
	-60141	32				2			GS2	1.0	03Li.A	*
¹⁶⁶ Hf-C _{13,833}	-57860	110	-57820	30	0.4	U			GS1	1.0	00Ra23	
13.055	-57820	30				2			GS2	1.0	03Li.A	
¹⁶⁶ Ta-C _{13,833}	-49488	30				2			GS2	1.0	03Li.A	
$^{166}W-C_{13,833}$	-44957	30	-44973	11	-0.5	R			GS2	1.0	03Li.A	
¹⁶⁶ Er ³⁵ Cl- ¹⁶⁴ Er ³⁷ Cl	4040.9	1.4	4042.9	2.1	0.6	1	34	32 ¹⁶⁴ Er	H25	2.5	72Ba08	;
$^{166}W(\alpha)^{162}Hf$	4856.0	5.	4856	4	0.1	3					75To05	Ζ
	4855.0	10.			0.1	3					79Ho10) Z
	4858.2	8.			-0.2	3					89Hi04	
$^{166}\mathrm{Re}^{m}(\alpha)^{162}\mathrm{Ta}$	5637.0	13.	5660	50	0.4	5			Bea		92Me10)
166 162	5669.9	10.			-0.2	5			Daa		96Pa01	
100 Os(α) 102 W	6148.5	20.	6139	4	-0.5	U					77Ca23	
	6129.0	6.			1.6	5			Dee		81Ho10)
1661 (-1) 162 p -	6148.5	6. 20	(704	~	-1.6	5			Daa		96Pa01	
$\Pi(\alpha)$ Re	6702.8	20.	0724	0	1.1	7			Ara		07Do07	,
$166 \operatorname{Ir}^{m}(\alpha) 162 \operatorname{Pe}^{m}$	6718.2	11	6722	5	0.4	8			Daa		97Da07	<u>ب</u>
li (u) Ke	6723.3	5	0722	5	0.4	8			Ara		07Do07	ı ^
166 Pt(α) 162 Os	7285.9	15			0.2	5			ORa		96Bi07	
166 Er(n t) 164 Er	-6641	5	-6642.9	19	-0.4	1	15	14 ¹⁶⁴ Fr	Min		730.001	
165 Dv(n γ) ¹⁶⁶ Dv	7043 5	04	0012.9	1.9	0.1	3	15	14 14			83Ke A	
165 Ho(n γ) ¹⁶⁶ Ho	6243.64	0.02	6243 640	0.020	0.0	1	100	61 ¹⁶⁶ Ho	MMn		84Ke15	i Z
	6243.68	0.13			-0.3	Ū			Bdn		03Fi.A	_
¹⁶⁶ Ir(p) ¹⁶⁵ Os	1152.0	8.0				6			Ara		97Da07	!
166 Ir ^m (p) ¹⁶⁵ Os	1324.1	8.	1324	10	-0.1	R			Ara		97Da07	*
166 Tb $(\beta^{-})^{166}$ Dy	4830	100				4					02Sh.A	
166 Ho(β^{-}) 166 Er	1859	3	1854.7	0.9	-1.4	_					63Fu17	
	1857	3			-0.8	-					66Da04	ł
	1854.7	1.5			0.0	-					74Gr41	
	1851.6	2.0			1.5	-					83Ra.A	
	ave. 1854.7	1.0			0.0	1	73	39 ¹⁶⁶ Ho			average	:
166 Tm(β^+) 166 Er	3043	20	3038	12	-0.3	2					61Gr33	
	3031	20			0.3	2					61Zy02	·
166	3039	20			-0.1	2					63Pr13	
100 Yb(ε) 100 Tm	280	40	305	14	0.6	U					Averag	*
$100 \text{Lu}(\beta^+)^{100} \text{Yb}$	5480	160	5570	30	0.5	U					74De09	,
¹⁰⁰ Ir ^{**} (11) ¹⁰⁰ Ir	171.5	6.1	172	6	0.0	R 7			A		165Us+	·1
	1/1.5 M A = 56010(100)	0.1	miyture on	in ct 24	27	1 10	0.1	17	Ara		9/Dau/	0
*****Lu=C _{13.833}	M = A = -50010(100)	Kev IOr	mixture gs+m	1+n at 34	1.5 / and	142 42.0	.9 KC	v			NDS92	7** 0
* $Lu = C_{13,833}$ $u^{166} Lr^m (\alpha)^{162} P_0^m$	INI-A=-33993(28) I	100 f	$m_{xture gs+m}$	-11 at 34.	si and	42.5	v ke v				1ND392	7**
* If (α) Ke ^m * ¹⁶⁶ Ir ^m (p) ¹⁶⁵ Os	Correlated with E(0	0123	or 166 Jrm (17) 16	56 I.e							90Pa01	** /
$^{\circ}$ II (µ) US 166 Vb(c) ¹⁶⁶ Tm	From average pK-0	5 value 1 712/0 0	$(11)^{11}$	11 ()2) lav	-1						2/Da0/	**
$*^{166}$ Yh(e) ¹⁶⁶ Tm	nK = 0.74(0.05) to 82	29 12(0.0.	557 10 82.29(0	.02) 1000	.1						631906	**
$*^{166}$ Yb(e) ¹⁶⁶ Tm	pK = 0.675(0.05) to 02	82 29 10	vel								73De??	·**
. 10(0) 1111	r	52.27 10									150022	e - e

Item		Input va	llue	Adjusted	value	v _i	Dg	Sig	Main f	ux Lab	F	Reference
$C_{12} H_{11} - {}^{167} Er$	1	154040.4	6.2	154027.2	2.7	-0.9	U			M23	2.5	79Ha32
$^{167}Lu-C_{12,017}$	-	-61730	34				2			GS2	1.0	03Li.A *
167 Hf-C _{13.917}	-	-57490	110	-57400	30	0.8	U			GS1	1.0	00Ra23
13.917	-	-57400	30				2			GS2	1.0	03Li.A
¹⁶⁷ Ta-C _{13.917}	-	-51870	120	-51910	30	-0.3	U			GS1	1.0	00Ra23
	-	-51907	30				2			GS2	1.0	03Li.A
$^{167}W-C_{13.917}$	-	-45175	30	-45184	21	-0.3	R			GS2	1.0	03Li.A
¹⁶⁷ Er ³⁵ Cl- ¹⁶⁵ Ho ³⁷ Cl		4679.5	1.2	4676.2	1.0	-1.1	1	10	6^{165}	Ho H25	2.5	72Ba08
$^{16}W(\alpha)^{163}Hf$		4661.9	20.	4770	30	2.2	U					89Me02
167		4671.1	13.		• •	2.0	U					91Me05
$^{107}\text{Re}^{m}(\alpha)^{105}$ Ta		5408.8	3.	5407.0	2.9	-0.6	4			Ora		82De11 *
		5397.5	10.			0.9	4			ChR		84Sc06 *
$167 O_{2}(\alpha) 163 W$		5092.4	12.	5080	50	1.2	4			веа		92Me10
$Os(\alpha)$ w		5985.0 5078 7	3. 2	3980	30	0.0	6					82Del1 7
		5996.9	2. 5			_0.1	6			Daa		96Pa01
		5979.5	5			0.0	6			Bka		02Ro17
167 Ir(α) ¹⁶³ Re		6507.1	5.	6503	6	-0.8	Ř			Ara		97Da07 *
167 Ir ^m (α) ¹⁶³ Re ^m		6543.0	10.	6563	4	2.0	8					81Ho10
(0)		6567.6	11.			-0.4	8			Daa		96Pa01
		6567.6	5.			-0.8	8			Ara		97Da07
167 Pt(α) 163 Os		7159.8	10.				5			ORa		96Bi07
¹⁶⁷ Er(p,t) ¹⁶⁵ Er		-6427	6	-6429.3	1.9	-0.4	_			Min		73Oo01
-		-6430	5			0.1	_					75St08
	ave.	-6429	4			-0.1	1	26	24 ¹⁶⁵ 1	Er		average
166 Er(n, γ) 167 Er		6436.35	0.50	6436.45	0.18	0.2	-					70Bo29 Z
		6436.51	0.40			-0.1	-					70Mi01 Z
		6436.46	0.22			0.0	-		144	Bdn		03Fi.A
166	ave.	6436.46	0.18			0.0	1	99	62 100]	Er		average
100 Er(α ,t) ¹⁰⁷ Tm $-^{108}$ Er() ¹⁰⁹ Tm		-666.5	1.0	-666.5	1.0	0.0	1	99	99 18/7	m McM		75Bu02
167 Ir(p) 166 Os		1070.5	6.	1071	5	0.0	6					97Da07
$167 \text{ Dr}^{(0)}(\mathbf{p})^{160} \text{ Os}$		1245.5	7.	1246	6	0.1	R					9/Da0/ *
$167 \text{ U} (\beta) 167 \text{ Ho}$		2350	60	1010	~	2.0	3					//1001
$167 \text{ Ho}(\beta)$ 167 Er		970	20	1010	5	2.0	0	01	00 167	71.		68Fu07
$167 \text{ m}(\rho^{+}) 167 \text{ yb}$		2120	4	2000	20	0.1	1	91	90	10		$//\mathbf{N}$
$167 W(B^+) 167 T_2$		5620	270	5090 6260	30	-0.4	U			Got		04Ag.A 80Me02
$W(\mathcal{P}) = 1a$ 167 $Ir^{m}(IT)^{167} Ir$		175.3	210	175.3	22	2.4	P			001		1660s+1
п (п) п		175.3	2.2	175.5	2.2	0.0	7			Δra		97Da07
* ¹⁶⁷ Lu=C	M-A57	7501(28) ke	V for m	ixture os+m	at 0#30	keV	,			7114		Nubase **
$*^{167}$ Re ^m (α) ¹⁶³ Ta	Original as	ssignment t	o ¹⁶⁸ Re.	changed by n	ef	Re i						92Me10 **
$*^{167} \text{Re}^{m}(\alpha)^{163} \text{Ta}$	Original as	ssignment t	o 168 Ren	¹ changed by	ref.							92Me10 **
*	origina	al $E(\alpha)=52$	50 recali	brated using	their 16	$^{8}Os - ^{17}$	⁰ Os	resul	ts			GAu **
$*^{167}$ Ir(α) ¹⁶³ Re	Replaced b	by author's	value fo	$r^{163} \text{Re}^m(\text{IT})$	¹⁶³ Re							AHW **
$*^{167}$ Ir ^m (p) ¹⁶⁶ Os	Replaced I	by author's	value fo	r ¹⁶⁷ Ir ^m (IT) ¹⁶	⁵⁷ Ir							97Da07 **
G W 1685			<i></i>	1 - 1	a -				160-			
$C_{13} H_{12} - {}^{100}$ Er	1	161543.3	5.1	161530.2	2.7	-1.0	1	4	4 108]	r M23	2.5	79Ha32
$100Lu - C_{14}$	-	-61210	89	-61260	50	-0.6	R			GS2	1.0	03L1.A *
$-C_{14}$	-	-39360	104	-59430	30	1.2	U			GSI	1.0	00Ra23
168Ta C	-	-39432 52020	50 110	51050	20	0.0	2			682	1.0	USLI.A
	-	-52020 51052	110	-51950	30	0.6	0			GSI	1.0	00Ka25
$^{168}W-C$	-	-31933	30	_48102	17	_0.4	∠ P			G82	1.0	03Li A
$m = C_{14}$ ¹⁶⁸ W(α) ¹⁶⁴ Hf	-	4506 5	12	-40172	1/	-0.4	5			052	1.0	91Me05
168 Re(α) ¹⁶⁴ Ta		5063	12.				3			Bea		92Me10 +
$^{168}Os(\alpha)^{164}W$		5819.0	3	5818.2	29	-03	6			Dea		82De11 7
05(0)		5800.4	8.	5010.2	2.7	2.2	В					84Sc06 *
		5812.7	8.			0.7	6					95Hi02

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
168 Ir(α) 164 Re		6477.5	8.				8			Daa		96Pa01 *
168 Ir ^m (α) ¹⁶⁴ Re ^m		6410.9	5.	6410	50	-0.1	6					82De11
		6379.2	15.			0.6	6			Daa		96Pa01
168 Pt(α) 164 Os		6990.8	20.	6997	9	0.3	7					81Ho10
		6998.9	10.			-0.2	7			ORa		96Bi07
¹⁶⁸ Yb(p,t) ¹⁶⁶ Yb		-7647	7				2			Min		73Oo01
167 Er(n, γ) 168 Er		7771.43	0.40	7771.32	0.12	-0.3	-					70Mi01 Z
		7771.05	0.20			1.3	-			ILn		79Br25 Z
		7771.0	0.5			0.6	U			D 1		85Va.A
		7771.45	0.16			-0.8	-	100	co 168 E	Bdn		03F1.A
167 p () 168 p 168 p 0 169 p	ave.	7/71.31	0.12	2.02.0		0.1	1	100	60 ¹⁰⁸ Er			average
168		-262.3	1.5	-262.3	1.5	0.0	1	100	100 ¹⁶⁰ Im	MCM		/5Bu02
$168 \text{ I } \text{ I } (0, 1)^{107} \text{ Y } \text{ D}$		-2/9/	12	-2795	20	0.2	I	18	10 10 46	кор		66Bu16
$Ho(\beta)$ $Ho(\beta)$		2740	100	2930	30	1.9	0					/3Ka0/
1681 (Q+)168 VL		2950	50	4510	50	0.4	2					90Cl137
$Lu(p^{-1}) \rightarrow Hb$		4473	80	4310	30	0.4	2					70CH28 83Vi A
168 Lu ^m (β^+) 168 Vb		4500	100			0.1	2					72Ch44
* ¹⁶⁸ Lu=C	M	56922(28) k	eV for m	ivture as⊥m	at 190(110) ke	v					Nubase **
$*^{168}$ Re(α) ¹⁶⁴ Ta	$F(\alpha) = 48$	33(13) to 11	1 7 level	l	at 170(110) K						92Me10**
$*^{168}O_8(\alpha)^{164}W$	Used for	recalibration	n of othe	r results of s	ame ref							GAu **
$*^{168}$ Ir(α) ¹⁶⁴ Re	Correlate	d with $E(\alpha)$	=6878 o	f ¹⁷² Au	ane rer.							96Pa01 **
	contenue	,u ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00700									<i>y</i> or uo1
$^{169}Lu - C_{14.083}$		-62362	31	-62349	6	0.4	U			GS2	1.0	03Li.A *
169 Hf $-C_{14.083}$		-58741	30				2			GS2	1.0	03Li.A
169 Ta $-C_{14.083}$		-53960	110	-53990	30	-0.3	U			GS1	1.0	00Ra23
16911		-53989	30	40221	17	0.0	2	21	21 169337	GS2	1.0	03L1.A
$^{109}W - C_{14.083}$		-48195	30	-48221	1/	-0.9	1	31	31 107 W	GS2	1.0	03L1.A
$169 \text{ Ke} = C_{14.083}$		-41188	5/	-41210	30	-0.4	1	28	28 165 Re	GS2	1.0	03L1.A *
169 Tm 35 Cl 167 Em 37 Cl		9793.0	1.1	9791.4	1.4	-0.0	1	10	14 ¹⁶⁷ H0	H25	2.5	72Ba08
$169 \operatorname{Pa}(\alpha)^{165} \operatorname{Ta}^{p}$		4080.2	1.1	5115.2	1.2	0.7	2	10	10 EI	П23 Вее	2.3	72Da06
$169 \mathbf{Pom}(\alpha)^{165} \mathbf{To}$		4989.5 5190.1	12.				4			Oro		92Me10
$\operatorname{Ke}(\alpha)$ Ia		5107.1	10	5180	3	0.2	4			ChP		84Sc06 *
		5184.0	10.	5169	5	0.5	U U			Bea		92Me10
$^{169}Os(\alpha)^{165}W$		5717.6	4	5716	3	-0.4	2			Deu		82De11
05(0)		5699.2	8.	0,10	2	2.1	Ē					84Sc06 *
		5713	8			0.3	2					95Hi02
		5711.5	8.			0.5	2			Daa		96Pa01
169 Ir(α) 165 Re		6150.8	8.				13			Ara		99Po09
169 Ir ^m (α) 165 Re ^m		6276.0	3.	6257	4	-6.2	в			Ora		82De11 Z
		6258.4	10.			-0.1	U					84Sc.A
		6267.6	9.			-1.1	12			Daa		96Pa01
		6254.3	5.			0.6	12			Ara		99Po09
169 Pt(α) 165 Os		6840.2	15.	6846	13	0.4	6			GSa		81Ho10
178 170		6860.7	23.			-0.6	6			Daa		96Pa01
168 Er(n, γ) 169 Er		6002.5	0.7	6003.27	0.15	1.1	U					70Bo29 Z
		6003.5	0.3			-0.8	-					70Mu15 Z
		6003.16	0.18			0.6	_	100	00 160-	Bdn		03F1.A
168	ave.	6003.25	0.15		0.1-	0.1	1	100	92 ¹⁰⁹ Er			average
$bb Y b(n,\gamma)^{100} Y b$		6866.8	0.4	6866.98	0.15	0.5	-					68Mi08 Z
		0807.2	0.4			-0.5	-			Ddn		085012 Z
	01/0	6866.00	0.18			0.1	1	100	51 168 VL	Ddll		UJFI.A
169 Dy $(\beta^{-})^{169}$ Ho	ave.	3200	300			0.0	2	100	54 10	I DI		average
$^{169}\text{Er}(\beta^{-})^{169}\text{Tm}$		3/13 8	300	351.3	11	25	1	13	8 169 Fr	LDL		56Bi30
2.(p) III		347.8	5.	551.5	1.1	0.7	Ū	15	0 14			65Du02

Item	Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹⁶⁹ Yb(ε) ¹⁶⁹ Tm	913	12	910	4	-0.3	U					86Ad07
$^{169}Lu(\beta^+)^{169}Yb$	2293	3	,10	•	0.0	2					77Bo31
169 Hf(β^+) 169 Lu	3365	200	3360	28	0.0	Ū					69Ar23
III(p) Eu	3250	200	5500	20	1.2	Ŭ					73Me09
$*^{169}Lu - C_{14.082}$	M - A = -58075(28) ke	V for mix	ture gs+m at 2	9.0 keV							NDS91a**
$*^{169}$ Re-C _{14.082}	M-A=-38293(29) ke	V for mixe	ture gs+m at 1	45(29)	keV						Nubase **
$*^{169}$ Re ^m (α) ¹⁶⁵ Ta	Original $E(\alpha)=5050$ re	ecalibrated	1 using their 10	58Os - 17	⁰ Os resi	ults					GAu **
$*^{169}$ Os(α) ¹⁶⁵ W	Used for recalibration	of other r	esults of same	ref.							GAu **
¹⁷⁰ Lu-C	-61529	42	-61525	18	0.1	R			GS2	1.0	031 i A *
$^{170}Hf-C$	-60400	104	-60390	30	0.1	I			GS1	1.0	00Ra23
111 014.167	-60391	30	00570	50	0.1	2			GS2	1.0	03Li A
¹⁷⁰ Ta-C	-53810	104	-53830	30	-0.1	Ū			GS1	1.0	00Ra23
14.16/	-53825	30				2			GS2	1.0	03Li.A
$^{170}W-C_{14,167}$	-50710	110	-50772	16	-0.6	Ū			GS1	1.0	00Ra23
-14.16/	-50755	30			-0.6	R			GS2	1.0	03Li.A
170 Re $-C_{14,167}$	-41782	30	-41780	28	0.1	2			GS2	1.0	03Li.A
170 Os $-C_{14,167}$	-36454	31	-36423	12	1.0	R			GS2	1.0	03Li.A
¹⁷⁰ Er ³⁵ Cl ⁻¹⁶⁸ Er ³⁷ Cl	6046.9	1.8	6044.2	1.6	-0.6	1	13	10 ¹⁷⁰ Er	H25	2.5	72Ba08
170Yb 35Cl-168Yb 37Cl	3806.0	7.6	3815	4	0.5	U			H27	2.5	74Ba90
170 Os(α) 166 W	5533.5	10.	5539	3	0.6	4					72To06 Z
	5541.6	4.			-0.6	4					82De11 Z
	5523.2	8.			2.0	В					84Sc06 *
	5533.4	8.			0.7	4					95Hi02
	5537.5	10.			0.2	4			Bka		02Ro17
170 Ir(α) 166 Re ^p	5955.4	10.				8			Bka		02Ro17
170 Ir ^m (α) ¹⁶⁶ Re ^m	6175.4	10.	6230	11	1.1	U					78Sc26 Z
	6172.7	5.			1.1	U			Ora		82De11 Z
	6147.9	10.			1.6	U			Daa		96Pa01
170 166 -	6229.9	11.				6			Daa		96Pa01 *
170 Pt(α) 100 Os	6703.0	8.	6708	4	0.6	6					81Ho10
	6705.0	10.			0.3	6			0 P		82En03
	6708.1	6.			0.0	6			ORa		96Bi07
	6722.5	11.			-0.5	0			Jya		970u01
$170 \text{Au}(\alpha)^{166} \text{Ir}$	7174.1	14.	7168	21	-1.1	U			Бка		$02K_{e}C$
$170 \Lambda m(\alpha)^{166} L^m$	7174.1	6	7108	17	-0.1	U			Jya Ivo		02Kc.C
Au (α) II	7276.3	15	/2/1	17	0.0	U U			Jya Δra		02Kc.C
170 Er(p α) ¹⁶⁷ Ho	7036	5			0.7	2			NDm		83Ta A
170 Er(18 O 20 Ne) 168 Dv	4710	140				2			1 Dill		98L u08
170 Er(n t) 168 Er	-4785	5	-4778 7	15	13	ũ			Min		730001
170 Yb(n t) 168 Yb	-6861	6	-6855	4	1.0	1	38	37 ¹⁶⁸ Yb	Min		730001
170 Er(d 3 He) 169 Ho	-3107	20	0000	•	110	2	20	5, 10			76Su A
169 Tm(n. γ) 170 Tm	6595.	2.5	6591.97	0.17	-1.2	Ū					66Sh03
	6592.1	1.5			-0.1	Ū					70Or.A
	6591.7	0.9			0.3	U			BNn		96Ho12 Z
	6591.95	0.17			0.1	1	99	52 ¹⁷⁰ Tm	Bdn		03Fi.A
$^{170}Au(p)^{169}Pt$	1473.8	15.				7			Jvp		02Ke.C
$^{170}Au^{m}(p)^{169}Pt$	1749.5	8.	1748	6	-0.2	7			Jyp		02Ke.C
47	1745.4	10.			0.3	7			Arp		02Ma61
170 Ho(β^{-}) 170 Er	3870	50				2					78Tu04
170 Ho ^{<i>m</i>} (β^{-}) ¹⁷⁰ Er	3970	60				2					78Tu04
170 Tm(β^{-}) 170 Yb	970	2	968.3	0.8	-0.8	-					54Po26
	967.3	1.			1.0	-					69Va17
	ave. 967.8	0.9			0.6	1	78	48 ¹⁷⁰ Tm			average
170 Lu(β^+) 170 Yb	3467	20	3459	17	-0.4	2					60Dz02
170	3410	50			1.0	2					65Ha30
$*^{1/0}Lu - C_{14,167}$	M-A=-57267(29) ke	V for mix	ture gs+m at 9	2.91 ke	V						Ens02 **
$*^{1}$ Os(α) 100 W	Used for recalibration	of other re	esults of same	ref.							GAu **
$*^{1}$ ¹ ¹⁰ Ir ^m (α) ¹⁶⁶ Re ^m	Correlated with 166Re	$E(\alpha)=553$	33								96Pa01 **

A.H.	Wapstra	et al./	Nuclear	Physics A	729	(2003)	129–336
------	---------	---------	---------	-----------	-----	--------	---------

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹⁷¹ Lu-C _{14.25}		-62132	41	-62086.9	3.0	1.1	U			GS2	1.0	03Li.A *
171 Hf-C _{14.25}		-59570	104	-59510	30	0.6	U			GS1	1.0	00Ra23 *
		-59508	31				2			GS2	1.0	03Li.A *
171 Ta $-C_{14.25}$		-55550	104	-55520	30	0.3	U			GS1	1.0	00Ra23
		-55524	30				2			GS2	1.0	03Li.A
$^{1/1}W-C_{14.25}$		-50650	110	-50550	30	0.9	U			GS1	1.0	00Ra23
1710 6		-50549	30				2			GS2	1.0	03L1.A
171 Re-C _{14.25}		-44284	30	0.001.5	•	0.6	2			GS2	1.0	03L1.A
1110s-C _{14.25}		-36/96	30	-36815	20	-0.6	-	00	00 1710	GS2	1.0	03L1.A
171 24 35 01 167 5 37 01	ave.	-36801	21	10177.0	1.4	-0.7	1	90	90 100s	1127	25	average
$171 \text{ Yb} = 35 \text{ Cl}_2 = 169 \text{ Trm} = 37 \text{ Cl}_2$		5061.0	1.7	5062.6	1.4	0.0	1	10	/ 169 Tm	H27	2.5	74Ba90
$171 \Omega_{\rm s}(\alpha) \frac{167}{\rm W}$		5001.9	1./	5002.0	1.0	0.2	1	Э	4 ··· 1m	H27	2.5	74Ba90
$\cos(\alpha)^{10}$ w		5305.8	10.	55/1	4	0.5	2					721000
		5202.0	10.			0.5	2					704.10
		5367.0	13.			-1.5	2					05Hi02
		5374.0	0. Q			_0.3	2			Daa		96Pa01
$171 \operatorname{Ir}(\alpha)^{167} \mathbf{P}_{\alpha}^{m}$		5854.2	10			0.4	5			Bka		02Po17 *
$171 \text{ tr}^{m}(\alpha)^{167} \text{ Pe}$		6150.2	3	6160.2	25	0.3	0			Бка		82De11 *
$\Pi(\alpha)$ Re		6159.2	5	0100.2	2.5	0.3	9					92Sc16 *
		6180	11			-1.8	9			Daa		96Pa01 *
171 Pt(α) ¹⁶⁷ Os		6608 1	4	6610	50	0.0	7			Duu		81De22 7
11(11) 03		6606.8	5	0010	50	0.0	7					81Ho10 Z
		6604.8	11			0.0	7			Iva		97Un01
$^{171}\mathrm{Au}^{m}(\alpha)^{167}\mathrm{Ir}^{m}$		7163.9	6			0.1	8			Ara		97Da07
171 Yb(n t) 169 Yb		-6599	5	-6603	4	-0.7	1	54	54 ¹⁶⁹ Yb	Min		730001
170 Er(n γ) ¹⁷¹ Er		5681 5	0.5	5681.6	04	0.1	_	54	54 10			71A101
		5681.6	0.5	200110	011	-0.1	_			Bdn		03Fi.A
	ave.	5681.6	0.4			0.1	1	98	69 ¹⁷¹ Er			average
170 Er(α ,t) 171 Tm $-^{168}$ Er() 169 Tm		817.9	1.0	817.8	0.9	-0.1	1	81	59 ¹⁷⁰ Er	McM		75Bu02
170 Yb(n, γ) 171 Yb		6614.3	0.6	6614.5	0.6	0.3	1	88	77 ¹⁷⁰ Yb			72Wa10 Z
		6616.6	0.4			-5.3	В			Bdn		03Fi.A
170 Yb(α .t) 171 Lu $^{-174}$ Yb() 175 Lu		-1156.2	2.0	-1156.5	1.7	-0.2	1	74	69 ¹⁷¹ Lu	McM		75Bu02
¹⁷¹ Au(p) ¹⁷⁰ Pt		1452.6	17.	1452	18	0.0	R			Arp		99Po09
$^{171}Au^{m}(p)^{170}Pt$		1702.1	6.	1702	9	-0.1	R					97Da07
$^{171}\text{Ho}(\beta^{-})^{171}\text{Er}$		3200	600				2			LBL		90Ch34
$^{171}\text{Er}(\beta^{-})^{171}\text{Tm}$		1490	2	1490.7	1.2	0.4	1	38	31 ¹⁷¹ Er			61Ar15
$^{171}\text{Tm}(\beta^{-})^{171}\text{Yb}$		96.5	1.0	96.5	1.0	0.0	1	94	93 ¹⁷¹ Tm			57Sm73
$^{171}Lu(\beta^+)^{171}Yb$		1479.3	3.	1478.6	1.9	-0.2	1	41	31 ¹⁷¹ Lu			77Bo32
171 Re(β^+) 171 W		5670	200	5840	40	0.8	U			Got		87Ru05
¹⁷¹ Au ^m (IT) ¹⁷¹ Au		250	16	250	16	0.0	R					170Pt+1
		250	16				9					99Po09
* ¹⁷¹ Lu-C _{14.25}	M-A=-5	57840(33) k	eV for r	nixture gs+r	n at 71	.13 keV						NDS027**
$*^{171}$ Hf-C _{14.25}	M-A=-5	55480(100)	keV for	mixture gs+	m at 2	1.93 ke'	V					NDS027**
$*^{171}$ Hf-C _{14.25}	M-A=-5	55420(28) k	eV for r	nixture gs+r	n at 21	.93 keV						NDS027**
$*^{171}$ Ir(α) ¹⁶⁷ Re ^m	Correlate	d with ¹⁷⁵ A	$u E(\alpha) =$	=6412								02Ro17 **
$*^{171}$ Ir ^{<i>m</i>} (α) ¹⁶⁷ Re	$E(\alpha)=592$	25.2(3,Z) to	92 leve	1								92Sc16 **
*	this 9	2 level 11/2	2 [–] above	e 9/2 ⁻ 5.9 s	state							NDS007**
$*^{1/1} Ir^{m}(\alpha)^{16/} Re$	$E(\alpha)=592$	25(5) to 92	level									92Sc16 **
$*^{171} \mathrm{Ir}^{m}(\alpha)^{167} \mathrm{Re}$	$E(\alpha)=594$	45(11) follo	wed by	92 γ								96Pa01 **
¹⁷² Hf-C _{14 222}		-60555	30	-60552	26	0.1	2			GS2	1.0	03Li.A
172 Ta-C _{14,222}		-55105	30				2			GS2	1.0	03Li.A
$^{172}W-C_{14,222}$		-52770	110	-52710	30	0.6	Ū			GS1	1.0	00Ra23
~14.333		-52708	30				2			GS2	1.0	03Li.A

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹⁷² Re-C _{14.333}		-44702	221	-44580	60	0.6	U			GS1	1.0	00Ra23 *
		-44587	62			0.2	R			GS2	1.0	03Li.A *
¹⁷² Yb ³⁵ Cl ₂ - ¹⁶⁸ Er ³⁷ Cl ₂		9906.7	1.7	9911.4	1.4	1.1	1	10	7 ¹⁶⁸ Er	H27	2.5	74Ba90
¹⁷² Yb ³⁵ Cl- ¹⁷⁰ Yb ³⁷ Cl		4568.5	2.0	4569.7	0.6	0.2	U			H27	2.5	74Ba90
172 Os(α) ¹⁶⁸ W		5226.8	10.	5227	7	0.0	4					71Bo06
172		5227.8	10.			-0.1	4			Daa		96Pa01
$1/2 \text{ Ir}(\alpha)^{168} \text{Re}$		5990.6	10.	5850#	100#	-14.1	F					92Sc16 *
$^{1/2}$ Ir ^m (α) ¹⁰⁸ Re		6129.3	3.	6129.2	2.6	0.0	4					82De11 *
		6129.1	5.			0.0	4			D		92Sc16 *
172 8 (6123.0	12.			0.5	U			Daa		96Pa01 *
$172 \text{ Pt}(\alpha)^{100} \text{ Us}$		6464.8	4.	7020	50	0.2	/					81De22 Z
$^{1/2}Au(\alpha)^{100}$ If		7023.0	10.	7030	50	0.2	8			Dee		93Se09
172 U ~ (~) 168 Dt		7042.1	9.			-0.2	8			Daa		96Pa01
$170 Er(t p)^{172} Er$		1323	12	1026	4	0.4	0	80	97 172 Er			995014 905514
171 Yb(p x) 172 Yb		4034 8020 2	4	4030	4	0.4	1	69	6/ EI			505114 71 A 11 4 7
$10(n,\gamma)$ 10		8020.5	0.7	8019.40	0.14	-1.2	_					71A114 Z
		8019.67	0.5			-0.6	_			Пn		85Ge02 7
		8019.27	0.17			1.1	_			Bdn		03Fi A
	ave	8019.27	0.14			0.1	1	100	73 ¹⁷¹ Yb	Dun		average
171 Yb(α t) 172 Lu $^{-174}$ Yb() 175 Lu	uve.	-791.9	2.0	-791 9	2.0	0.0	1	100	100 ⁻¹⁷² Lu	McM		75Bu02
$^{172}\text{Er}(\beta^{-})^{172}\text{Tm}$		888	5	891	5	0.5	1	83	70 ¹⁷² Tm			62Gu03
$^{172}\text{Tm}(\beta^{-})^{172}\text{Yb}$		1870	10	1880	6	1.0	1	30	30 ¹⁷² Tm			66Ha15
172 Hf(ϵ) 172 Lu		350	50	338	25	-0.2	R					79To18
172 Ta(β^+) 172 Hf		4920	180	5070	40	0.9	U					73Ca10
$^{172}W(\beta^+)^{172}Ta$		3210	100	2230	40	-9.8	Č					74Ca.A
* ¹⁷² Re-C _{14,222}	M-A=	-41640(200)) keV for	mixture gs+	m at 0#1	00 keV						Nubase **
$*^{172}$ Re-C _{14,222}	M-A=	-41533(28)	keV for 1	mixture gs+m	at 0#10	00 keV						Nubase **
$*^{172}$ Ir(α) ¹⁶⁸ Re	$E(\alpha)=5$	510(10) to 8	9.7+123	.2+136.3 leve	el							92Sc16 **
$*^{172}$ Ir(α) ¹⁶⁸ Re	Conside	ers 349.2 lev	el uncert	ain								NDS942**
$*^{172}$ Ir(α) ¹⁶⁸ Re	$E(\alpha)=5$	510(10) corr	elated w	th $E(\alpha) = 626$	60 of ¹⁸⁶	Au						02Ro17 **
$*^{172}$ Ir ^{<i>m</i>} (α) ¹⁶⁸ Re	$E(\alpha)=5$	828.2(3,Z) f	ollowed	by 162.1 γ-ra	ıy							92Sc16 **
$*^{172}$ Ir ^{<i>m</i>} (α) ¹⁶⁸ Re	$E(\alpha)=5$	828(5) follo	wed by 1	62.1 γ-ray								92Sc16 **
$*^{172}\mathrm{Ir}^m(\alpha)^{168}\mathrm{Re}$	$E(\alpha)=5$	822(12) to 1	62.1 leve	el								NDS942**
173Hf C		50497	20				2			GEN	1.0	021 ; 4
173 Ta C		-56270	104	56250	30	0.2	1 U			GS1	1.0	00Pa23
1a-C _{14.417}		-56250	30	-30230	50	0.2	2			GS2	1.0	03L i A
$^{173}W-C$		-52340	104	-52310	30	03	ũ			GS1	1.0	00Ra23
14.417		-52311	30	52510	50	0.5	2			GS2	1.0	03Li.A
¹⁷³ Re-C _{14.117}		-46910	110	-46760	30	1.4	Ū			GS1	1.0	00Ra23
-14.41/		-46757	30				2			GS2	1.0	03Li.A
173 Os $-C_{14,417}$		-40169	30	-40192	16	-0.8	1	29	29 ¹⁷³ Os	GS2	1.0	03Li.A
173 Ir-C _{14.417}		-32463	110	-32498	15	-0.3	U			GS2	1.0	03Li.A *
173 Yb 35 Cl ₂ $ ^{169}$ Tm 37 Cl ₂		9898.3	1.2	9897.7	1.0	-0.2	1	11	8 ¹⁶⁹ Tm	H27	2.5	74Ba90
173 Os(α) 169 W		5057.2	10.	5055	6	-0.2	_					71Bo06
		5055.2	7.			-0.1	_			GSa		84Sc.A
	ave.	5056	6			-0.2	1	97	69 ¹⁶⁹ W			average
173 Ir(α) 169 Re ^m		5544.4	10.				3					92Sc16
173 Ir ^m (α) ¹⁶⁹ Re		5930.4	5.	5941.8	2.5	2.3	_					67Si02 *
		5947.1	4.			-1.3	_					82De11 *
		5937	10			0.5	_			GSa		84Sc.A *
		5944.8	5.			-0.6	-					92Sc16 *
		5951.9	13.			-0.8	-			Daa		96Pa01 *
		5927.3	20.			0.7	U			Ara		01Ko.B
172 170	ave.	5941.8	2.5			0.0	1	100	72 ¹⁶⁹ Re			average
$^{1/3}$ Pt(α) 109 Os		6359.1	8.	6350	50	-0.1	3					79Ha10 Z
		6352.3	3.			0.1	3					81De22 Z
		6382.9	10.			-0.6	U			GSa		84Sc.A
173 A (-1) 169 T		03/2.6	9.	(02)	F	-0.4	5			Daa		90Pa01
$\operatorname{Au}(\alpha)^{\infty}$ Ir		6830.2	6.	6836	5	1.0	12			Ara		99P009
		0847.6	δ.			-1.4	12			Ara		01K044

Item	Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{173}\mathrm{Au}^{m}(\alpha)^{169}\mathrm{Ir}^{m}$	6896.8	10.	6896	3	0.0	11			GSa		84Sc.A
	6909.1	9.			-1.4	11			Daa		96Pa01
	6891.6	4.			1.1	11			Ara		99Po09
	6900.8	6.			-0.7	11			Ara		01Ko44
173 Hg(α) ¹⁶⁹ Pt	7381	11				7					99Se14
$^{1/2}$ Yb(n, γ) $^{1/3}$ Yb	6367.3	0.4	6367.3	0.3	0.0	-					71Al01 Z
	6367.2	0.6			0.2	_	00	TO 172 T	Bdn		03Fi.A
172 7 173 174 7 0175	ave. 6367.3	0.3	505 6	1.0	0.1	1	98	70 172 Yb			average
$172 Y b(\alpha,t)^{173} Lu - 174 Y b()^{173} Lu$	-595.6	1.0	-595.6	1.0	0.0	1	100	100 ¹⁷⁵ Lu	McM		75Bu02
$173 \mathbf{w} (\theta^+)^{173} \mathbf{H}$	3670	200	3020	40	-5.5	U					/3Re03
$w(p^{-1}) = 1a$	M = 20112(70) k	SUU W for m	ivturo go m	40 at 252(-1.1	, U					00 VI.A
* $n - C_{14,417}$ * $r^{173} Lr^m (\alpha)^{169} Re$	$E(\alpha) = 5660.0(5.7)$ to	136.2 le	vel	at 255(2	27) KC V	, 					92Sc16 **
$*^{173} \text{Ir}^{m} (\alpha)^{169} \text{Re}$	$E(\alpha) = 5676.2(4 \text{ Z})$ to	136.2 le	vel								92Sc16 **
$*^{173}$ Ir ^m (α) ¹⁶⁹ Re	$E(\alpha)=5666(10)$ follo	wed by 1	$360 E_{1} \gamma$ (a)	nd 90 6))						84Sc A **
*	136.2 Y: M.E. it	istead (9	0 not mention	ned)							92Sc16 **
$*^{173}$ Ir ^{<i>m</i>} (α) ¹⁶⁹ Re	$E(\alpha) = 5674(5)$ to 136	.2 level)							92Sc16 **
$*^{173}$ Ir ^{<i>m</i>} (α) ¹⁶⁹ Re	$E(\alpha) = 5681(13)$ to 13	6.2 level									92Sc16 **
¹⁷⁴ Ta-C _{14.5}	-55546	30				2			GS2	1.0	03Li.A
$^{174}W-C_{14.5}$	-53940	104	-53920	30	0.2	U			GS1	1.0	00Ra23
14.5	-53921	30				2			GS2	1.0	03Li.A
¹⁷⁴ Re-C _{14.5}	-46930	104	-46890	30	0.4	U			GS1	1.0	00Ra23
	-46885	30				2			GS2	1.0	03Li.A
$^{1/4}$ Os $-C_{14.5}$	-42880	110	-42938	12	-0.5	U			GS1	1.0	00Ra23
1747 0	-42919	30			-0.6	R			GS2	1.0	03Li.A
174 Ir-C _{14.5}	-33127	72	-33139	30	-0.2	R			GS2	1.0	03L1.A *
174 Q () 170 W	5430.3	1.1	5430.7	0.4	0.1	Ű			H27	2.5	74Ba90
$174 \text{ Ly}(\alpha) 170 \text{ D}_{2}$	48/2.2	10.				2					/IB006
$174 \text{ Lm}(\alpha)^{170} \text{ Re}$	5024.1	10.	5017	4	0.1	2					925010 *
If (α) Re	5816.4	0. 5	3817	4	-0.1	3					92Sc16 *
174 Pt(α) 170 Os	6176.3	10	6184	5	0.1	5					79Ha10 Z
1 ((u)) 03	6185.7	5.	0104	5	-0.4	5					81De22 Z
174 Au(α) ¹⁷⁰ Ir	6700.3	10.	6699	7	-0.1	9			GSa		84Sc.A
	6698.3	10.			0.1	9			Daa		96Pa01 *
174 Au ^m (α) ¹⁷⁰ Ir ^m	6778	10	6784	8	0.6	7			GSa		84Sc.A *
	6793.5	13.			-0.7	7			Daa		96Pa01
174 Hg(α) 170 Pt	7235.6	11.	7233	6	-0.2	7					97Uu01
	7232	8			0.1	7					99Se14
172 174	7231	14			0.1	7		172	Bka		01Ro.B
$^{1/3}$ Yb(n, γ) $^{1/4}$ Yb	7464.63	0.06	7464.63	0.06	0.1	1	100	57 ¹⁷³ Yb	MMn		82Is05 Z
	7464.58	0.35			0.2	U			ILn		87Ge01 Z
173 X1 (a) ()174 174 X1 ()175	/465.5	0.4	202.1	1.0	-2.2	1	100	100 1741	Ban		03F1.A
$10(\alpha,t)$ Lu 174 Tm $(B^{-})^{174}$ Vh	-202.1	100	-202.1	1.0	0.0	2	100	100 Lu	WICIVI		/JDU02
$\operatorname{III}(p)$ Ib	3080	50	3080	40	0.0	2					67Gu12
174 Ta(B^+) 174 Hf	3845	80	4106	28	33	ĥ					71Ch26
* ¹⁷⁴ Ir-C	M = A = -30761(36) k	eV for m	ixture gs+m	at 193()	11) keV	, 5					Nubase **
$*^{174}$ Ir(α) ¹⁷⁰ Re	$E(\alpha)=5275(10)$ to 22	4.7 level									92Sc16 **
$*^{174}$ Ir ^m (α) ¹⁷⁰ Re	$E(\alpha) = 5478(6)$ to 210	.4 level									92Sc16 **
$*^{174}$ Ir ^m (α) ¹⁷⁰ Re	$E(\alpha)=5478(5), 5316($	(10) to 2	10.4, 370.2 le	vels							92Sc16 **
$*^{174}$ Au(α) ¹⁷⁰ Ir	$E(\alpha)=6538$ correlate	d with 17	⁰ Ir $E(\alpha)=581$	7							02Ro17**
*	and with ¹⁷⁸ Tl α	's									02Ro17**
$*^{174}$ Au ^{<i>m</i>} (α) ¹⁷⁰ Ir ^{<i>m</i>}	$E(\alpha)=6626, 6470, 64$	35 to gro	ound-state, 15	52.7, 19	0.0 lev	els					84Sc.A **
*	Last two $E(\alpha)$ or	ig. assgr	nd to 175 Au								01Ko.B**

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹⁷⁵ Lu ³⁷ Cl- ¹⁴² Nd ³⁵ Cl ₂		61249.5	2.5	61245.7	2.0	-0.6	1	11	6 ¹⁴² Nd	H31	2.5	77So02
¹⁷⁵ Ta-C _{14,583}		-56350	120	-56260	30	0.7	U			GS1	1.0	00Ra23
		-56263	30				2			GS2	1.0	03Li.A
$^{175}W-C_{14.583}$		-53290	104	-53280	30	0.1	U			GS1	1.0	00Ra23
176-		-53283	30				2			GS2	1.0	03Li.A
175 Re $-C_{14.583}$		-48630	104	-48620	30	0.1	U			GS1	1.0	00Ra23
1750- 0		-48619	30	12054	15	0.6	2			GS2	1.0	03L1.A
US-C _{14.583}		-43120	30	-43054	15	0.6	P			GSI	1.0	00Ka25 03L i A
¹⁷⁵ Ir-C		-35828	30	-35887	21	-2.0	1	50	50 ¹⁷⁵ Ir	GS2	1.0	03Li.A
¹⁷⁵ Lu ³⁵ Cl- ¹⁷³ Yb ³⁷ Cl		5507.3	1.4	5511.1	1.4	1.1	1	15	12 ¹⁷³ Yb	H27	2.5	74Ba90
175 Ir(α) ¹⁷¹ Re		5709.0	5.	5400	30	-62.5	в					67Si02 *
		5709.2	5.			-62.5	В					92Sc16 *
175 Pt(α) 171 Os		6179	5	6178.1	2.6	-0.2	-					79Ha10 *
		6178.1	3.			0.0	-					82De11 *
175	ave.	6178.3	2.6			-0.1	1	100	90 ⁻¹⁷⁵ Pt			average
$^{175}Au(\alpha)^{171}$ Ir		6562.3	15.	6504	-	0.7	6			Bka		02Ro17 *
$^{1/3}Au^{\prime\prime\prime}(\alpha)^{1/4}Ir^{\prime\prime\prime}$		6590.9	10.	6584	5	-0.7	8			Ora		75Ca06
		6588.8	10. Q			-19.2	г 8			Daa		045C.A *
		6579.6	6			0.5	8			Ara		01Ko44
175 Hg(α) 171 Pt		7039.2	20.	7060	50	0.3	8			GSa		84Sc.A
8(*))1		7071.0	24.			-0.3	8			Daa		96Pa01
		7058.7	11.			0.0	8			Jya		97Uu01
174 Yb(n, γ) 175 Yb		5822.35	0.07	5822.35	0.07	0.1	1	100	53 ¹⁷⁵ Yb	MMn		82Is05 Z
174 175		5822.5	0.4			-0.4	U			Bdn		03Fi.A
$^{1/4}$ Hf(n, γ) $^{1/5}$ Hf		6708.4	0.5	6708.5	0.4	0.3	-			D 1		71Al01 Z
		6708.8	0.6			-0.4	-	00	o.c. 175110	Bdn		03F1.A
$175 \text{Tm}(B^{-}) 175 \text{Vb}$	ave.	0708.0	0.4			-0.1	2	99	80 ··· HI			average
$175 \mathbf{v} \mathbf{b} (B^{-})^{175} \mathbf{I} \mathbf{n}$		2383	30	470.1	13	1.4	2					55De18
10(p) Eu		468	5	470.1	1.5	0.4	_					55Mi90
		471	3			-0.3	_					56Co13
		467	3			1.0	_					62Ba32
	ave.	468.0	1.6			1.3	1	60	47 ¹⁷⁵ Yb			average
175 Ir ^{<i>p</i>} (IT) ¹⁷⁵ Ir		100	20	72	17	-1.4	1	74	50 ¹⁷⁵ Ir			84Sc.A
$*^{175}$ Ir(α) ¹⁷¹ Re	$E(\alpha)=53$	92.8(5,Z) to 1	189.8 leve	el								95Hi02 **
$*^{175}$ Ir(α) ¹⁷¹ Re	$E(\alpha)=53$	93(5) to 189.8	8 level		-							95Hi02 **
$*^{175}$ Pt(α) ¹⁷¹ Os	$E(\alpha)=60$	137(10), 5963.	0(5,Z) to	ground-state	, 76.4(0.	5) level						84Sc.A **
$*^{175} \Lambda u(\alpha)^{171} Jr$	$E(\alpha)=59$	$(59.2(3,\mathbb{Z}))$ to f	(0.4(0.5)	level								845C.A **
* $Au(\alpha)^{171}$ Ir m	F. Belon	g to ¹⁷⁴ Au !										02K017**
······································	1. Deron	510 Mu.										01110.0
176Lu 37Cl-143Nd 35Cl ₂		61067.2	1.4	61069.2	2.0	0.6	1	34	20 ¹⁴³ Nd	H31	2.5	77So02
¹⁷⁶ Ta-C _{14.667}		-55143	33				2			GS2	1.0	03Li.A
$^{176}W-C_{14.667}$		-54420	104	-54370	30	0.5	U			GS1	1.0	00Ra23
176 D - C		-54366	30	40200	20	0.0	2			GS2	1.0	03L1.A
		-48580	110	-48380	30	0.0	U 2			GSI	1.0	00Ka23
176Os-C		-40377	110	_45190	30	_0.4	∠ ∐			GS1	1.0	00Ra23
03-014.667		-45194	30	43170	50	-0.4	2			GS2	1.0	03Li A
¹⁷⁶ Ir-C ₁₄ 7		-36328	30	-36351	22	-0.8	-			GS2	1.0	03Li.A
	ave.	-36334	27			-0.6	1	65	65 ¹⁷⁶ Ir			average
176Yb 35Cl2-172Yb 37Cl2		12088.9	2.4	12090.4	1.1	0.2	U			H27	2.5	74Ba90
¹⁷⁶ Yb ³⁵ Cl ⁻¹⁷⁴ Yb ³⁷ Cl		6656.3	1.4	6659.7	1.0	1.0	1	9	9 ¹⁷⁶ Yb	H27	2.5	74Ba90

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁷⁶ Hf ³⁵ Cl- ¹⁷⁴ Hf ³⁷ Cl		4314.21	0.86	4312.5	1.9	-0.8	1	76	75 ¹⁷⁴ Hf	H37	2.5	77Sh12
176 Ir(α) 172 Re		5237.3	8.				2					67Si02
176 Pt(α) 172 Os		5890.1	5.	5885.2	2.1	-0.9	3					79Ha10 Z
		5881.4	4.			1.0	3					82Bo04 Z
		5887.3	3.			-0.6	3					82De11 Z
176 172 .		58/4.8	8.	65.50	-	1.3	3			Daa		96Pa01
$^{1/6}Au(\alpha)^{1/2}Ir$		6574.2	10.	6558	1	-1.6	5			Ora		/5Ca06 *
$176 \text{ A} m(\alpha) 172 \text{ Lm}$		6341.5	10.	6122	5	1.0	5			0.00		84SC.A *
Au (α) If		6430.0	10.	0455	3	-0.5	5			GSa		75Ca06 *
		6433.4	6			-0.1	5			Ara		01K044 *
176 Hg(α) 172 Pt		6924.7	10	6897	6	-2.8	ć			GSa		84Sc A
lig(w) it		6907.3	20.	0077	0	-0.5	Ŭ			Daa		96Pa01
		6897.0	6.			0.0	8			Ara		99Po09
176 Yb(p, α) 173 Tm		7628.8	4.4				2			NDm		78Ta10
176Hf(p,t)174Hf		-6397	5	-6391.7	1.7	1.1	1	12	12 ¹⁷⁴ Hf	Min		73Oo01
$^{175}Lu(n,\gamma)^{176}Lu$		6287.96	0.15	6287.98	0.15	0.1	1	100	77 ¹⁷⁵ Lu	ILn		91K102 Z
		6289.78	0.24			-7.5	В			Bdn		03Fi.A
176 Tm(β^{-}) 176 Yb		4120	100				2					67Gu11 *
$^{176}Lu(\beta^{-})^{176}Hf$		1194.1	1.0	1190.2	0.8	-3.9	1	58	36 ¹⁷⁶ Hf			73Va11 *
176 Ta $(\beta^+)^{176}$ Hf		3110	100	3210	30	1.0	U					71Be10
$*^{176}$ Au(α) ¹⁷² Ir	$E(\alpha)=626$	60(10) coinc.	with $E(\gamma)$	=168.4(0.5)								75Ca06 **
$*^{176}$ Au(α) ¹⁷² Ir	$E(\alpha)=622$	28(10) to 168	.4(0.5) γ									84Sc.A **
$*^{176}$ Au(α) ¹⁷² Ir	$E(\alpha)=626$	60 correlated	with 172Ir	$E(\alpha)=5510$								02Ro17 **
$*^{176} Au^{m}(\alpha)^{172} Ir^{m}$	$E(\alpha)=628$	86 correlated	with ¹⁷² Ir	^m E(α)=5828								02Ro17 **
$*^{176}$ Au ^m (α) ¹⁷² Ir ^m	$E(\alpha)=611$	15(6) coinc. v	with 175.1	γ of ref								84Sc.A **
*	$E(\alpha)$	$=6119 + E(\gamma) =$	175.1 mis	sassigned to 12	⁷⁷ Au by	ref						84Sc.A **
$*^{1/6}$ Tm $(\beta^{-})^{1/6}$ Yb	$E^{-}=2000$	(100), 1150(1)	100) to 20	53.4, 3050 le	evels							NDS905**
$*^{1/6}Lu(\beta^{-})^{1/6}Hf$	Q ⁻ =1317	7(1) to ¹⁷⁶ Lu ^m	' at 122.85	55(0.009)								91Kl02 **
177 Ta $-C_{14.75}$		-55559	30	-55528	4	1.0	U			GS2	1.0	03Li.A
$^{177}W-C_{14.75}$		-53420	110	-53360	30	0.6	U			GS1	1.0	00Ra23
11.75		-53357	30				2			GS2	1.0	03Li.A
¹⁷⁷ Re-C _{14.75}		-49620	104	-49670	30	-0.5	U			GS1	1.0	00Ra23
		-49672	30				2			GS2	1.0	03Li.A
$^{177}Os-C_{14.75}$		-45020	104	-45035	17	-0.1	U			GS1	1.0	00Ra23
177-		-45012	30			-0.8	R			GS2	1.0	03Li.A
1/7Ir-C _{14.75}		-38810	110	-38699	21	1.0	U			GS1	1.0	00Ra23
177 p. C		-38699	30	21521	16	0.0	2	20	20 177 D	GS2	1.0	03L1.A
$177 \text{ Pt} - \text{C}_{14.75}$		-31545	30	-31531	16	0.5	I E	29	29 ··· Pt	GS 2	1.0	03L1.A
$177 \operatorname{Pt}(\alpha)^{173} \operatorname{Or}$		5127.1	10.	5080	30	-0.9	г					0/5102 *
$Pt(\alpha)^{11}Os$		5640 7	0. 2	5042.8	2.7	-1.9	-					79Ha10 Z
	01/0	5642.2	3. 27			0.8	1	00	55 177 Dt			82B004 Z
$177 \Lambda u(\alpha)^{173} Ir$	ave.	6292.5	10	6207	5	-0.2	2	77	55 FL	Daa		75Ca06
$Au(\alpha)$ II		6292.5	20	0297	5	0.4	1 U			GSa		84Sc A
		6296.5	10			0.0	2			Daa		96Pa01
		6298.6	6.			-0.3	$\tilde{2}$			Ara		01Ko44
$^{177}\mathrm{Au}^{m}(\alpha)^{173}\mathrm{Ir}^{m}$		6251.5	10.	6260	4	0.9	_			Ora		75Ca06
		6260.8	10.			0.0	_			GSa		84Sc.A *
		6259.7	9.			0.1	_			Daa		96Pa01 *
		6263.8	6.			-0.6	_			Ara		01Ko44
	ave.	6260	4			0.0	1	100	72 ¹⁷³ Ir ^m			average
177 Hg(α) 173 Pt		6732.4	8.	6740	50	0.1	4					79Ha10
		6747.8	10.			-0.2	4					91Ko.A
		6730.3	9.			0.1	4			Daa		96Pa01

Item		Input va	alue	Adjusted v	value	v _i	Dg	Sig	Main flux	Lab	F	Reference	
$177 T1(\alpha)^{173} \Delta u$		7067.0	7				11			Δra		99Po09	—
$177 T1^{m}(\alpha)^{173} Av^{m}$		7660.4	12				10			Aro		00Pc00	
177116(-1)175116		/000.4	15.	<i>сосс с</i>	1.0	0.0	10	14	14 175116	Ala		99P009	
176 HI (p,t) HI		-60/1	5	-0000.0	1.9	0.9	1	14	14 ···· HI	Min		730001	-
$100 Y D(n,\gamma)$ $100 Y D$		5565.1	1.0	5566.40	0.22	1.3	0			D 1		/2A119	L
176 177 174 176		5566.40	0.22				2		177	Bdn		03F1.A	
$^{1/6}$ Yb(α ,t) $^{1/7}$ Lu $^{-1/4}$ Yb() $^{1/5}$ Lu		674.1	1.0	673.8	1.0	-0.3	1	91	91 ¹⁷⁶ Yb	McM		75Bu02	
$^{176}Lu(n,\gamma)^{177}Lu$		7071.2	0.4	7072.99	0.16	4.5	В					71Ma45	Ζ
		7073.1	0.4			-0.3	-					72Mi16	Ζ
		7072.85	0.17			0.8	_			Bdn		03Fi.A	
	ave.	7072.89	0.16			0.7	1	99	57 ¹⁷⁷ Lu			average	
176 Hf(n, γ) 177 Hf		6385.8	0.8	6383.4	0.7	-3.0	1	69	58 ¹⁷⁶ Hf	Bdn		03Fi.A	
177 Tl(n) 176 Hg		1162.6	20	1162	21	0.0	R			Arn		99Po09	*
$177 \text{Tl}^{m}(\mathbf{n})^{176} \text{Hg}$		1969.2	10	1102		0.0	0			Δrn		99Po09	
$177_{\rm I} {}_{\rm H} (B^-)^{177} {}_{\rm H} f$		407	2	500.6	0.7	1.9				mp		55Ma12	
Lu(p) Hi		497	10	500.0	0.7	1.0	_					53W1a12	
		497.1	1.0			2.0	1	65	42 1771			0212102	
17777 (0) 177777	ave.	497.1	0.9			3.9	1	65	43 ^m Lu			average	
177 Ta(β^+) 177 Hf		1166	3				2					61We11	
$^{1/7}Au^{m}(IT)^{1/7}Au$		210	30	216	26	0.2	1	77	73 ¹ //Au ^m			01Ko44	*
$^{177}Au^{n}(IT)^{177}Au^{m}$		240.8	0.5				2					01Ko44	
${}^{177}\text{Tl}^{m}(\text{IT}){}^{177}\text{Tl}$		807	18	807	18	0.0	R					176Hg+1	
		807	18				10					99Po09	
$*^{177}$ Ir(α) ¹⁷³ Re	Final stat	e uncertain:	possibly	v to 214.7 5/2	2 ⁻ level	1						95Hi02 *	**
$*^{177} Au^{m} (\alpha)^{173} Ir^{m}$	Followed	by 175 1(0	τ. 5) γ	,		-						84Sc A	**
* //u (u) ii	Gam	na belonge	to $E(\alpha)$ -	-6116 of ¹⁷⁶ A								01Ko44	يد با
*	Vat E	$(\alpha) = 6118$		-011001 A	1u 5672 at	c 173 тm						01R044 *	• •
* $(177 \text{ A}_{}m(n)) 173 \text{ L}_{}m$	Tet E	$(\alpha) = 0118$	173L E	$I WILL E(\alpha) = .$	3072 01	п						02R01/ *	
* $\operatorname{Au}^{(\alpha)}(\alpha)$	$E(\alpha)$ corr	elated with	181m	x)=5081(13)								96Pa01 *	**
*	Also	correlated v	vith ¹⁰¹ 1	$1 E(\alpha) = 6180$								961001 *	**
*	Doub	ts correctne	ess of lat	ter remark								AHW *	**
* ¹⁷⁷ Tl(p) ¹⁷⁶ Hg	Replaced	by $^{1/7}Tl^m(l$	IT)									AHW *	**
$*^{177}$ Au ^m (IT) ¹⁷⁷ Au	Auth. say	v 157.9+x, e	estimate	x from ref.								AHW *	**
¹⁷⁸ W-Current		-54152	30	-54124	16	0.9	U			GS2	1.0	03Li.A	
178 Re-C		-48800	110	-49010	30	-1.9	Ŭ			GS1	1.0	00Ra23	
14.833		-49011	30	49010	50	1.7	2			GS2	1.0	03L i A	
1780c C		46700	104	46740	19	0.4	1			GS1	1.0	0000.22	
08-014.833	-	46710	20	-40749	10	1.2	D			CEL	1.0	021: 4	
1781 C		-46/10	50	20010	21	-1.5	ĸ			052	1.0	USLI.A	
10^{-10} Ir $-C_{14.833}$		-38950	110	-38918	21	0.3	U			GSI	1.0	00Ra23	
178		-38888	30			-1.0	2			GS2	1.0	03L1.A	
$^{1/6}Pt-C_{14.833}$		-34300	110	-34351	12	-0.5	U			GS1	1.0	00Ra23	
		-34333	30			-0.6	R			GS2	1.0	03Li.A	
¹⁷⁸ Hf ³⁵ Cl- ¹⁷⁶ Hf ³⁷ Cl		5239.5	1.3	5240.2	0.7	0.2	1	5	4 ¹⁷⁶ Hf	H27	2.5	74Ba90	
178 Pt(α) 174 Os		5583.3	5.	5573.4	2.6	-1.9	4					79Ha10	Ζ
		5569.9	3.			1.2	4					82Bo04	Ζ
		5568.4	13.			0.4	U					94Wa23	
178 Au(α) ¹⁷⁴ Ir		6117.7	20.				4			GSa		86Ke03	
178 Hg(α) 174 Pt		6578 1	6	6577	5	-0.1	6					79Ha10	
ng(w) it		6576.1	9	0011	5	0.1	6			Daa		96Pa01	
$178 T (\alpha)^{174} A \mu$		7017.0	5			0.2	10			Bka		02Po17	÷
$178 \text{Dh}(\alpha)$ 174Hz		7017.0	J. 14				010			DIre		02K017	*
$176 \text{ m} (\alpha) = 178 \text{ m}$		//90.4	14.				ð			ыка		01K0.B	
$176 Y b(t,p)^{178} Y b$		3865	10				2		- 179-	Phi		82Zu02	
$^{1/6}Lu(t,p)^{1/8}Lu^m$		4482	5	4492.6	2.9	2.1	1	34	34 ¹⁷⁸ Lu ^m	LAI		81Gi01	
177 Hf(n, γ) 178 Hf		7626.2	0.3	7625.96	0.18	-0.8	-			ILn		86Ha22	Ζ
		7625.80	0.22			0.7	-			Bdn		03Fi.A	
	ave.	7625.94	0.18			0.1	1	100	67 ¹⁷⁷ Hf			average	
¹⁷⁸ Lu ^m (IT) ¹⁷⁸ Lu		120	3	123.8	2.6	1.3	1	76	66 ¹⁷⁸ Lu ^m	McM		93Bu02	
178 Ta(β^+) 178 Hf		1937	15				2					61Ga05	*

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{178}W(\varepsilon)^{178}Ta \\ ^{178}Re(\beta^+)^{178}W \\ *^{178}Tl(\alpha)^{174}Au \\ *^{178}Ta(\beta^+)^{178}Hf$	And a st E ⁺ =89	91.3 4660 ronger $E(\alpha)=$ 0(10) to gs an	2. 180 6704; bo d 93.18	4760 oth correlated level ratio 2.7	30 with ¹⁷ 7 to 1	0.6 ⁴ Au E(3 U α)=6	5538				67Ni02 70Go20 02Ro17 ** NDS886**
$\begin{array}{c} C_{14} H_{11} - {}^{179} \text{Hf} \\ {}^{179} \text{W} - C_{14.917} \\ {}^{179} \text{Re} - C_{14.917} \\ {}^{179} \text{Os} - C_{14.917} \\ \end{array}$		$\begin{array}{r} 140260.3 \\ -52964 \\ -50010 \\ -46220 \\ -46176 \\ -40910 \\ -40852 \\ -34710 \end{array}$	1.8 76 30 104 30 104 30 110	140259.2 -52930 -50012 -46184 -40878 -34637	2.3 17 26 19 12 10	$\begin{array}{c} -0.2 \\ 0.5 \\ -0.1 \\ 0.3 \\ -0.3 \\ 0.3 \\ -0.9 \\ 0.7 \end{array}$	1 U 2 U R U R U U	26	26 ¹⁷⁹ Hf	M23 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1	2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	79Ha32 03Li.A * 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23
179 Au-C _{14.917} 179 Hg $^{-208}$ Pb $_{.861}$ 179 Hf 35 Cl $^{-177}$ Hf 37 Cl 179 Pt(α) 175 Os		-34625 -26811 1900 5544.4 5370 5416 5382	30 31 34 0.7 10 10 3	-26787 1936 5545.59 5416	18 29 0.22 10	-0.4 0.8 1.1 0.7 4.6 11.3	R 1 U F 3 F	33 74	33 ¹⁷⁹ Au 74 ¹⁷⁹ Hg	GS2 GS2 MA6 H27	1.0 1.0 1.0 2.5	03Li.A 03Li.A 01Sc41 74Ba90 66Si08 * 79Ha10 * 82Bo04 *
179 Au(α) ¹⁷⁵ Ir ^p 179 Hg(α) ¹⁷⁵ Pt	ave.	5981.8 6431.0 6418.7 6428	5. 5. 9. 4	5980 6344	5 30	-0.4 -1.7 -1.5 -1.7	1 - - 1	98 36	76 ¹⁷⁵ Ir ^p 26 ¹⁷⁹ Hg	ISa Daa		68Si01 Z 79Ha10 Z 96Pa01 average
$^{179}\text{Tl}(\alpha)^{175}\text{Au}$		6710.2 6718.4 6719.4	20. 18. 10.	6718	8	$0.4 \\ 0.0 \\ -0.2$	7 7 7			Daa Ara		83Sc24 96Pa01 98To14
179 TJ ^m (α) ¹⁷⁵ Au ^m 179 Hf(t, α) ¹⁷⁸ Lu $^{-178}$ Hf() ¹⁷⁷ Lu 178 Hf(n, γ) ¹⁷⁹ Hf		7364.5 7366.0 7378.1 -72 6099.02 6098.95	20. 20. 10. 2 0.10 0.12	7374 -73.7 6098.99	8 1.9 0.08	0.4 0.4 -0.4 -0.9 -0.3 0.3	8 8 1 -	89	89 ¹⁷⁸ Lu	Daa Ara McM ILn Bdn		83Sc24 96Pa01 98To14 93Bu02 89Ri03 Z 03Fi A
179 Ta(ε) 179 Hf	ave.	6098.99 129 105.61	0.12 0.08 16 0.41	105.6	0.4	$0.0 \\ -1.5 \\ 0.0 \\ 0.1$	- 1 U 1 P	100 99	66 ¹⁷⁸ Hf 88 ¹⁷⁹ Ta	Dun		average 61Jo15 * 01Hi06 75Me20
$ {}^{179}W-C_{14917} \\ {}^{179}Pt(\alpha)^{175}Os \\ {}^{179}Pt(\alpha)^{175}Os \\ {}^{179}Pt(\alpha)^{175}Os \\ {}^{179}Pt(\alpha)^{175}Os \\ {}^{179}Pt(\alpha)^{175}Os \\ {}^{179}Pt(\alpha)^{175}Os \\ {}^{179}Ta(\epsilon)^{179}Hf $	M-A=- F: part o E(α)=51 F: part o E(α)=51 As corre	49225(29) ke f double line 95(10) to 102 f double line 61(3) to 102. cted by ref.	50 V for mi (with ¹⁸⁰ 2.3 1/2 ⁻ (with ¹⁸⁰ 3 level, 1	2/17 ixture gs+m a Pt); E(α)=51 level Pt) recalibrated a	29 at 221.9 50(10) s in ref.	0.1 26 keV to 102.	3 lev	rel				Ens94 ** AHW ** NDS948** AHW ** 91Ry01 ** 76He.B **
$\begin{array}{c} C_{14} H_{12} ^{-180} Hf \\ {}^{180} W - C_{15} \\ {}^{180} Re - C_{15} \\ {}^{180} Os - C_{15} \\ {}^{180} Ir - C_{15} \end{array}$		$147356.6 \\ -53299 \\ -49209 \\ -47650 \\ -47626 \\ -40800 \\ -40765 \\ -36900 \\ -2010 \\ -2$	4.8 30 30 104 30 104 30 104 22	147350.4 -53296 -49211 -47621 -40771 -36969	2.3 4 23 22 23 12	$\begin{array}{c} -0.5 \\ 0.1 \\ -0.1 \\ 0.3 \\ 0.2 \\ 0.3 \\ -0.2 \\ -0.7 \\ 0.7 \end{array}$	U U 2 U R U 2 U			M23 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1	2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	79Ha32 03Li.A 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A 00Ra23 03Li.A
$^{180} {\rm Au-C_{15}}_{180} {\rm Hg-}^{208} {\rm Pb}_{.865}$	ave.	-36918 -27496 -1569 -1544	30 30 22 16	-27479 -1538	23 15	-1.7 0.6 1.4 0.4	R 1 - 1	57 85	57 ¹⁸⁰ Au 85 ¹⁸⁰ Hg	GS2 GS2 MA6	1.0 1.0 1.0	03Li.A 03Li.A 01Sc41 average

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹⁸⁰ Hf ³⁵ Cl ₂ - ¹⁷⁶ Hf ³⁷ Cl ₂		11036.1	3.0	11041.5	0.8	0.7	U			H27	2.5	74Ba90
¹⁸⁰ Hf ³⁵ Cl ⁻¹⁷⁸ Hf ³⁷ Cl		5798.4	0.7	5801.28	0.19	1.6	Ū			H27	2.5	74Ba90
180 Pt(α) 176 Os		5257.1 5279	10.	5240	30	-2.0	F					66Si08 *
$^{180}\Lambda_{\rm H}(\alpha)^{176}{\rm Jr}$		5845	30	5840	18	-14.0	T.					86Ke03 *
$Au(\alpha)$ II		5857	30	5640	10	-0.2	_			Lvn		93Wa03 *
	ave	5851	21			-0.5	1	75	41 ¹⁸⁰ Au	LVII		average
180 Hg(α) 176 Pt	ave.	6258.4	5	6258	4	0.0	2	15	π 1 /1u			79Ha10 7
lig(w) it		6258.4	5	0250		0.0	2			Lvn		93Wa03 Z
180 Tl(α) ¹⁷⁶ Au		6709.4	10			0.0	6			Ara		98To14 *
180 Pb(α) ¹⁷⁶ Hg		7375.2	10.	7415	15	4.0	F			GSa		86Ke03 *
10(0) 11g		7394.6	40.	/ 110	10	0.5	Ū			ORa		96To08
		7415.1	15.			0.0	9			Ara		99To11
180 Hf(t, α) 179 Lu $^{-178}$ Hf() 177 Lu		-669	5	-669	5	0.0	1	100	100 ⁻¹⁷⁹ Lu	McM		92Bu12
179 Hf(n 180 Hf		7387 3	04	7387 78	0.15	1.2	_	100	100 24			74Bu22 7
		7387.8	0.6	1501110	0.10	0.0	_					90Bo52 Z
		7387.85	0.17			-0.4	_			Bdn		03Fi.A
	ave.	7387.77	0.15			0.1	1	100	84 ¹⁸⁰ Hf			average
180 W(d t) 179 W	u.e.	-2155	15			0.1	2	100	01 11	Kon		72Ca01
$^{180}Lu(\beta^{-})^{180}Hf$		3148	100	3100	70	-0.5	2			nop		71Gu02
Eu(p) III		3058	100	5100	/0	0.5	2					71Sw01
180 Ta $(\beta^{-})^{180}$ W		705	15	708	4	0.1	_					51Br87
$\operatorname{Ia}(\mathcal{P})$ W		712	15	700	-	-0.2	_					62Ga07
	ave	709	11			0.0	1	16	13 ¹⁸⁰ W			average
180 R e(β^+) 180 W	ave.	3830	60	3805	22	_0.0	R	10	15 1			67Go22
$\operatorname{Re}(\beta)$ w		3790	40	5005	22	0.4	R					67Ho12
$*^{180}$ Pt(α) ¹⁷⁶ Os	E: part o	f double line	with 17	9 Pt)· F(α)-5	140(10)	0.1	ĸ					ΔHW **
$*^{180}$ Pt(α) ¹⁷⁶ Os	F: part o	f double line	(with 17)	9 Dt)	140(10)							
$* 180 \text{Pt}(\alpha)^{176} \Omega_{\text{s}}$	$F(\alpha) = 51$	61(3) recali	brated as	in ref								01Pv01 **
$* 180 \text{Au}(\alpha)^{176} \text{Ir}$	$E(\alpha)=51$	585(10) to 40	(30) love	al in ICI.								91Ky01 **
* $Au(\alpha)$ If * ¹⁸⁰ Au(\alpha) ¹⁷⁶ Ir	$E(\alpha)=50$	547(10, 7) to	80(30) 10	wal								93Wa03**
$*^{180}$ Tl(α) ¹⁷⁶ Au	Highest	$F(\alpha)$: not ne	cessarily	as to as								98To14 **
$*^{180}$ Pb(α) ¹⁷⁶ Ha	E: tontot	ive reassion	nent of t	bair ¹⁸¹ Dh								AHW **
π I b(α) Hg	I . tentat	ive reassigni	nent of t	ilen 10								71111 ***
181 Re-C _{15.083}		-49915	30	-49932	14	-0.6	R			GS2	1.0	03Li.A
$^{181}Os-C_{15.083}$		-46670	110	-46760	30	-0.8	U			GS1	1.0	00Ra23 *
		-46756	34				2			GS2	1.0	03Li.A *
¹⁸¹ Ir-C _{15.083}		-42330	104	-42375	28	-0.4	U			GS1	1.0	00Ra23
		-42372	30			-0.1	2			GS2	1.0	03Li.A
¹⁸¹ Pt-C _{15.083}		-36880	104	-36903	16	-0.2	U			GS1	1.0	00Ra23
		-36900	30			-0.1	2			GS2	1.0	03Li.A
¹⁸¹ Au-C _{15.083}		-30030	110	-29921	21	1.0	U			GS1	1.0	00Ra23
101 200		-29920	30			0.0	R			GS2	1.0	03Li.A
181 Hg $-^{208}$ Pb $_{.870}$		-1929	40	-1868	17	1.5	1	17	17 ¹⁸¹ Hg	MA6	1.0	01Sc41
¹⁸¹ Tl- ¹³³ Cs _{1.361}		114936	11	114937	10	0.1	-			MA8	1.0	03We.A
	ave.	114939	10			-0.2	1	92	92 ¹⁸¹ Tl			average
¹⁸¹ Ta ³⁵ Cl- ¹⁷⁹ Hf ³⁷ Cl		5128.6	2.1	5129.7	2.3	0.2	1	19	12 ¹⁷⁹ Hf	H35	2.5	80Sh06
181 Pt(α) 177 Os		5133.7	20.	5150	5	0.8	U					66Si08
		5150.1	5.				3					95Bi01
181 Au(α) 177 Ir		5750.1	5.	5751.3	2.9	0.2	3					68Si01 Z
		5751.9	5.			-0.1	3					79Ha10 Z
		5735	4			4.1	С			IRa		92Sa03
		5752	5			-0.1	3			ORa		95Bi01 *
181 Hg(α) 177 Pt		6288	5	6284	4	-0.7	-					79Ha10 *
		6283	10			0.1	-					86Ke03 *
		6269.3	13.			1.2	-			Daa		96Pa01 *
	ave.	6285	4			-0.2	1	99	83 ¹⁸¹ Hg			average
181 Tl(α) 177 Au		6319.9	20.	6324	9	0.2	_		0			92Bo.D
		6326.1	10.			-0.2	-			Ara		98To14 *
	ave.	6325	9			-0.1	1	98	96 ¹⁷⁷ Au			average
$^{181}\mathrm{Tl}^{m}(\alpha)^{177}\mathrm{Au}^{n}$		6714.7	20.	6724	9	0.5	3			GSa		84Sc.A

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
$^{181}\mathrm{Tl}^{m}(\alpha)^{177}\mathrm{Au}^{n}$		6727.0	10.	6724	9	-0.2	3			Ara		98To14
181 Pb(α) 177 Hg		7374.3	10.	7210	50	-3.3	F					86Ke03 *
		7203.5	15.			0.2	5			ORa		89To01
		7224.9	20.			-0.3	5			Ara		96To01 *
¹⁸¹ Ta(p,t) ¹⁷⁹ Ta		-5738	5	-5736.2	2.1	0.4	1	18	12 ¹⁷⁹ Ta	Min		73Oo01
180 Hf(n, γ) 181 Hf		5695.2	0.6	5694.80	0.07	-0.7	U					71Al22
		5694.80	0.07			0.0	1	100	84 ¹⁸¹ Hf			02Bo41
		5695.58	0.20			-3.9	В			Bdn		03Fi.A
181 Ta(γ ,n) 180 Ta		-7580	5	-7576.8	1.3	0.6	U			McM		79Ba06
101 100		-7579	2			1.1	-			McM		81Co17
181 Ta(d,t) 180 Ta		-1317.7	1.8	-1319.5	1.3	-1.0	_		190	NDm		79Ta.B
181 Ta(γ ,n) 180 Ta	ave.	-7576.8	1.3	-7576.8	1.3	0.0	1	99	97 ¹⁸⁰ Ta			average
180 Ta ^{<i>m</i>} (n, γ) 181 Ta		7651.8	0.5	7652.08	0.19	0.6	2			MMn		81Co17 Z
19077777 1 191777		7652.13	0.20			-0.2	2		0.191777	ILn		84Fo.A Z
¹⁸⁰ W(d,p) ¹⁸¹ W		4468	15	4456	6	-0.8	1	15	9 ¹⁰¹ W	Кор		72Ca01
$^{101}\text{Hf}(\beta^{-})^{101}\text{Ta}$		1023	8	1029.8	2.1	0.8	-					52Fa14
		1020	5			2.0	-	25	1 6 181770			53Ba81
1813077 -> 18170	ave.	1021	4	100	~	2.1	1	25	16 ¹⁰¹ Hf			average
$W(\varepsilon)^{101}$ Ia		184	12	188	5	0.3	-					66Ra03
		190	0			-0.4	1	70	co 181 W			85Se17
$181 \Omega_{0}(\theta^{+}) 181 \Omega_{0}$	ave.	189	200	2060	20	-0.2	1	12	69 ··· W			average
$181Os(p^{-1})^{181}Re$	M A - 42	2990 450(100) ltal	200 I fon mint	2960	50 2.0.1 mV	-0.2	U					0/G025 *
$*^{181}O_{s} - C_{15.083}$	M = A = -43	520(28) heV	for minte	ure gs+m at 40	0.1 KeV							Nubase **
$* 08 - C_{15,083}$ $* 181 Au(\alpha)^{177} Ir$	$E(\alpha) = 5626$	329(20) KeV	for mixtu	100 gs + 111 at 40.	9 KC V							NDS022
* $Au(\alpha)^{177}$ Pt	$E(\alpha) = 5020$ $E(\alpha) = 6147$	(0)(10, 7)(0)(10, 7)(0)	0100 347	to ground state	and 147	7 loval						ND\$933**
* $IIg(\alpha)$ It * $^{181}Hg(\alpha)^{177}Pt$	$E(\alpha) = 6136$	56(10,Z), 600	5.0(3,2)	to ground-state	te and 147 .	7 7 level						NDS933**
* $IIg(\alpha)$ It * $^{181}Hg(\alpha)^{177}Pt$	$E(\alpha) = 5986$	(13) to 147.5	7.0(10,2) 1 level) to ground-sta		/./ 10001						NDS933**
$*^{181}$ Tl(α) ¹⁷⁷ Au	The 6180 li	ine is correla	ted with the	he 6110 line fr	om ¹⁷⁷ Au	m						96To01 **
* 11(0) 110	in cont	radiction wif	h mass-sn	ectrometric da	ta for 181	Fl and 16	⁵ Ta					GA11 **
$*^{181}$ Pb(α) ¹⁷⁷ Hg	F This α -l	ine not found	l in same	reaction: see ¹⁸	⁰ Ph	i unu	Iu					96To01 **
$*^{181}$ Pb(α) ¹⁷⁷ Hg	Seen in cor	relation with	177 Ho E(α)=8580	10							96To01 **
$*^{181}$ Os $(\beta^+)^{181}$ Re	E ⁺ =1750(200) from 18	¹ Os ^m at 4	8.9(0.2) to 263	.0 level							95Ro09 **
182 D C		49211	65	48700	110	74	Б			CS2	1.0	021: 4
$^{182}\Omega_{0}$ C		-46511	20	-48790	22	-7.4	Г 1	61	61 18200	GS2 GS2	1.0	03LI.A *
182 Ir C		-47883	30	-47890	23	-0.2	1	56	56 ¹⁸² Ir	GS2	1.0	
$^{182}Pt C$		38870	104	38820	17	0.0	II.	50	50 H	GS1	1.0	00Ra23
1 t-C _{15.167}		-38860	30	-38829	17	1.0	R			GS2	1.0	03L i A
182 Au - C		-30420	110	-30382	22	0.3	II.			GS1	1.0	00Ra23
11u C _{15.167}		-30412	30	50502	22	1.0	R			GS2	1.0	03L i A
¹⁸² Hg-C		-25297	30	-25310	10	-0.4	R			GS2	1.0	03Li A
182 Hg 208 Ph		-4893	19	-4881	10	0.7	2			MA6	1.0	01Sc41
116 10.875		-4898	21	1001	10	0.8	2			MA6	1.0	01Sc41
182 Pt(α) 178 Os		4928.5	30.	4952	5	0.8	Ū				110	63Gr08
1 ((u)) 00		4948.9	20.	1702	2	0.2	Ŭ					66Si08
		4952.0	5.				4					95Bi01
$^{182}Au(\alpha)^{178}Ir$		5529	10	5526	4	-0.3	3					79Ha10 *
		5525.5	5.			0.1	3			ORa		95Bi01 *
182 Hg(α) 178 Pt		5998.1	5.	5997	5	-0.2	3					79Ha10 Z
0		5990.2	13.			0.5	3					94Wa23
182 Tl(α) 178 Au		6550.2	10.				5					86Ke03
		6186.2	20.	6550	50	7.3	С					92Bo.D *
182 Pb(α) 178 Hg		7076.8	10.	7066	6	-1.1	7					86Ke03
		7074.8	15.			-0.6	7					87To09
		7050.2	10.			1.5	7			ARa		99To11
		7066.6	10.			-0.1	7			Jya		00Je09

Item		Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
180 Hf(t.p) 182 Hf		3931	6				2			McM		83Bu03
$^{180}W(t.p)^{182}W$		6265	5	6264	4	-0.2	_			LAI		76Ca10 *
$^{182}W(p,t)^{180}W$		-6261	10	-6264	4	-0.3	_			Min		73Oo01
$^{180}W(t,p)^{182}W$	ave.	6264	4	6264	4	-0.1	1	74	$74 \ ^{180}W$			average
181 Ta $(n,\gamma)^{182}$ Ta		6063.0	0.4	6062.94	0.11	-0.2	_					71He13 Z
		6063.1	0.5			-0.3	-					77St15 Z
		6063.1	0.5			-0.3	-			MMn		81Co17 Z
		6062.95	0.2			-0.1	-			ILn		83Fo.B
		6062.89	0.14			0.3	_	100	co. 182m	Bdn		03Fi.A
182337771 (1.181337	ave.	6062.93	0.11	1000	~	0.0	1	100	60 ¹⁰² Ta	17		average
$182 T_{0} (R - 182 W)$		-1809	10	-1808	5	0.1	1	22	22 ···· W	кор		72Ca01 64De15
$\operatorname{Ta}(p)$ w		1813	3	1814.5	1.7	1.1	_					67Ba01
	21/2	1811 0	26			0.4	1	12	40 182Ta			07Da01
$^{182}\text{Re}^{m}(\beta^{+})^{182}\text{W}$	ave.	2860	2.0			0.9	2	42	40 14			63Ba37
$^{182}\text{Re}^{m}(\text{IT})^{182}\text{Re}$		60	100				3					63Ba37
$^{182}Os(\epsilon)^{182}Re^{m}$		848	15	778	30	-4.6	В					70Ak02 *
182 Ir(β^+) 182 Os		5700	200	5560	30	-0.7	Ū					72We.A
182 Pt(β^+) 182 Ir		2900	200	2882	26	-0.1	Ū					72We.A
$^{182}Au(\beta^+)^{182}Pt$		6850	200	7869	26	5.1	C					72We.A
$^{182}\text{Hg}(\beta^+)^{182}\text{Au}$		4950	200	4725	22	-1.1	U					72We.A
* ¹⁸² Re-C _{15,167}	M-A=-4	4972(29) ke	V for mix	ture gs+m at	60(100)) keV						Nubase **
$*^{182}$ Au(α) ¹⁷⁸ Ir	$E(\alpha)=535$	3(10) to 55(1) level	U								NDS **
$*^{182}$ Au(α) ¹⁷⁸ Ir	$E(\alpha)=540$	3(5), 5352(5	i) to grou	nd-state, 54.4	level							95Bi01 **
$*^{182}$ Tl(α) ¹⁷⁸ Au	No ¹⁸² Tl (x seen follow	ving ¹⁸⁶ E	$Bi(\alpha)$								97Ba21 **
$*^{180}W(t,p)^{182}W$	$Q - Q(^{170})$	r'(t,p))=112(5,Ca), Q((170)=-6153(4)							AHW **
$*^{182}$ Os $(\varepsilon)^{182}$ Re ^m	pK=0.47(0	0.07) to 726.	.98 level	above Rem, r	ecalcula	ted Q						AHW **
¹⁸³ W O-C ₂ ³⁵ Cl ₅		100858.0	2.7	100874.2	0.9	2.4	F			H29	2.5	77Sh04
		100873.6	0.8			0.5	1	53	52 ¹⁸³ W	H48	1.5	03Ba49
¹⁸³ Re-C _{15.25}		-49151	30	-49180	9	-1.0	U			GS2	1.0	03Li.A
$^{183}Os - C_{15.25}$		-46879	61	-46870	50	0.1	2			GS2	1.0	03Li.A *
183 Ir-C _{15.25}		-43160	104	-43154	27	0.1	U		102	GS1	1.0	00Ra23
192		-43145	30			-0.3	1	81	81 ¹⁸⁵ Ir	GS2	1.0	03Li.A
$^{103}Pt-C_{15.25}$		-38440	107	-38403	17	0.3	U			GS1	1.0	00Ra23
		-38400	32			-0.1	-	~ ~	cc 183D	GS2	1.0	03L1.A *
183 A	ave.	-38398	23	22407	11	-0.3	I	22	55 ¹⁰⁵ Pt	CC1	1.0	average
Au-C _{15.25}		- 32440	20	-32407	11	0.5	D			GSI	1.0	00Ka25
¹⁸³ Hg_C		-25537	35	-25550	9	-1.2 -0.4	I			GS2	1.0	03LiA +
$^{183}Hg^{-208}Ph$		-5009	19	-5004	9	0.4	-			MA6	1.0	01Sc41
11g 10.880		-5002	19	5004	,	-0.1	_			MA6	1.0	015c41 01Sc41
	ave.	-5002	11			-0.2	1	60	60 ¹⁸³ Hg		110	average
¹⁸³ Tl- ¹³³ Cs _{1,276}		112286	11	112291	10	0.4	1	91	91 ¹⁸³ Tl	MA8	1.0	03We.A
$^{183}WO_{2} - {}^{178}Hf^{37}Cl$		30455.7	5.0	30450.8	2.3	-0.4	U			H35	2.5	80Sh06
$^{183}WO_{2}^{2} - ^{180}W^{35}Cl$		24509	6	24495	4	-0.9	1	8	$8^{-180}W$	H28	2.5	77Sh04
¹⁸³ W ³⁵ Cl- ¹⁸¹ Ta ³⁷ Cl		5177.2	1.2	5177.3	1.8	0.0	1	36	34 ¹⁸¹ Ta	H35	2.5	80Sh06
¹⁸³ W O ₂ ³⁷ Cl- ¹⁸² W ³⁵ Cl ₂		20045.6	1.8	20045.26	0.13	-0.1	U			H28	2.5	77Sh04
183 Pt(α) ¹⁷⁹ Os		4846.1	30.	4823	9	-0.8	U					63Gr08
		4835.9	20.0			-0.6	2					66Si08
		4819.4	10.0			0.3	2			ORa		95Bi01
183 Au(α) 179 Ir		5462.6	5.	5465.6	3.0	0.6	3					68Si01 Z
		5465.5	5.			0.0	3					82Bo04 Z
		5449.3	10.			1.6	С					84Br.A
183		5468.8	5.	6020		-0.6	3					95Bi01
103 Hg(α) 172 Pt		6043.4	6.	6039	4	-0.7	2					761006
		6036.2	э.			0.6	- 2					/9Ha10 Z

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{183}\text{Tl}^{m}(\alpha)^{179}\text{Au}$		6593.4	15.	6583	14	-0.7	1	79	44 ¹⁷⁹ Au	GSa		80Sc09
$^{183}\text{Tl}^{m}(\alpha)^{179}\text{Au}^{p}$		6485.1	10.	6484	9	-0.1	2			GSa		80Sc09
		6482.0	15.			0.1	2					87To09
183 Pb(α) 179 Hg		6928	7				2					02Je09 *
$^{183}\text{Pb}^{m}(\alpha)^{179}\text{Hg}$		7029	20	7022	4	-0.3	U			GSa		84Sc.A *
., .		7026.9	10.			-0.5	2			GSa		86Ke03
		7034	10			-1.2	2			ORa		89To01 *
		7018	5			0.8	2			Jya		02Je09 *
182 Ta(n, γ) 183 Ta		6934.18	0.20				2			ILn		83Fo.B
$^{182}W(n,\gamma)^{183}W$		6191.6	2.0	6190.82	0.09	-0.4	U					67Sp03 Z
		6190.1	1.5			0.5	U					700r.A
		6190.76	0.12			0.5	-			Ltn		93Pr.A
		6190.89	0.13			-0.5	-			Bdn		03Fi.A
	ave.	6190.82	0.09			0.0	1	100	98 ¹⁸² W			average
183 Hf(β^{-}) 183 Ta		2010	30				3					67Mo13
183 Re(ϵ) 183 W		556	8				2					69Ku03
183 Ir(β^+) 183 Os		3450	100	3470	60	0.2	R					70Be.A *
* ¹⁸³ Os-C _{15,25}	M-A=-4	3582(28) ke	V for mixt	ure gs+m at 1	70.71 ke	V						NDS924**
* ¹⁸³ Pt-C _{15,25}	M-A=-3	5752(28) ke	V for mixt	ure gs+m at 3	4.50 keV	7						Ens93 **
* ¹⁸³ Hg-C _{15,25}	No isomer	r observed		0								Nubase **
$*^{183}$ Pb(α) ¹⁷⁹ Hg	$E(\alpha)=677$	5(7), 6570(1	0) to grou	nd-state, 217	level							02Je09 **
$*^{183} Pb^{m}(\alpha)^{179} Hg$	$E(\alpha) = 686$	8(20), 6715(20) to gro	und-state, 171	.4 isome	er						02Je09 **
$*^{183} Pb^{m}(\alpha)^{179} Hg$	Original a	ssignment to	182 Pb cha	inged								AHW **
$*^{183} Pb^{m}(\alpha)^{179} Hg$	$E(\alpha) = 687$	4(15), 6712(10) to gro	und-state, 171	.4 isome	er						02Je09 **
$*^{183}$ Pb ^m (α) ¹⁷⁹ Hg	$E(\alpha)=686$	0(11), 6698(5) to grou	nd-state, 171.4	4 isomer							02Je09 **
$*^{183}$ Ir(β^+) ¹⁸³ Os	Q ⁺ =3190	0(100) mainl	y to 258.3	5 level								NDS924**
184 m. C		12160	110	42520	20	0.6	ŢŢ			CSI	1.0	00 D • 22
$n - C_{15.333}$		-42400	30	-42320	30	-0.0	2			GS2	1.0	031 ; A
184 Pt C		-42324	104	40078	10	0.4	1 U			GS1	1.0	00Pa23
11-C15.333		40068	30	-40078	19	0.4	1	12	12 184 Dt	GS2	1.0	031 ; A
¹⁸⁴ Au - C		32540	104	32548	24	-0.3	1 11	42	42 It	GS1	1.0	00Pa23 *
Au-C _{15.333}		-32557	37	-52548	24	-0.1	R			GS2	1.0	03Li A *
$^{184}Ha-C$		-28230	110	_28287	11	_0.5	II			GS1	1.0	00Ra23
116 015.333		-28296	30	20207		0.3	_			GS2	1.0	03Li A
	ave	-28280	17			-0.4	1	39	39 ¹⁸⁴ Ho	002	1.0	average
184 Hg $^{-204}$ Ph	uve.	-3986	20	-3972	11	0.7	1	29	29 ¹⁸⁴ Hg	MA6	1.0	01Sc41
184 Hg 208 Ph		-7620	19	-7624	11	-0.2	1	32	32 ¹⁸⁴ Hg	MA6	1.0	01Sc41
¹⁸⁴ Tl-C		-18196	126	-18130	50	0.5	1	18	18 ⁻¹⁸⁴ TI	GS2	1.0	03LiA *
$^{184}WO_{-}^{-181}Ta^{35}C1$		23917 5	2.8	23912.0	18	-0.8	Ū.	10	10 11	H35	2.5	80Sh06
^{184}W $^{35}C1 - ^{182}W$ $^{37}C1$		5676.3	2.0	5677.12	0.30	0.0	Ŭ			H28	2.5	77Sh04
184 Pt(α) 180 Os		4579.8	20	4602	9	1 1	В			1120	2.0	63Gr08
rt(u) 05		4600.2	20.	1002		0.1	2					66Si08
		4602.2	10			0.0	2					95Bi01
184 Au(α) ¹⁸⁰ Ir		5218.6	15	5234	5	1.0	Ū			ISa		70Ha18 *
nu(w) n		5233.9	5	5251	5	1.0	3			ibu		95Bi01 *
184 Hg(α) 180 Pt		5658.2	15	5662	4	0.2	2					70Ha18
116(00) 11		5662.2	5	0002	·	-0.1	2					76To06
		5662.2	10			0.0	2			Lvn		93Wa03 Z
$^{184}\text{Tl}(\alpha)^{180}\text{Au}$		6299.4	5	6290	50	-0.3	_					76To06 7
		6292.9	10.			-0.1	_					80Sc09 Z
	ave	6298	4			-0.2	1	85	82 ¹⁸⁴ Tl			average
184 Pb(α) 180 H $_{\sigma}$	u.c.	6765 4	10	6774	4	0.9	_	55				80Du02
10(00) 115		6779.6	10.	0.74		-0.5	_					80Sc09
		6773.6	10.			0.1	_					84Sc.A
		6781.6	10.			-0.7	_					87To09
		6773.6	6.			0.2	_			Jya		98Co27
		6772.5	10.			0.2	_			Åra		99To11
	ave.	6774	4			0.1	1	99	84 ¹⁸⁴ Pb			average
												0

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{184}{ m Bi}(lpha)^{180}{ m Tl}$ $^{183}{ m W}(n,\gamma)^{184}{ m W}$		8024.8 7411.2 7411.8 7411.15	50. 0.5 0.3	7411.60	0.26	$0.8 \\ -0.7 \\ 2.8$	7 - - B			GSa		02An.A 74Gr11 Z 75Bu01 Z 03Fi A
	ave	7411.64	0.10			-0.2	1	99	94 ¹⁸⁴ W	Dun		average
184 Hf(β^{-}) 184 Ta	ave.	1340	30			0.2	3	//	<i>y</i>			73Wa18
$^{184}\text{Ta}(\beta^{-})^{184}\text{W}$		2866	26				2					73Ya02
184 Ir(β^+) 184 Os		5100	250	4645	28	-1.8	Ū					70Be.A *
		4300	100			3.5	В					73Ho09
		4285	70			5.1	в					89Po09
184 Au(β^+) 184 Pt		6380	50	7013	29	12.7	С					84Da.A *
184 Hg(β^+) 184 Au		3760	30	3970	24	7.0	С					84Da.A
* ¹⁸⁴ Au-C _{15.333}	M-A=-3	0280(100)	keV for r	nixture gs+m	1 at 68.4	6 keV						Nubase **
$*^{184}$ Au-C _{15.333}	M-A=-3	0292(28) k	eV for m	ixture gs+m a	at 68.46	5 keV						Nubase **
* ¹⁸⁴ Tl-C _{15,333}	M-A=-1	6899(102)	keV for r	nixture gs+m	at 100	#100 ke	eV					Nubase **
$*^{184}$ Au(α) ¹⁸⁰ Ir	$E(\alpha)=517$	2(15) from	¹⁸⁴ Au ^m a	at $68.6(0.1)$								94Ib01 **
* 184 180 -	transit	ion to grou	nd-state	in ¹⁸⁰ Ir								95Bi01 **
$*^{104}$ Au(α) ¹⁰⁰ Ir	$E(\alpha)=518$	7(5) from ¹	$^{\circ+}Au'''$ at	68.6(0.1)								941b01 **
$*^{10+} Ir(\beta^+)^{10+} Os$	$Q^+ = 4720$	J(250) to 38	33.77 lev	el								AHW **
$*^{10+}Au(p^+)^{10+}Pt$	Q ⁺ =6450)(50) from	Aum a	it 68.6(0.1)								941601 **
185 Os-C _{15,417}	-	-46037	31	-45957.7	1.4	2.6	U			GS2	1.0	03Li.A
185 Ir-C _{15.417}	-	-43340	110	-43300	30	0.3	U			GS1	1.0	00Ra23
13.717	-	-43302	30				2			GS2	1.0	03Li.A
¹⁸⁵ Pt-C _{15,417}	-	-39334	112	-39380	40	-0.4	U			GS1	1.0	00Ra23 *
	-	-39381	44				2			GS2	1.0	03Li.A *
¹⁸⁵ Au-C _{15.417}	-	-34213	115	-34211	28	0.0	0			GS1	1.0	00Ra23 *
195	-	-34224	69			0.2	R			GS2	1.0	03Li.A *
185 Hg $-C_{15.417}$	-	-28070	107	-28101	17	-0.3	U			GS1	1.0	00Ra23
18511 20810	-	-28088	44	7245	17	-0.3	R			GS2	1.0	03L1.A *
¹⁰⁵ Hg ⁻²⁰⁰ Pb _{.889}		-/3/3	29	-/345	1/	1.0	K			MA6	1.0	015c41
$185 \text{ P}_{0} = 35 \text{ Cl} = 183 \text{ W} = 37 \text{ Cl}$	-	-21333	145	-21210	1.0	1.0	1	15	15 185Da	US2	1.0	03L1.A *
185Da((x 811a)181Da		26490	1.0	26484	1.0	1.4	2	15	15 ···· Ke	IL20	2.3	//SII04
$^{185}\text{Pt}(\alpha)^{181}\Omega_{0}$	-	-20460	14	-20484	14 50	-0.5	Z E			OPa		90Ka19
$^{185}Au(\alpha)^{181}$ Ir		5180.2	10.0	5180	50	-1.9	3			OKa		51D104 *
Au(u) II		5182.9	15	5160	5	-0.2	U U					70Ha18 Z
		5179	10			0.1	3			ORa		91Bi04 *
185 Hg(α) 181 Pt		5777	15	5774	5	-0.2	3			0111		70Ha18 *
5()		5775	5			-0.2	3			ORa		76To06 *
		5761	15			0.9	3					76Gr.A *
$^{185}\text{Tl}^{m}(\alpha)^{181}\text{Au}$		6143.3	5.				4			ORa		76To06 Z
		6145.6	15.	6140	50	0.0	U			GSa		80Sc09 Z
185 Pb(α) 181 Hg		6693	15	6695	5	0.1	U			GSa		80Sc09 *
105 101		6695	5				2			ISn		02An15 *
$^{185}\text{Pb}^m(\alpha)^{181}\text{Hg}^p$		6622.9	20.	6550	5	-3.7	F			Ora		75Ca06
		6679.7	20.			-6.5	В					80Sc09
185		6550.0	5.	0224	10	0.0	4	20	aa 185 m.m	ISn		02An15
184 W(α a) 185 W		8258.9	<i>3</i> 0.	8234	19	-0.8	1	39	02 185W	DN-		01P005 *
$w(n,\gamma) \sim w$		5751 60	0.3	5/55.69	0.30	0.0	1 P	98	95 105 W	BINN Dalm		6/BIU5 Z
$185\mathbf{p}_{o}(d t) 184\mathbf{p}_{o} = 187\mathbf{p}_{o}(186\mathbf{p}_{o})$		3134.02	0.24	310	4	-5.9	D 1	100	100 ¹⁸⁴ D	Duii Rea		03FI.A 76E112
$184 Os(n x)^{185} Os$		-510 6625 A	4	6624 53	4 0 28	_1.0	1 II	100	100 Ke	NUC		74Pr15
03(11,7) 03		6624 52	0.9	0024.33	0.20	-1.0	1	100	100 ⁻¹⁸⁴ Oe	Bdp		03Fi A
$^{185}\text{Bi}^{m}(n)^{184}\text{Pb}$		1606.8	16	1614	15	0.0	1	83	67 ¹⁸⁵ Bim	Dun		01Po05 *
DI (P) 10		1568.6	50	1017	10	0.4	Ū	55	0, DI			02An A
185 Ta(β^{-}) 185 W		2013	20	1994	14	-1.0	2					69Ku07
····· · · · · · · · · · · · · · · · ·			· · ·				-					

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{185}W(\beta^{-})^{185}Re$		432.6	1.0	432.5	0.9	-0.1	1	75	68 ¹⁸⁵ Re			67Wi19
185 Os $(\varepsilon)^{185}$ Re		1012.7	1.0	1012.8	0.4	0.1	_					67Sc15
		1012.8	0.5			0.0	_					70Sc06
	ave.	1012.8	0.4			0.0	1	100	100 ⁻¹⁸⁵ Os			average
185 Au(β^+) 185 Pt		4707	40	4820	50	2.7	F					86Da.A
$^{185}\text{Tl}^{m}(\text{IT})^{185}\text{Tl}$		452.8	2.				5					77Sc03
* ¹⁸⁵ Pt-C _{15,417}	M-A=-3	6590(100) k	eV for m	ixture gs+m	at 103.4	keV						NDS952**
* ¹⁸⁵ Pt-C _{15.417}	M-A=-3	6631(28) ke	V for mi	xture gs+m at	t 103.4 k	eV						NDS952**
* ¹⁸⁵ Au-C _{15,417}	M-A=-3	1820(90) ke	V for mi	xture gs+m at	100#10	0 keV						Nubase **
* ¹⁸⁵ Au-C _{15,417}	M-A=-3	1829(28) ke	V for mi	xture gs+m at	100#10	0 keV						Nubase **
* ¹⁸⁵ Hg-C _{15,417}	M-A=-2	6112(28) ke	V for mi	xture gs+m at	t 103.8(1	.0) keV						Nubase **
* ¹⁸⁵ Tl-C _{15.417}	M-A=-1	9664(31) ke	V for mi	xture gs+m at	t 452.8(2	.0) keV						Nubase **
$*^{185}$ Pt(α) ¹⁸¹ Os	F: Assign	ment to gs o	r isomer	at 103.2 unce	rtain							91Bi04 *
$*^{185}$ Au(α) ¹⁸¹ Ir	$E(\alpha)=506$	59(10), 4826	(10) to gr	round-state, 2	43.3leve	1						91Bi04 *
*	unh.	$E(\alpha) = 5069(2)$	10) to gs	or very low le	evel; froi	n coinc						95Bi01 **
$*^{185}$ Hg(α) ¹⁸¹ Pt	$E(\alpha)=565$	53.4(15,Z), 5	576.4(15	,Z) to ground	-state, 79	9.41 lev	el					NDS996*
*	and E	$(\alpha) = 5376.40$	(15,Z) fro	om ¹⁸⁵ Hg ^m at	103.8 to	380.92	leve	l				NDS952**
$*^{185}$ Hg(α) ¹⁸¹ Pt	$E(\alpha)=565$	53(5), 5569(5	5) to grou	ind-state, 79.4	41 level;							NDS996**
*	and 5	371(10) from	n ¹⁸⁵ Hg ^m	at 103.8 to 3	80.92 lev	vel						NDS952**
$*^{185}$ Hg(α) ¹⁸¹ Pt	$E(\alpha)=536$	55(15) from	¹⁸⁵ Hg ^m a	t 103.8 to 380).92 leve	1						NDS952**
$*^{185}$ Pb(α) ¹⁸¹ Hg	$E(\alpha)=648$	35(15) to 64	level									02An15 **
$*^{185}$ Pb(α) ¹⁸¹ Hg	$E(\alpha)=648$	86(5),6288(5) to 64, 2	69 levels								02An15 **
$*^{185}\text{Bi}^{m}(\alpha)^{181}\text{Tl}$	$E(\alpha)=803$	30 of same as	uthors fro	om only one e	event							96Da06 **
* ¹⁸⁵ Bi ^m (p) ¹⁸⁴ Pb	Average b	y authors of	Ep=161	8(11), and 15	85(9) of	ref.						96Da06 **
$*^{185}$ Au(β^+) ¹⁸⁵ Pt	Informati	on about cor	rectness	insufficient								GAu *
¹⁸⁶ W O-C ¹³ C ³⁵ Cl ₄ ³⁷ Cl		104592.7	3.2	104610.6	1.9	2.2	F			H29	2.5	77Sh04 :
¹⁸⁶ Ir-C _{16.6}		-42063	30	-42054	18	0.3	2			GS2	1.0	03Li.A
$^{186}Pt-C_{15.5}$		-40656	30	-40649	23	0.2	1	61	61 ¹⁸⁶ Pt	GS2	1.0	03Li.A
$^{186}Au - C_{15,5}$		-34029	30	-34047	23	-0.6	1	56	56 ¹⁸⁶ Au	GS2	1.0	03Li.A
186 Hg $-C_{15.5}$		-30660	104	-30638	12	0.2	U			GS1	1.0	00Ra23
0 15.5		-30630	30			-0.3	R			GS2	1.0	03Li.A
¹⁸⁶ Hg- ²⁰⁴ Pb ₉₁₂		-6065	20	-6054	12	0.6	2			MA6	1.0	01Sc41
¹⁸⁶ Tl-C _{15.5}		-21814	275	-21680	200	0.5	0			GS1	1.0	00Ra23 >
1010		-21675	198				2			GS2	1.0	03Li.A >
$^{186}\text{Tl}^{m} - ^{133}\text{Cs}_{1.398}$		110842.1	9.2				2			MA8	1.0	03We.A
¹⁸⁶ W ³⁵ Cl- ¹⁸⁴ W ³⁷ Cl		6382.0	1.4	6383.0	1.7	0.3	1	23	23 ¹⁸⁶ W	H28	2.5	77Sh04
186 Pt(α) 182 Os		4323.2	20.	4320	18	-0.2	1	79	39 ¹⁸² Os			63Gr08
186 Au(α) 182 Ir		4907	15	4912	14	0.3	1	87	44 ¹⁸² Ir			90Ak04 >
186 Hg(α) 182 Pt		5206.2	15.	5205	11	-0.1	3					70Ha18
		5204.2	15.			0.1	3					96Ri12
$^{186}\mathrm{Tl}^{m}(\alpha)^{182}\mathrm{Au}$		5891.9	7.	6001	22	2.2	U					77Ij01
186 Pb(α) 182 Hg		6458.2	20.	6470	6	0.6	3					74Le02 Z
		6470.1	10.			0.0	3					80Sc09 Z
		6474.7	10.			-0.5	3					84To09 Z
		6476.5	15.			-0.4	3			ORa		97Ba25
196 192		6459.2	15.			0.7	3			Jya		97An09
$^{180}\text{Bi}(\alpha)^{182}\text{Tl}$		7760	20	7757	12	-0.2	6			Ara		97Ba21 >
186m·m () 182mm		7755	15	7400	-	0.1	6			GSa		02An.A >
$^{102}\text{Bl}^m(\alpha)^{102}\text{Tl}^p$		7349.3	25.	7423	5	2.9	C			GSa		84Sc.A
		7420.9	20.			0.1	U			Ara		9/Ba21
1863377(1422.9	5.	11(2)1	1.0	2.2	8	10	10 186337	GSa Min		02An.A
$186W(t, \alpha)^{185}T_{0}$		-44/4	20	-4405.1	1.0	2.2	I D	10	10 100 W	IVIIN		750001 801 o 10
$185 \mathbf{D}_{0}(\mathbf{r}, \alpha)^{186} \mathbf{D}_{0}$		6170.9	20	6170.26	14	-0.9	к			LAI Tel		60L010
$\operatorname{Ke}(\mathbf{n},\gamma)^{}\operatorname{Ke}$		6179.6	0.8	01/9.30	0.18	-0.6				Tai		700~ A
		6170 24	1.3			0.5	U			Rdn		03Ei A
	910	6170.26	0.18			0.1	1	00	85 186Do	Bull		OJII.A
	ave.	01/7.30	0.18			0.0	1	27	05 Ke			average

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	M	ain flux	Lab	F	Reference
186 Ta(β^{-}) 186 W		3901	60				2						69Mo16
$^{186}\text{Re}(\beta^{-})^{186}\text{Os}$		1064	2	1069.3	0.9	2.6	_						56Jo05
		1071.5	1.3			-1.7	_						56Po28
		1076	3			-2.2	_						64Ma36
		1064	3			1.8	-						68An11
107	ave.	1069.4	1.0			-0.1	1	80	64	¹⁸⁶ Os			average
186 Ir(β^+) 186 Os		3831	20	3827	17	-0.2	R						63Em02
180 Au(β^+) 180 Pt		5950	200	6150	30	1.0	U						72We.A
$^{180}\text{Hg}(\beta^{+})^{180}\text{Au}$		3250	200	3176	24	-0.4	U				Ţ		72We.A
186 W O C 13C 35 CL 37 CL	G 1831	3/3.9	0.5	c			3				Lvn		91 Va04
* ¹⁸⁶ W 0=C ¹⁵ C ¹⁵ Cl ₄ ⁵⁷ Cl	See 105 V	$V 0 - C_2 = 0$	I_5 in sa	me referenc	e	01 17							AHW **
$*^{100}$ Ir $-C_{15.5}$	M-A=-	-39181(28) F	keV for	mixture gs+	-m at 0	.8 KeV	160	and	c20/	160) 110	v		Nubase **
$* 11 - C_{15.5}$	M A=-	10000(20)1	Kev 10	mixture gs	s+m+n	at 250((100)	and 6	020(2071	(100) ke	v ,		Nubase **
* $\Pi = C_{15,5}$ * $^{186}\Delta \mu(\alpha)^{182}$ Ir	$F(\alpha) = 46$	553(15) to 1	52 3 3-	level	-m+n a	1 230(1	00) 2	ina o.	20(1	00) KE V			95Sa42 **
$*^{186}\text{Bi}(\alpha)^{182}\text{Tl}$	$E(\alpha)=71$	(58(20) follo)	owed by	$E(\gamma)=444$									02An A **
$*^{186}Bi(\alpha)^{182}Tl$	$E(\alpha) = 71$ $E(\alpha) = 71$	52(15) 708	$5(15) f_0$	bllowed by	$F(\gamma)-4$	44 520)						02An A **
	2(0) / 1			, no neu eg	-(7)	, 020	,						021111111
187 Ir-C _{15.583}		-42458	30	-42637	7	-6.0	С				GS2	1.0	03Li.A
¹⁸⁷ Pt-C _{15.583}		-39500	110	-39410	30	0.8	U				GS1	1.0	00Ra23
107		-39413	30				2				GS2	1.0	03Li.A
¹⁸⁷ Au–C _{15.583}		-35470	114	-35432	27	0.3	U		~ .	197 .	GS1	1.0	00Ra23 *
18711 0		-35441	30	20106	1.5	0.3	1	81	81	¹⁸⁷ Au	GS2	1.0	03L1.A
$Hg - C_{15.583}$		-30188	109	-30186	15	0.0	0	17	17	18711-	GSI	1.0	00Ra23 *
18711~ 208 ph		-30155	30	0106	15	-0.9	1	1/	56	187 Hg	GS2 MAG	1.0	03L1.A *
$187 \mu_{cm} = 208 \text{pb}$		-9210	10	-9190	21	1.0	D	50	50	ng	MAG	1.0	015c41
$^{187}TL-C$		-24120	107	-24094	0	0.2	к П				GS1	1.0	00Ra23
11 C15.583		-23928	109	24074	,	-1.5	Ŭ				GS2	1.0	03Li.A *
	ave.	-23704	21			-1.4	1	15	15	${}^{187}\text{Tl}^{m}$			average
$^{187}\text{Tl}^m - ^{133}\text{Cs}_{1.406}$		109151	24	109200	8	2.0	F				MA8	1.0	03We.A *
187 Pb $-C_{15,583}$		-16072	45	-16082	9	-0.2	U				GS2	1.0	03Li.A *
187 Pb $-^{133}$ Cs $_{1.406}$		116844	14	116853	9	0.6	1	40	40	¹⁸⁷ Pb	MA8	1.0	03We.A
187 Pb ^m $ ^{133}$ Cs _{1.406}		116871	14	116865	11	-0.4	1	67	67	187 Pb ^m	MA8	1.0	03We.A
¹⁸⁷ Re O ₂ - ¹⁸⁴ W ³⁵ Cl		25797.4	3.5	25798.5	1.3	0.1	U				H28	2.5	77Sh04
¹⁸⁷ Re ³⁵ Cl- ¹⁸⁵ Re ³⁷ Cl		5744.2	1.2	5748.2	1.1	1.3	1	12	10	¹⁸⁷ Re	H28	2.5	77Sh04
187 Au(α) 183 Ir		4792.7	20.	4770	30	-0.5	1	38	19	¹⁸³ Ir			68Si01 *
187 Hg(α) 183 Pt		5229.9	20.	5230	14	0.0	1	49	31	185 Pt	ISa		70Ha18 *
$^{187}\text{Hg}^{m}(\alpha)^{183}\text{Pt}$		5293.4	20.	5289	16	-0.2	1	64	49	¹⁸ /Hg ^m	ISa		70Ha18 *
$10^{10} \Pi^m(\alpha)^{105} Au$		5643	20	5653	/	0.5	2						/61006 *
		5645 1	10.			-0.8	2				Lun		80SC09 *
187 Pb(α) 183 H α		6303.0	12.	6305	6	0.7	2				LVII		75Ca06 *
$10(\alpha)$ Hg		6398.4	10.	0395	0	-0.3	_						81Mi12 *
		6395.0	19.			0.0	_				GSa		80Sc09
	ave.	6396	7			-0.1	1	84	44	¹⁸⁷ Pb			average
$^{187}\mathrm{Pb}^{m}(\alpha)^{183}\mathrm{Hg}^{p}$		6213.1	20.	6208	7	-0.2	0				Ora		74Le02
		6213.1	10.			-0.5	2				Ora		75Ca06
		6223.3	10.			-1.5	0				GSa		80Sc09
		6205.9	10.			0.2	2						81Mi12
197		6202.9	15.			0.4	2			197	Jya		99An36
10 Bi(α) 103 Tl		7778.7	15.	7789	14	0.7	1	79	69	187Bi	ORa		99Ba45
100 B1(α) 100 TI ^m		7139.0	10.	/146	6	0.7	-				OP-		84Sc.A
	01/2	/155.5	ð. 6			-0.9	1	06	66	183 T1 m	OKa		99Ba45
	ave.	/148	0			-0.3	1	90	00	· · · 11			average

Item		Input va	llue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference	;
$^{187}{ m Bi}^{m}(\alpha)^{183}{ m Tl}$		7749.1	10.	7890	15	14.1	F					84Sc.A	*
10/		7890.1	15.				2			ORa		99Ba45	
$^{186}W(n,\gamma)^{18}/W$		5466.3	0.3	5466.54	0.11	0.8	-			BNn		87Br05	Ζ
		5467.22	0.15			-4.5	В			Dda		92Be17	*
	01/0	5466.59	0.12			-0.4	1	100	69 186W	Ban		03F1.A	
186 Os(n x) 187 Os	ave.	6291.1	1.0	6290.0	0.6	-0.1	1	100	00 W			74Pr15	7
$Os(n, \gamma) = Os$		6289.4	0.8	0290.0	0.0	0.8	_			Bdn		03Fi A	L
	ave.	6290.1	0.6			-0.1	1	92	56 ¹⁸⁷ Os	Duii		average	
$^{187}W(\beta^{-})^{187}Re$		1314	2	1310.9	1.3	-1.5	_					69Na03	
		1310	2			0.5	_					70He14	
	ave.	1312.0	1.4			-0.7	1	82	$68 \ ^{187}W$			average	
187 Re(β^{-}) 187 Os		2.64	0.05	2.469	0.004	-3.4	U					67Hu05	
		2.667	0.020			-9.9	U					92Co23	
		2.70	0.09			-2.6	U					93As02	
		2.460	0.011			0.8	-					99A120	
		2.470	0.004			-0.3	-	100	7 c 187 p			01Ga01	
1870-(311-4)1871-	ave.	2.469	0.004			0.0	1	100	/6 ¹⁰ /Re	DIC		average	
$187 \text{ Os}(^{\circ}\text{He},t)^{187} \text{ Ir}$		-1521	0	2710	40	27	2			INS		90Ka27	
$^{187}Ha^{m}(IT)^{187}Ha$		54	40 21	5710	40	2.7	P					187Ham x	v
ng (11) ng		54	21	39	10	0.2	1	60	51 187 Han	MAG		01Sc/1	۱
$187 \text{T} m (\text{IT})^{187} \text{T}$		330	5	335	3	1.0	1	48	38 ¹⁸⁷ Tl	MAU		77Sc03	*
* ¹⁸⁷ Au-C	M-A=-	32980(100) ke	V for mix	ture gs+m at	120 51 ke	•V	•	10	50 11			NDS911	**
* ¹⁸⁷ Hg-C _{15.583}	M-A=-	28090(100) ke	V for mix	ture $gs+m$ at	59(16) ke	έV						Nubase	**
* ¹⁸⁷ Hg-C _{15,583}	M-A=-	28060(28) ke	/ for mixtu	tre gs+m at 5	9(16) keV	V						Nubase	**
$*^{187}$ Hg ^m $-^{208}$ Pb $_{800}$	Use inste	ad their differ	ence betw	een gs and m	lines							GAu	**
* ¹⁸⁷ Tl-C _{15 583}	M-A=-2	22121(28) keV	/ for mixtu	ire gs+m at 3	35(3) keV	V						Nubase	**
$*^{187}$ Tl ^m $-^{133}$ Cs _{1.406}	F: contar	nination from	ground-sta	ate not resolv	ed							03We.A	**
* ¹⁸⁷ Pb-C _{15 583}	M-A=-	14965(41) keV	/ for mixtu	ire gs+m at 1	1(11) keV	V						Nubase	**
$*^{187}$ Au(α) ¹⁸³ Ir	Assignm	ent uncertain										NDS	**
$*^{187}$ Hg(α) ¹⁸³ Pt	$E(\alpha)=50$	35(20) to 84.6	2 level									NDS924	**
$*^{187}$ Hg ^m (α) ¹⁸³ Pt	$E(\alpha)=48$	70(20) to 316	7(0.5) leve	el								NDS924	**
$*^{187}$ Tl ^m (α) ¹⁸³ Au	$E(\alpha)=55$	10(20) to 12.4	(0.4) level									NDS924	**
$*^{18/}$ Tl ^m (α) ¹⁸³ Au	$E(\alpha)=55$	28(10) to 12.4	(0.4) level									NDS924	**
$*^{187} Tl^{m}(\alpha)^{183} Au$	$E(\alpha)=55$	12(12) to 12.4	(0.4) level									NDS924	**
$*^{187}$ Pb(α) ¹⁸³ Hg	$E(\alpha)=61$	90(10) to 67.4	(0.3) level	07551 1								NDS8/c	**
$*^{107} PD(\alpha)^{103} Hg$	$E(\alpha)=61$ T-200(6)	94(10),5993(10),599	(0) to $(6)/.4$	275.5 levels								NDS8/C	**
$*^{186}W(\alpha)^{185}\Pi$	1=300(0	0) us not 700	us 04 haV air		libuotod							99Ba45 САн	**
* $W(\Pi, \gamma)$ W * $^{187}Ha^m(IT)^{187}Ha$	Only stat	arror (7 keV)	04 Kev gr	20 for isor	nortael li	nee in t	ran					01Sc41	**
* ng (11) ng	Original	enor (7 kev)	mereaseu	5y 20 101 1801	ner+gs m		ар					013041	**
¹⁸⁸ Au-C _{15.667}		-34750	104	-34676	22	0.7	U			GS1	1.0	00Ra23	
		-34674	30			-0.1	2			GS2	1.0	03Li.A	
¹⁸⁸ Hg-C _{15.667}		-32500	104	-32423	12	0.7	U		100	GS1	1.0	00Ra23	
199 209		-32428	30			0.2	1	17	17 ¹⁸⁸ Hg	GS2	1.0	03Li.A	
¹⁸⁸ Hg- ²⁰⁸ Pb _{.904}		-11330	20	-11316	12	0.7	_		199	MA6	1.0	01Sc41	
198	ave.	-11318	15			0.1	1	72	72 ¹⁰⁰ Hg	~~.		average	
$100^{100} \text{TI} - \text{C}_{15.667}$		-23827	110	-23990	40	-1.5	U			GS1	1.0	00Ra23	*
188 pt. C		-23994	38	10126		0.1	2			GS2	1.0	03L1.A	*
P0-C15.667		-19070	30	-19120	11	-0.5	U P			G82	1.0	00Ka23	
188Os 35C1_186W 37C1		4426	3	4424 2	14	_0.0	II.			H22	2.5	70Mc03	
188 Pt(α) 184 Os		4015 7	10	4008	5	_0.2	_			1122	2.5	63Gr08	
		4000.3	10.		5	0.8	_					78EI11	
		3990.1	15.			1.2	_					79Ha10	
	ave.	4005	7			0.6	1	65	64 ¹⁸⁸ Pt			average	

Item	Input value			Adjusted value v_i			Dg	Sig	Main flux	Lab	F	Reference
188 Hg(α) 184 Pt		4710.4	20	4705	17	-0.2	1	69	58 ¹⁸⁴ Pt			79Ha10
188 Pb(α) 184 Hg		6110.3	10.	6109	3	-0.1	2	07	50 11			74Le02 Z
		6109.2	10.			0.0	2					77De32 Z
		6120.5	15.			-0.8	2			GSa		80Sc09 Z
		6110.5	5.			-0.3	2					81To02 Z
		6109.3	10.			0.0	2			Lvn		93Wa03 Z
		6100.0	8.			1.1	2			Jya		03Ke04
$^{188}\text{Bi}(\alpha)^{184}\text{Tl}$		7274.5	25.	7255	7	-0.8	U			GSa		80Sc09 *
199		7255.2	7.				2			Lvn		97Wa05 *
$^{100}\mathrm{Bi}^{m}(\alpha)^{104}\mathrm{Tl}^{n}$		6968.5	20.	6963	6	-0.3	U			GSa		80Sc09
1880 ()18400		6963.5	6.	0000	10	0.0	3			Lvn		97Wa05
100 Po(α) 104 Pb		8087.4	25.	8082	13	-0.2	2					99An52
18800 (****)18600		8080.2	15.	5707 9	0.6	0.1	2			Min		01 va.B
100Us(p,t)100Us		-5802	5	-5/9/.8	0.6	0.8	U			MaM		750001
187 Da(n a) 188 Da		-5805	4	5071 75	0.12	1.5	2			MCM		751n04 726h12 7
$\operatorname{Ke}(\Pi,\gamma)$ Ke		5871.77	0.5	36/1./3	0.12	-0.1	2			Bdn		7251115 Z
$187 \Omega_{\rm S}(n_{\rm c}) 188 \Omega_{\rm S}$		7080.6	0.15	7080 56	0.15	0.0	2			Bull		83Ee06 7
$Os(n, \gamma) = Os$		7989.0	0.5	1989.50	0.15	-0.1	_			Bdn		03Fi A
	ave	7989.58	0.15			-0.2	1	100	80 ⁻¹⁸⁸ Os	Dun		average
$^{188}W(\beta^{-})^{188}Re$	ave.	349	3			0.2	3	100	00 03			64Bu10
188 Ir(β^+) 188 Os		2833	10	2808	7	-25	_					62Wa20
n(p) 03		2781	20	2000	,	14	_					69Ya02
		2827	30			-0.6	_					70Ag03
	ave.	2823	9			-1.7	1	65	64 ¹⁸⁸ Ir			average
188 Pt(ϵ) 188 Ir	u.e.	525	10	505	7	-2.0	1	52	36 ¹⁸⁸ Ir			78E111
$^{188}Au(\beta^+)^{188}Pt$		5520	30	5522	21	0.1	R					84Da.A
$^{188}\text{Hg}(\beta^+)^{188}\text{Au}$		2040	20	2099	23	3.0	C					84Da.A
$^{188}\text{Tl}^{n}(\text{IT})^{188}\text{Tl}^{m}$		268.8	0.5				4			Lvn		91Va04
* ¹⁸⁸ Tl-C _{15.667}	M-A=-22	2180(100) keV	V for mix	ture gs+m at 3	0(40) ke	V						GAu **
* ¹⁸⁸ Tl-C _{15.667}	M-A=-22	2335(28) keV	for mixtu	ire gs+m at 30	(40) keV	7						GAu **
$*^{188}\text{Bi}(\alpha)^{184}\text{Tl}$	$E(\alpha)=7005$	5(25) to 117.0	(0.5) leve	el								84Sc.A **
$*^{188}\text{Bi}(\alpha)^{184}\text{Tl}$	$E(\alpha)=6987$	7(6) followed	by 117.0	(0.5) E ₁ γ -ray								84Sc.A **
*	An E(a	x)=7029(7) 3	times we	aker exists too)							97Wa05**
C14 H21-189Os		206188.3	6.2	206178.2	1.6	-0.7	U			M23	2.5	79Ha32
$^{189}Au - C_{15,75}$		-36080	140	-36052	22	0.2	U			GS1	1.0	00Ra23 *
15.75		-36045	31			-0.2	2			GS2	1.0	03Li.A
		-36058	30			0.2	2			GS2	1.0	03Li.A *
¹⁸⁹ Hg-C _{15.75}		-31793	113	-31810	40	-0.2	U			GS1	1.0	00Ra23 *
		-31796	46			-0.3	1	61	61 ¹⁸⁹ Hg	GS2	1.0	03Li.A *
¹⁸⁹ Hg ^m - ²⁰⁸ Pb _{.909}		-10501	20	-10498	19	0.1	1	93	93 ¹⁸⁹ Hg ^m	MA6	1.0	01Sc41
¹⁸⁹ Tl-C _{15.75}		-26497	139	-26412	12	0.6	U			GS1	1.0	00Ra23 *
100		-26313	93			-1.1	U			GS2	1.0	03Li.A *
189 Pb $-C_{15.75}$		-19206	99	-19190	40	0.1	U			GS1	1.0	00Ra23 *
100 105		-19193	37				2			GS2	1.0	03Li.A *
189 Pb(α) 183 Hg		5954.2	10.	5870	40	-8.1	0			Ora		72Ga27 *
190 195		5943.9	10.			-7.1	U			Ora		74Le02 *
$^{189}\text{Bi}(\alpha)^{185}\text{Tl}$		7267.4	10.	7269.8	2.8	0.2	6			Ora		74Le02 *
		7272.5	10.			-0.3	6			GSa		84Sc.A *
		7269.2	5. 15			0.1	0			Lvn		85C006 *
		72(9.1	15.			-0.1	Ú			Jya		9/An09 *
		/268.1	6. 5			0.3	6			LVN		9/Wa05
189 p;m(c) 185 r1		7262 1	э. 20	7451	6	-0.3	0 C			јуа		02HU14 *
\mathbf{D} $(\alpha)^{-1}$		7400.0	20. 30	/431	0	1.8						045C.A
		7499.0	30. 40			-1.0	11			OPa		25A119
		7458.2	40.			-0.2	6			Iva		97An00
		7450.2	6			0.2	6			Lyn		97Wa05
						··	<u> </u>					

Item		Input va	lue	Adjusted v	alue	v _i	Dg	Sig	Main flux	Lab	F	Reference
189 Po(α) 185 Pb		7701	15				3			GSa		99An52 *
$^{188}Os(n \gamma)^{189}Os$		5920.6	0.5	5920.3	0.5	-0.7	1	98	78 ⁻¹⁸⁹ Os	ILn		92Br17
05(11,7) 05		5922.0	0.4	5720.5	0.5	-4.3	B	70	70 03	Bdn		03Fi.A
$^{189}W(\beta^{-})^{189}Re$		2500	200				3					65Ka07
189 Re(β^{-}) 189 Os		1000	20	1007	8	0.4	R					63Cr06
		1015	20			-0.4	R					65B106
189 Pt(β^+) 189 Ir		1950	20	1970	14	1.0	1	49	29 ¹⁸⁹ Ir			71Pl08
189 Au(β^+) 189 Pt		3160	300	2901	23	-0.9	U					75Un.A
189 Hg(β^+) 189 Au		4200	200	3950	40	-1.2	С					75Un.A
189Hgm(IT)189Hg		100	50	80	30	-0.4	1	47	39 ¹⁸⁹ Hg	MA6		01Sc41
$^{189}\text{Tl}^{m}(\beta^{+})^{189}\text{Hg}$		5460	200	5310	30	-0.7	U					75Un.A
* ¹⁸⁹ Au-C _{15.75}	M-A=-3	3490(100) ke	V for mixe	ture gs+m at 24	47.23 k	eV						Ens92 **
* ¹⁸⁹ Au-C _{15.75}	M-A=-3	3341(28) keV	for ¹⁸⁹ Au	^m at Eexc=24'	7.23 keV	V						Ens92 **
* ¹⁸⁹ Hg-C _{15.75}	M-A=-2	9570(100) ke	V for mixe	ture gs+m at 9	0(40) ke	eV						Nubase **
* ¹⁸⁹ Hg-C _{15.75}	M-A=-2	9573(28) keV	for mixtu	ire gs+m at 90	(40) keV	V						Nubase **
* ¹⁸⁹ Tl-C _{15.75}	M-A=-2	4540(100) ke	V for mixe	ture gs+m at 2	83(6) ke	eV						Nubase **
* ¹⁸⁹ Tl-C _{15.75}	M-A=-2	4369(28) keV	for mixtu	ire gs+m at 28	3(6) keV	V						Nubase **
* ¹⁸⁹ Pb-C _{15.75}	M-A=-1	7870(90) keV	for mixtu	ire gs+m at 40	#30 keV	/						Nubase **
* ¹⁸⁹ Pb-C _{15,75}	M-A=-1	7858(29) keV	for mixtu	ire gs+m at 40	#30 keV	/						Nubase **
$*^{189}$ Pb(α) ¹⁸⁵ Hg	$E(\alpha)=573$	30.1(10,Z) pos	sibly from	n ground-state,	and to	26.1 lev	el					NDS952**
$*^{189}$ Pb(α) ¹⁸⁵ Hg	$E(\alpha)=572$	20(10) possibl	y from gro	ound-state, and	to 26.1	level						NDS952**
$*^{189}\text{Bi}(\alpha)^{185}\text{Tl}$	$E(\alpha)=667$	70.1(10,Z) to 1	⁸⁵ Tl ^m at 4	52.8(2.0)								NDS952**
$*^{189}$ Bi(α) ¹⁸⁵ Tl	$E(\alpha)=667$	$75(10)$ to 185 T	l ^m at 452.8	3(2.0)								77Sc03 **
$*^{189}\text{Bi}(\alpha)^{185}\text{Tl}$	$E(\alpha)=711$	5.6(15,Z) and	6671.6(5	,Z) to ${}^{185}\text{Tl}^{m}$ a	t 452.8((2.0)						77Sc03 **
$*^{189}\text{Bi}(\alpha)^{185}\text{Tl}$	$E(\alpha)=712$	20(15), 6670(1	5) to grou	ind-state and 4	52.8 iso	mer						NDS952**
$*^{189}\text{Bi}(\alpha)^{185}\text{Tl}$	$E(\alpha)=667$	74(5) to 185 Tl ⁿ	¹ at 452.8(2.0)								77Sc03 **
$*^{189}$ Po(α) ¹⁸⁵ Pb	E(α)=726	54(15) to 280(1) level									99An52 **
$^{190}Au - C_{15,822}$		-35213	106	-35300	17	-0.8	U			GS2	1.0	03Li.A *
190 Hg $-C_{15,822}$		-33670	107	-33678	17	-0.1	U			GS1	1.0	00Ra23
190 Hg $-^{208}$ Pb $_{012}$		-12361	20	-12361	17	0.0	1	73	73 ¹⁹⁰ Hg	MA6	1.0	01Sc41
¹⁹⁰ Tl-C _{15 833}		-26125	123	-26120	50	0.0	U		0	GS1	1.0	00Ra23 *
15.055		-26118	66			-0.1	R			GS2	1.0	03Li.A *
¹⁹⁰ Pb-C _{15.833}		-21940	104	-21918	13	0.2	U			GS1	1.0	00Ra23
		-21905	30			-0.4	R			GS2	1.0	03Li.A
¹⁹⁰ Bi ^m - ¹³³ Cs _{1.429}		123800	27	123856	10	2.1	F			MA8	1.0	03We.A *
¹⁹⁰ Os ³⁵ Cl- ¹⁸⁸ Os ³⁷ Cl		5557	3	5558.9	0.6	0.3	U			H22	2.5	70Mc03
$^{190}Os - C_{14} H_{21}$		-205897.8	5.8	-205878.6	1.6	1.3	U			M23	2.5	79Ha32
190 Pt(α) 186 Os		3238.3	20.	3251	6	0.6	-					61Pe23
		3248.5	20.			0.1	_		100-			63Gr08
100 107	ave.	3243	14			0.5	1	15	15 ⁻¹⁹⁰ Pt			average
190 Pb $(\alpha)^{180}$ Hg		5699.8	10.	5697	5	-0.2	3					74Le02 Z
100		5697.0	5.			0.1	3					81El03 Z
$^{190}Bi(\alpha)^{100}Tl$		6862.2	5.				3			Lvn		91Va04 *
$^{190}\text{B1}^{m}(\alpha)^{180}\text{T1}^{m}$		6967.9	5.	6967	4	-0.2	3			Lvn		91Va04 *
$^{190}Bi^{m}(\alpha)^{180}TI^{n}$		6589.0	10.	6593	5	0.4	R			~~		74Le02
1 Po(α) 100 Pb		7643.2	20.	7693	7	2.5	F			GSa		88Qu.A
		/651.4	40.			1.0	0			ORa		90Ba35
		7605.2	10.			0.2	4			OKa CSo		7/Da23
$190 \Omega_{0}(n, t) 188 \Omega_{0}$		1093.3	10.	5020 7	0.5	-0.2	4 1			USa Mir		72Oc01
Os(p,t) = Os		-3234	5	-3230.7	0.5	0.7	U			McM		75Tb04
$190 Pt(p t)^{188} Pt$		-5257	10	_7161	7	_1.0	1	12	23 190 D+	Ore		78Ve10
$^{190}Os(t \alpha)^{189}R_{P}$		11796	10	11796	8	0.0	2	40	23 FL	McM		76Hi08
$^{189}Os(n \gamma)^{190}Os$		7791.8	10	7792.26	0 19	0.5	ú			BNn		79Ca02 7
00(,)) 00		7792.31	0.19		0.17	-0.2	1	100	78 ⁻¹⁹⁰ Os	Bdn		03Fi.A

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹⁹⁰ Pt(n d) ¹⁸⁹ Pt		-6693	11	-6687	10	0.5	1	84	80 ¹⁸⁹ Pt	Ors		80Ka19
$^{190}W(\beta^{-})^{190}Re$		1270	70	0007	10	0.0	3	0.	00 11	015		76Ha39
190 Re(β^{-}) 190 Os		3090	300	3140	150	0.2	2					55At21
4 /		3190	300			-0.2	2					69Ha44
		3140	210			0.0	2					64F102 *
190 Ir(β^+) 190 Os		2000	200	1955.1	1.2	-0.2	U					60Ka14 *
190 Au(β^+) 190 Pt		4442	15				2					73Jo11
190 Hg(β^+) 190 Au		2105	80	1511	23	-7.4	С					74Di.A
190 Tl(β^+) 190 Hg		7000	400	7040	50	0.1	U					75Un.A
$^{190}\text{Tl}^{m}(\beta^{+})^{190}\text{Hg}$		6975	300	7170#	70#	0.7	D					76Bi09 *
$^{190}\text{Bi}(\beta^+)^{190}\text{Pb}$		8700	500	9510	180	1.6	F					76Bi09 *
$^{190}\text{Bi}^{n}(\text{IT})^{190}\text{Bi}^{m}$		273	1	•			4					01An11
* ¹⁹⁰ Au-C _{15.833}	M-A=-3	2701(28) keV	for mixtu	ire gs+m at 20	0#150 ke	eV.						Nubase **
* ¹⁹⁰ TI-C _{15.833}	M-A=-2	4270(100) ke	V for mixi	ture gs+m at 1	30#80 ke	eV Z						AHW **
$*^{190}\Pi - C_{15,833}$	M-A=-2	4264(28) KeV	for mixtu	ire gs+m at 13	0#80 KeV	/						AHW **
$*^{190}B1^{m} - {}^{150}Cs_{1.429}$	F: contam	lination from g	ground-sta	te not resolve	d	202 7 1.	1.					03We.A **
* $DI(\alpha)$ 11 + 190 $P;m(\alpha)$ 186 $T1m$	$E(\alpha) = 681$	10(3), 0307(3), 00(5)	6451(3)	to ground-stat	e, 213.2, . 5 272.0	295.7 le	SGT1m					91 Va04 **
* DI (α) II +190 Do (α) 186 Dh	$E(\alpha)=0.01$ $E_0=75.45($	(15) como wor	10430(3)	00.4 ± 1.4	.3, 373.9	above	11					91 va04 **
$* 190 \mathbf{P}_{\alpha}(B^{-}) 190 \Omega_{c}$	Ea = 7.543 $E^{-} = -1.600$	(200) from iso	mar at 21	0(60) to sever	ما امتماد	around 1	750					97An09**
$*^{190} Ir(\beta^+)^{190} Os$	n + < 0.000	(200) from 130	and 955	37 levels leve	al at 1872	15 fed	150					AHW **
$*^{190}Tl^{m}(B^{+})^{190}H\sigma$	Systemati	ical trends sug	vest ¹⁹⁰ Tl	m 200 less bot	ind	.15 100						GAu **
$*^{190}\text{Bi}(\beta^+)^{190}\text{Pb}$	$F: E^+ = 5'$	700(300) to at	least abo	ut 2000 level	and							AHW **
D(p) 10	1.2 0	, 00(000) to ut	ioust uso	at 2000 ie (ei								
¹⁹¹ Au-C _{15.917}		-36180	88	-36300	40	-1.3	1	20	20 ¹⁹¹ Au	GS2	1.0	03Li.A *
¹⁹¹ Hg-C _{15.917}		-32811	51	-32843	24	-0.6	1	23	23 ¹⁹¹ Hg	GS2	1.0	03Li.A *
¹⁹¹ Hg- ²⁰⁸ Pb _{.918}		-11414	29	-11409	24	0.2	1	70	70 ⁻¹⁹¹ Hg	MA6	1.0	01Sc41
$^{191}Tl-C_{15.917}$		-28340	130	-28214	8	1.0	U			GS1	1.0	00Ra23 *
		-28234	30			0.7	U			GS2	1.0	03L1.A
191 20 0		-28192	31	21740	10	-0.7	U			GS2	1.0	03L1.A *
¹⁵¹ Pb-C _{15.917}		-21770	110	-21740	40	0.3	U			GSI	1.0	00Ra23 *
191 p: 133 c-		-21/35	42	101557	0	0.0	2	06	oc 191 p:	GS2	1.0	03L1.A *
$191 \text{ D} \text{ m}(\alpha)^{187} \text{ U} \text{ m}$		121552.1	20	121557	8	0.6	2	80	80 ··· B1	MAð	1.0	03 we.A
191 P ; (α) ¹⁸⁷ T 1		5405.4	20.	6779	2	0.5	2			Lun		74Le02
$BI(\alpha)$ II		6785	10	0778	5	-0.3	_			ORa		98Bi A
		6782	10			-0.4	_			Iva		99An36
	ave.	6782	4			-0.8	1	64	62 ¹⁸⁷ Tl	u yu		average
$^{191}\text{Bi}(\alpha)^{187}\text{Tl}^{m}$		6440.0	5.	6443.7	2.2	0.7	_					67Tr06 Z
()		6455.0	10.			-1.1	U					74Le02 Z
		6445.9	5.			-0.4	_			Lvn		85Co06 Z
		6447	10			-0.3	U			ORa		98Bi.A
		6458.5	20.			-0.7	U			RIa		99Ta20
		6445	10			-0.1	U			Jya		99An36
		6443.2	3.			0.2	-		107	Jya		03Ke04
101 107	ave.	6443.0	2.3			0.3	1	88	75^{-187} Tl ^m			average
$^{191}\text{Bi}^{m}(\alpha)^{18/}\text{Tl}$		7022.8	5.	7018.6	2.6	-0.8	2			Lvn		85Co06 Z
		7023.4	10.			-0.5	U			ORa		98Bi.A
		7016.2	20.			0.1	U			RIa		99Ta20
191 D - (a) 187 DI		7017.2	<i>3</i> .	7501	11	0.5	2			Jya		03Ke04
$PO(\alpha)^{10}$ Pb		/4/0.8	20.	/501	11	1.5	- F 1	5.4	20 191 p	GSa		93Qu03 *
191 De (a) 187 DL m		7493.2	15.	7400	F	0.5	1	54	38 ·//Po	Jya OD-		02An19
$PO(\alpha)^{10'}Pb'''$		/48/.1	15.	/490	5	0.2	U 1	05	62 191 D	ORa		9/Ba25
$191 \mathbf{p}_{0} m(\mathbf{c}) 187 \mathbf{p}_{\mathbf{k}}$		7491.2	5. 5			-0.2	1	95	02 ··· P0	Jya Ive		02An19 *
$191 \text{ Ir}(\alpha t)^{189} \text{ Ir}$		1000	5 15	5014	12	07	2	71	71 189 1.	јуа МеМ		02An19 *
$190 \Omega_{\rm s}({\rm p},{\rm c})^{191} \Omega_{\rm s}$		-3903	15	-3914	15	-0.7	1	/1	/1 ···· If	IVICIVI		/8L00/
$Os(n,\gamma)^{-1}Os$		5758.0/ 5758.81	0.10	5138.12	0.11	0.5	_			ILfl Bdn		91D035 Z
	01/0	5758 74	0.15			_0.0	1	100	79 ¹⁹¹ Oc	Dull		ourone
	ave.	5150.14	0.11			-0.2	1	100	12 US			average

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
¹⁹¹ Ir(d,t) ¹⁹⁰ Ir		-1769.3	0.4				2					95Ga04 *
$^{191}\text{Os}(\beta^{-})^{191}\text{Ir}$		313.3	3.	312.7	1.1	-0.2	_					48Sa18
		314.3	2.			-0.8	_					51Ko17
		316.3	3.			-1.2	-					58Na15
		314.3	3.			-0.5	-					60Fe03
		318.3	3.			-1.9	-					63Pl01
101 - 101	ave.	315.1	1.2			-2.0	1	84	63 ¹⁹¹ Ir			average
$^{191}Au(\beta^+)^{191}Pt$		1830	50	1890	40	1.2	1	55	54 ¹⁹¹ Au			76Vi.A
$^{191}\text{Hg}(\beta^+)^{191}\text{Au}$		3180	70	3220	40	0.5	1	33	25 ¹⁹¹ Au			76Vi.A
$^{191}\Pi^{m}(\beta^{+})^{191}Hg$		5140	200	. 4609	24	-2.7	U					75Un.A
$*^{191}Au - C_{15.917}$	M-A=-	-33568(28) k	eV for m	ixture gs+m	at 266.2	keV						Ens99 **
* ¹⁹¹ Hg-C _{15.917}	M-A=-	-30499(28) k	eV for m	ixture gs+m	at 128(2	(22) keV						Nubase **
* ¹⁹ ITL-C _{15.917}	M-A=-	-26250(90) K	ev for m	ixture gs+m	at $297(7)$) KeV						Nubase **
* ¹⁹ II-C _{15.917}	M-A=-	-25964(28) K	ev for	· II at Eexc	=297(7)	ke v						Nubase **
* ¹⁹¹ Pb-C _{15.917}	Possibly	20226(28) l	a Dy 1801	intrana and m	at 10/50)) IreV						00Ka25 **
$*^{191}$ P o(c) ¹⁸⁷ P b	M-A=-	-20220(28) K	е v тог ш ³⁹ р; <i>т</i>	ixture gs+m	at 40(30)) Ke v						ARW **
* $PO(\alpha) = PD$ + $^{191}Po(\alpha)^{187}Pb^{m}$	F: proba	$\frac{101}{224(10)}$ 6060	о DI)(15) to a	round state	275(1)	aunoraa	dad	hu 20	024 n 10			9/Da23 **
$* FO(\alpha) FD$ $+ \frac{191}{2} Po^{m}(\alpha)^{187} Pb$	$E(\alpha) = 7$	276(5) 6889	(15) 10 g (5) to 1871	$2b^m$ and 4040	(1) above	superse	ueu	by 20	02AII19			99AII10 **
* $FO(\alpha) FD$ * $^{191}Po^{m}(\alpha)^{187}Pb$	$E(\alpha) = 7$	378(10) 6889	$\frac{3}{2}(15)$ sup	r_0 and 494	(1) abov (0) 2 A p 1	0						02AII19**
$*^{191}$ Ir(d t) ¹⁹⁰ Ir	E(u)=7. Feeds on	round-state	5(15) sup	crisculu by 2	002AIII							96Ga30 **
* II(u,t) II	i ceus gi	iound-state										700a30 **
¹⁹² Hg-C ₁₆		-34440	104	-34366	17	0.7	U			GS1	1.0	00Ra23
		-34342	30			-0.8	R			GS2	1.0	03Li.A
¹⁹² Hg- ²⁰⁸ Pb _{.923}		-12826	20	-12816	17	0.5	2			MA6	1.0	01Sc41
¹⁹² Tl-C ₁₆		-27815	121	-27780	30	0.3	U			GS1	1.0	00Ra23 *
102		-27775	34				2			GS2	1.0	03Li.A
$^{192}Pb-C_{16}$		-24280	104	-24215	14	0.6	U			GS1	1.0	00Ra23
1927.		-24185	30			-1.0	R			GS2	1.0	03Li.A
$^{192}B_1 - C_{16}$		-14783	128	-14540	40	1.9	В			GS1	1.0	00Ra23 *
192 p.m. 133 c		-14489	59			-0.9	ĸ			GS2	1.0	03L1.A *
192_{O-35} CS _{1.444}		122143.5	9.6	5092 7	2.2	0.0	2	0	0 1920-	MA8	1.0	03We.A
¹⁹² Db(a) ¹⁸⁸ Ua		5984	5	5985.7	2.3	0.0	1	9	9	H22	2.5	70Mc05
$^{192}\text{Pi}(\alpha)^{188}\text{T1}$		5221.0 6276.0	5.				2			Lun		791000 Z
$^{192}B_{i}^{m}(\alpha)^{188}T_{i}^{m}$		6484.9	5	6483	4	0.4	3			Lvn		91 Va04 *
$^{192}\text{Bi}^{m}(\alpha)^{188}\text{Tl}^{n}$		6212.6	5	6214	4	-0.4	R			LVII		67Tr06 *
$^{192}Po(\alpha)^{188}Ph$		7319.8	J. 7	7319	5	-0.1	3			Lvn		93Wa04
10(0) 10		7364.6	35	7517	5	-13	U.			RIa		95Mo14
		7349.4	30.			-1.0	Ŭ			RIa		97Pu01
		7319.8	11.			0.0	0			Jya		01Ke06
		7318.8	8.			0.1	3			Jya		03Ke04
¹⁹² Os(p,t) ¹⁹⁰ Os		-4835	5	-4835.0	2.1	0.0	_			Min		73Oo01
		-4837	4			0.5	_			McM		75Th04
	ave.	-4836	3			0.4	1	46	45 192Os			average
192Pt(p,t)190Pt		-6629	7	-6630	5	-0.2	1	62	58 ¹⁹⁰ Pt	Ors		80Ka19
192 Os(t, α) 191 Re		10993	10				2			McM		76Hi08
191 Ir(n, γ) 192 Ir		6198.1	0.2	6198.11	0.11	0.1	_			ILn		91Ke10
		6198.14	0.13			-0.2	-			Bdn		03Fi.A
102 101	ave.	6198.13	0.11			-0.1	1	100	64 ¹⁹² Ir			average
¹⁹² Pt(p,d) ¹⁹¹ Pt		-6448	6	-6442	3	1.1	1	25	31 ¹⁹¹ Pt	Ors		80Ka19
192 Pt(p,d) 191 Pt $-^{194}$ Pt() 193 Pt		-307	3	-308.8	2.7	-0.6	1	81	69 ¹⁹¹ Pt	Ors		78Be09
192 Ir(β^{-}) 192 Pt		1456.7	4.	1459.7	1.9	0.7	-					65Jo04
		1453.3	3.			2.1	-					77Ra17
100 - 100	ave.	1454.5	2.4			2.1	1	60	59 ¹⁹² Pt			average
192 Au(β^+) 192 Pt		3514	20	3516	16	0.1	2					66Ny01
		3520	25			-0.1	2					74Di.A

Item	Input v	alue	Adjusted	value	v _i	Dg	Sig	Mai	in flux	Lab	F	Reference
192 Hg(β^+) 192 Au	1745	30	765	22	-32.7	F						74Di.A *
192 Tl(β^+) 192 Hg	6380	200	6140	40	-1.2	С						75Un.A
192 Tl ^p (IT) ¹⁹² Tl	200	50	180	40	-0.4	U				Lvn		91Va04
$*^{192}Tl - C_{16}$	M-A=-25830(100)	keV for r	nixture gs+m	at 160(5	0) keV							Nubase **
$*^{192}Bi-C_{16}$	M-A=-13700(110)	keV for r	nixture gs+m	at 140(4	0) keV							GAu **
$*^{192}B1-C_{16}$	M-A=-13426(31) k	eV for m	ixture gs+m a	at 140(40)) keV							GAu **
$*^{192}$ Bi(α) ¹⁸⁸ Tim	$E(\alpha)=6245(5), 6060($	(5) to gro	und-state, 18°	4.6 level	d atota a	- d						91 Va04 **
*···BI···(<i>α</i>)····II···	$E(\alpha)=0.548(5), 0.255($	(5), 00810	(10), 6052(5)	to groun	id-state a	ina						91 Va04 **
$*^{192} \text{Bi}^{m}(\alpha)^{188} \text{Tl}^{n}$	$F(\alpha) = 6050(5)$ to leve	el 33 6 ab	188Tl^{n}									GAu **
$*^{192}$ Hg(β^+) 192 Au	F: most probably due	to backs	cattering of 2	.5 MeV	Au posit	tons						AHW **
¹⁹³ Au-C _{16.083}	-35736	96	-35850	11	-1.2	U				GS2	1.0	03Li.A *
¹⁹³ Hg-C _{16.083}	-33288	53	-33335	17	-0.9	1	10	10	¹⁹³ Hg	GS2	1.0	03Li.A *
193 Hg $-^{208}$ Pb $_{.928}$	-11673	29	-11668	17	0.2	1	32	32	¹⁹³ Hg	MA6	1.0	01Sc41
193 Tl-C _{16.083}	-29691	171	-29330	120	2.1	0				GS1	1.0	00Ra23 *
193 PL C	-29328	119	22020	50	0.2	2				GS2	1.0	03L1.A *
¹³⁵ Pb-C _{16.083}	-23865	125	-23830	50	0.3	2				GSI	1.0	00Ra23 *
¹⁹³ Bi-C	-23840	110	-17040	10	-0.5	1 U				GS1	1.0	00Ra23
$B1 - C_{16.083}$	-17025	30	-17040	10	-0.5	R				GS2	1.0	03L i A
¹⁹³ Bi- ¹³³ Cs ₁	120147	11	120149	10	0.2	2				MA8	1.0	03We.A
$^{193}\text{Bi}(\alpha)^{189}\text{Tl}$	6304.5	5.				3				Lvn		85Co06 Z
$^{193}\text{Bi}(\alpha)^{189}\text{Tl}^{m}$	6017.8	5.	6021	3	0.7	3						67Tr06 Z
	6024.6	10.			-0.3	3						74Le02 Z
	6023.7	5.			-0.5	3				Lvn		85Co06 Z
$^{193}\text{Bi}^{m}(\alpha)^{189}\text{Tl}$	6617.4	10.	6613	5	-0.4	4				_		74Le02
102	6611.9	5.	5002		0.2	4				Lvn		85Co06 Z
193 Po(α) 139 Pb	7096.4	5.	7093	4	-0.6	3				Lvn		93Wa04
$193 \mathbf{p}_{0}^{m}(\alpha)^{189} \mathbf{p}_{0}^{m}$	7089.2	0. 10	7154	4	0.7	3				Jya		90En02 77Do22
$PO(\alpha) PD$	7145.5	10.	/134	4	1.0	4				I vn		93Wa04
	7152.5	5. 6			-0.9	4				Iva		96En02
193 At(α) ¹⁸⁹ Bi	7556.9	20.	7490	6	-3.3	0				Jva		95Le15
	7490	6				7				Jya		98En.A
$^{192}Os(n,\gamma)^{193}Os$	5583.5	2.	5583.41	0.20	0.0	U				-		78Be22
	5583.40	0.20			0.1	1	100	82	¹⁹³ Os			79Wa04
	5584.01	0.16			-3.7	В				Bdn		03Fi.A
193 Ir(t, α) 192 Os $^{-191}$ Ir() 190 Os	-661	4	-653.2	2.1	1.9	1	28	28	¹⁹² Os	LAI		82La22
192 Ir(n, γ) 193 Ir	7772.0	0.2	7771.92	0.20	-0.4	1	99	64	¹⁹³ Ir			85Co.B Z
192 Pt(n, γ) 193 Pt	6247	3	6255.5	1.9	2.8	1	38	37	¹⁹² Pt			68Sa13
$^{193}Os(\beta^{-})^{193}Ir$	1132	5	1141.2	2.3	1.8	1	21	18	¹⁹⁵ Os			58Na15
193 Pt(ϵ) 193 Ir	56.6	0.3	56.79	0.30	0.6	1	99	65	¹⁹⁵ Pt			83Jo04
193 Au(β^+) 193 Pt	1355	20	1083	11	-13.6	В						76Di15
$Hg(\beta^{+})$ Au	2340	20	2343	14	0.2	-						/6D115
	2341	50 17			0.1	1	71	58	193 Ha			JODIOO *
* ¹⁹³ Au_C	$M_{-}\Delta = -33143(29) k$	eV for m	ivture as⊥m s	at 290-19	keV	1	/1	50	ng			Fne98 **
* $Au = C_{16.083}$ * ¹⁹³ Hg=C	$M = \Delta = -30937(28) k$	eV for m	ixture as⊥m a	at 140.76	keV							Ens90 **
* ¹⁹³ TI-C	$M = A = -27470(100)^{-1}$	keV for r	nixture os+m	at 369/4) keV							Nubase **
* ¹⁹³ Tl-C	M - A = -27134(28) k	eV for m	ixture gs+m s	at $369(4)$	keV							Nubase **
$*^{193}$ Pb-C _{16.083}	M - A = -22160(100)	keV for r	nixture gs+m	at 130#	30 keV							Nubase **
$*^{193}$ Pb $-C_{16.083}$	M - A = -22147(28) k	eV for m	ixture gs+m a	at 130#80) keV							Nubase **
$*^{193}$ Hg(β^+) ¹⁹³ Au	E ⁻ =1170(30) from ¹⁹	⁹³ Hg ^m at	140.76 to 290	0.1 level								NDS90c**

A.H. Wapstra et al. / Nuclear Physics A 729 (2003) 129–33	36
---	----

Item	Input va	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
¹⁹⁴ Au-C _{16,167}	-34768	114	-34635	11	1.2	U			GS2	1.0	03Li.A *
194 Hg $-C_{16,167}$	-34527	30	-34561	13	-1.1	1	20	20 ¹⁹⁴ Hg	GS2	1.0	03Li.A
194 Hg $-^{208}$ Pb $_{933}$	-12766	19	-12777	13	-0.6	1	50	50 ¹⁹⁴ Hg	MA6	1.0	01Sc41
¹⁹⁴ Tl-C _{16,167}	-28825	178	-28800	150	0.1	0		U	GS1	1.0	00Ra23 *
10.107	-28800	145				2			GS2	1.0	03Li.A *
¹⁹⁴ Pb-C _{16 167}	-25980	104	-25988	19	-0.1	U			GS1	1.0	00Ra23
¹⁹⁴ Bi-C _{16,167}	-17159	136	-17170	50	-0.1	0			GS1	1.0	00Ra23 *
10.107	-17175	88			0.1	2			GS2	1.0	03Li.A *
$^{194}\text{Bi}^m - ^{133}\text{Cs}_{1.450}$	120900	54				2			MA8	1.0	03We.A *
194 Pb(α) 190 Hg	4737.9	20.	4738	17	0.0	1	67	40 ¹⁹⁴ Pb			87E109
$^{194}\text{Bi}(\alpha)^{190}\text{Tl}$	5918.3	5.				3			Lvn		91Va04 *
$^{194}\text{Bi}^{n}(\alpha)^{190}\text{Tl}^{m}$	6015.7	5.				3			Lvn		91Va04 *
194 Po(α) 190 Pb	6991.5	10.	6987	3	-0.4	4					67Si09 Z
	6990.9	7.			-0.5	4					67Tr06 Z
	6984.4	5.			0.5	4					77De32 Z
	6986.3	6.			0.1	4			Lvn		93Wa04
	6993.4	4.			-1.6	В			Jya		96En02
194 At(α) 190 Bi	7290.6	20.			-	4			Jya		95Le15
$^{194}\text{At}^{m}(\alpha)^{190}\text{Bi}^{m}$	7351.9	20.	7347	14	-0.3	4					84Ya.A
() 21	7341.7	20.			0.3	4			Jya		95Le15
193 Ir(n, γ) ¹⁹⁴ Ir	6067.0	0.4	6066.79	0.11	-0.5	2			-)		82Ra.A
(,1)	6066.9	0.2			-0.6	2					98Ba85
	6066.71	0.14			0.6	2			Bdn		03Fi.A
¹⁹⁴ Pt(p,d) ¹⁹³ Pt	-6142	3	-6132.9	1.7	3.0	1	33	28 ¹⁹³ Pt	Ors		78Be09 *
$^{194}Os(\beta^{-})^{194}Ir$	96.6	2	01020	1.7	510	3	00	20 11	015		64Wi07
194 Ir(β^{-}) ¹⁹⁴ Pt	2254	4	2233.8	17	-50	B					76Ra33
194 Ir ⁿ (β^{-}) ¹⁹⁴ Pt	2600	70	2200.0		2.0	2					68Su02
$^{194}Au(B^+)^{194}Pt$	2465	20	2501	10	1.8	_					56Th11
/fu(p) / ft	2509	15	2501	10	-0.5	_					60Ba17
	2485	30			0.5	_					70Ag03
	ave. 2492	11			0.8	1	83	83 ¹⁹⁴ Au			average
¹⁹⁴ Hg(E) ¹⁹⁴ Au	40	20	69	14	1.5	1	47	30 ¹⁹⁴ Hø			81Ho18
* ¹⁹⁴ Au-C	M = A = -32192(29) keV	for mixt	ure σ_{s+m+n} at	107 4 and	1475.81	εV	• •	50 115			NDS96a**
* ¹⁹⁴ Tl-C	$M - A = -26700(100) \text{ ke}^{-3}$	V for mix	ture gs+m at 3	00#200 k	eV						Nubase **
* ¹⁹⁴ Tl-C	M - A = -26677(28) keV	for mixtu	re gs+m at 30	0#200 ke	V						Nubase **
* ¹⁹⁴ Bi-C	M - A = -15870(100) ke	V for mix	ture gs+m+n a	t 110(70)	and 230	#80 k	æV				GAu **
* ¹⁹⁴ Bi-C	M = A = -15885(28) keV	for mixt	ire gs+m+n at	110(70)	nd 230#	180 ke	V				GAu **
$*^{194}\text{Bi}^{m} - {}^{133}\text{Cs}$	Original error 16 uu inc	reased for	3+ and 10- pc	ssible co	ntamina	tion					03We A **
$*^{194}\text{Bi}(\alpha)^{190}\text{Tl}$	$E(\alpha)=5799(5)$ 5645(5)	to ground	l-state 15131	evel							91Va04 **
$*^{194}\text{Bi}^{n}(\alpha)^{190}\text{Tl}^{m}$	$E(\alpha)=5892(5), 5043(5)$	to levele	0.112.2 above	¹⁹⁰ Tl ^m							91Va04 **
$^{+194}$ D $(a)^{193}$ D t	$\Omega = \Omega(^{196}\text{Pt}(p, d)) = 4450$	(3)	0, 112.2 above								
* r((p,u) r(Q-Q(r((p,u))=-445)	(3)									Anw **
¹⁹⁵ Hg-C _{16.25}	-33283	62	-33280	25	0.1	U			GS2	1.0	03Li.A *
195Hg-208Pb 938	-11362	28	-11380	25	-0.6	1	79	79 ¹⁹⁵ Hg	MA6	1.0	01Sc41 *
¹⁹⁵ Tl-C _{16 25}	-30320	200	-30226	15	0.5	U			GS1	1.0	00Ra23 *
10.25	-30209	40			-0.4	R			GS2	1.0	03Li.A
	-30264	33			1.2	R			GS2	1.0	03Li.A *
¹⁹⁵ Pb-C _{16.25}	-25423	150	-25458	25	-0.2	0			GS1	1.0	00Ra23 *
10.25	-25461	70			0.0	2			GS2	1.0	03Li.A *
195Bi-C16 25	-19320	100	-19349	6	-0.3	U			GS1	1.0	00Ra23
10.23	-19537	128			1.5	U			GS2	1.0	03Li.A *
195Bi-133Cs1 466	119258.2	6.0				2			MA8	1.0	03We.A
$^{195}\text{Bi}(\alpha)^{191}\text{Tl}^{1.400}$	5832.5	5.				3			Lvn		85Co06 Z
$^{195}\text{Bi}(\alpha)^{191}\text{Tl}^{m}$	5542.9	10.	5535	5	-0.8	3					74Le02 Z
···/	5533.3	5.			0.4	3			Lvn		85Co06 Z
$^{195}\text{Bi}^{m}(\alpha)^{191}\text{Tl}$	6228.1	5.	6232	3	0.7	4					67Tr06 Z
()	6238.4	10.		2	-0.6	4					74Le02 Z
	6233.7	5			-0.4	4			Lyn		85Co06 7
	0233.1	5.			0.7	T			1.11		33C300 Z

Item	Input value		Adjusted value		v _i Dg		Sig	Main flux	Lab	F	Reference
195 Po(α) 191 Pb	6763.1	8.	6746	3	-2.1	U					67Si09 Z
	6747.4	5.			-0.2	3					67Tr06 Z
	6744.6	5.			0.3	3			Lvn		93Wa04
105 m () 101 m m	6752.8	14.			-0.4	3			Jya		96Le09
195 Po ^m (α) 191 Pb ^m	6850.8	10.	6842	3	-0.9	3					67Si09
	6839.4	5.			0.5	3			T		6/1r06 Z
	0839.0 6852.8	5. 10			0.5	2			Lvn		95 Wa04
$195 \Lambda t(\alpha)^{191} Bi^{m}$	7095.8	20	7000	3	-1.1	П			Jya Iya		90Le09
Ai(u) Di	7095.8	20.	1099	5	-0.3	U U			RIa		99Ta20
	7098.9	3.			0.5	3			Jva		03Ke04 *
$^{195}At^{m}(\alpha)^{191}Bi$	7340.9	30.	7372	4	1.1	Ŭ			-)		83Le.A *
	7371.5	30.			0.0	U			Jya		95Le.A
	7403	30			-1.0	0			RIa		99Ta20
	7372.5	4.0				2			RIa		03Ke04 *
195 Rn(α) 191 Po	7694.1	11.				2			Jya		01Ke06
195 Rn ^m (α) 191 Po ^m	7713.5	11.				3			Jya		01Ke06
194 Ir(n, γ) ¹⁹⁵ Ir	7231.86	0.06				3			ILn		87Co08 Z
194 Pt(n, γ) 195 Pt	6105.06	0.12	6105.04	0.12	-0.1	1	100	94 ¹⁹⁴ Pt	ILn		81Ho.B Z
105 - 105	6109.17	0.13			-31.7	F			Bdn		03Fi.A
$^{195}Os(\beta^{-})^{195}Ir$	2000	500				4					57Ba08
195 Ir ^m (IT) ¹⁹⁵ Ir	100	5				4					NDS993
195 Ir ^m $(\beta^{-})^{195}$ Pt	1230	20	1207	5	-1.1	U		105			73Ja10
$^{195}Au(\varepsilon)^{195}Pt$	226.8	1.0	226.8	1.0	0.0	1	100	100 ¹⁹⁵ Au			Averag *
$^{195}\text{Hg}(\beta^+)^{195}\text{Au}$	1510	50	1570	23	1.2	1	21	21 ¹⁹⁵ Hg			71Fr03 *
¹⁹⁵ Pb ^m (IT) ¹⁹⁵ Pb	202.9	0.7				3			Oak		91Gr12
$^{195}B1(\beta^{+})^{195}Pb$	4850	550	5690	24	1.5	В			Oak		91Gr12
* ¹⁹⁵ Hg-C _{16.25}	M-A=-30914(28)	keV for m	ixture gs+m a	t 176.07	keV	071					NDS993**
* ¹⁹⁵ Hg ²⁰⁰ Pb _{.938}	Corrected 40(20) ke	V for ison	neric mixture	R=0.3(0.	2) E=176	0.07 km	eV				01Sc41 **
$*^{105}\Pi - C_{16.25}$	M - A = -28000(100)) KeV for r	5 TIM at Ears	at 482.63	s kev						NDS993**
* ¹⁹⁵ II-C _{16.25}	M = A = -27708(31)	kev for	11^{-1} at Eexc=	482.03 K	ev hoV						NDS993**
* FD-C _{16.25} * ¹⁹⁵ Pb C	M = A = -23580(100) M = A = -23615(28)1	keV for m	inxture gs+m	at 202.9	AU AV						Ells99 ** Enc00 **
* FD-C _{16.25}	M = A = -23013(28)1 M = A = -17000(28)1	keV for m	ixture gs+m a	t 202.9 K	ev koV						LIIS99 **
* $BI = C_{16.25}$ * $^{195} \Lambda t(\alpha)^{191} Bi^m$	Correlated with E(o	() - 6313 of	191 p;m	1 399(0)	KC V						O3KeO4 **
* $A(\alpha)^{191}B_{i}$	Conclusion with $E(\alpha) = 0.515 \text{ of } B^{-1}$ $E(\alpha) = 7100(30) \text{ to } 148 7(0.5) \text{ layel}$									03Ke04 **	
* $^{195}At^{m}(\alpha)^{191}Bi$	$Correlated with \alpha of 12 e^{191} Bi ground state 0$										95Le15 **
$*^{195} At^{m}(\alpha)^{191} Bi$	$F(\alpha) = 7105(30)$ to 148 7(0 5) level 02										03Ke04 **
$*^{195} At^{m}(\alpha)^{191} Bi$	$E(\alpha) = 7221(4)$ and 7	7075(4) to	148 7(0 5) lex	/el							03Ke04 **
$*^{195}Au(\epsilon)^{195}Pt$	Average $nK=0.179(0.006)$ to 129.78 level from the following references:										AHW **
*	pK=0.195(0.015	5) to 129.7	8 level								65De20 **
*	pK=0.166(0.020)) to 129.7	8 level								68Ja11 **
*	pK=0.160(0.017	7) to 129.7	8 level								73Go05 **
*	pK=0.183(0.009	e) to 129.7	8 level								80Sa11 **
*	pK=0.176(0.012	2) to 129.7	8 level								82Be.A **
$*^{195}$ Hg(β^+) ¹⁹⁵ Au	Assuming 511 γ is a	annihil. of	β^+ to ground	-state and	d 61.44 le	evel					AHW **
¹⁹⁶ Hg- ²⁰⁸ Ph	-12178	20	-12174	3	0.2	U			MA6	1.0	01Sc41
¹⁹⁶ Tl-C _{16,222}	-29188	126	-29519	13	-2.6	Ŭ			GS2	1.0	03Li.A *
¹⁹⁶ Tl- ¹³³ Cs.	109845	13	2/01/		2.0	2			MA8	1.0	03We.A *
¹⁹⁶ Pb- ²⁰⁸ Pb	-5228	22	-5232	15	-0.2	2			MA6	1.0	01Sc41
¹⁹⁶ Pb-C _{16 222}	-27200	104	-27226	15	-0.2	Ũ			GS1	1.0	00Ra23
16.333	-27232	30			0.2	Ř			GS2	1.0	03Li.A
¹⁹⁶ Bi-C _{16 222}	-19313	150	-19333	26	-0.1	0			GS1	1.0	00Ra23 *
10.555	-19325	30			-0.3	2			GS2	1.0	03Li.A
	-19361	54			0.5	2			MA8	1.0	03We.A *

A.H	Wapstra	et al./Nuclea	r Physics A	729	(2003) 129–336
-----	---------	---------------	-------------	-----	----------------

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	. Lab	F	Reference
$^{196}\text{Bi}(\alpha)^{192}\text{Tl}^{p}$		5260.6	5.				3			Lvn		91Va04
$^{196}Po(\alpha)^{192}Pb$		6662.2	8.	6657	3	-0.7	3			2		67Si09 Z
		6653.7	5.			0.6	3					67Tr06 Z
		6658.4	8.			-0.2	3					71Ho01 Z
		6656.7	5.			0.0	о			Lvn		85Va03 Z
		6656.7	5.			0.0	3			Lvn		93Wa04
		6653.1	18.			0.2	U			Ara		95Le04
		6657.1	10.			0.0	U			Jya		96Le09
196 At(α) 192 Bi		7202.3	7.	7200	50	-0.1	4					67Tr06
		7187.0	25.			0.2	U			Jya		95Le15
		7200.2	30.			-0.1	U			RIa		95Mo14
		7191.0	7.			0.1	0			Jya		96En01
106 102		7195.1	5.			0.0	4			Jya		00Sm06
$^{196}\text{At}^{m}(\alpha)^{192}\text{Bi}^{m}$		7023.6	15.				3			Jya		96En01 *
190 Rn(α) 192 Po		7583.1	35.	7617	9	0.9	0			RIa		95Mo14
		7648.4	30.			-1.1	U			RIa		97Pu01
1950. 1960.		7616.7	9.	5001.00	0.10	0.0	4			Jya		01Ke06
135 Pt(n, γ) 130 Pt		7921.96	0.20	7921.92	0.13	-0.2	-			ILn		81Ho.B Z
		7921.92	0.17			0.0	_	100	0.4 195 P	Bdn		03F1.A
106- 106-	ave.	7921.94	0.13			-0.1	1	100	94 ¹⁹⁵ Pt			average
$^{190}Ir(\beta^{-})^{190}Pt$		3150	60	3210	40	1.0	2					66Vo05
106x m (0) 106m		3250	50			-0.8	2					6/Mo10
190 Ir ^m (β^{-}) 190 Pt		3418	20				2		106 .			65B104
$^{190}Au(\beta^+)^{190}Pt$		1498	7	1507.4	3.0	1.3	1	18	17 ¹⁹⁰ Au	l		631k01
190 Au(ε) 190 Pt		1490	10			1.7	U		a. 106 ·			62Wa16
$^{190}Au(\beta^{-})^{190}Hg$		685	4	687	3	0.4	1	61	31 ¹⁹⁰ Au	l		62L103
* ¹⁹⁰ TI-C _{16.333}	M-A=-26	991(28) keV	for mixtu	tre gs+m at 39	04.2 keV							NDS981**
$*^{196}\Pi^{-155}Cs_{1.474}$	Q=110268((13) uu $M - A$	= -27103	(12) keV for 1	$^{90}Tl^m$ at	Eexc=3	394.2	keV				Ens98 **
* ¹⁹⁶ Bi-C _{16.333}	M-A=-17	850(100) ke	for mix	ture gs+n at 2	70(3) ke	V						Nubase **
$*^{190}Bi-C_{16.333}$	Q=120182((15) uu for ¹⁹	$^{\circ}\text{Bi}^{m} - ^{133}$	$Cs_{1.474}, M(^{196})$	$Bi^{(m)} = -1$	17868(1	4) ke'	√ at				03We.A **
* * 196 At ^m (α) ¹⁹² Bi ^m	Correlated	keV; error in with $E(\alpha)=7$	creased to 550 of ²⁰⁰	or 3+ and 10- Fr(α)	possible	contam	inatio	n				03We.A ** 96En01 **
				. ,								
¹⁹⁷ Hg-C _{16.417}		-32868	98	-32787	3	0.8	U			GS2	1.0	03Li.A *
197 Hg $-^{208}$ Pb $_{947}$		-10664	30	-10677	4	-0.4	U			MA6	1.0	01Sc41
$^{197}\text{Tl}-C_{16,417}$		-30450	30	-30425	18	0.8	R			GS2	1.0	03Li.A
197 Pb $-C_{16,417}$		-26520	110	-26569	6	-0.4	U			GS1	1.0	00Ra23
10.417		-26609	30			1.3	U			GS2	1.0	03Li.A
		-26543	30			-0.9	U			GS2	1.0	03Li.A *
$^{197}\text{Pb}^{m} - ^{133}\text{Cs}_{1.481}$		113799.6	6.0				2			MA8	1.0	03We.A
¹⁹⁷ Bi- ²⁰⁸ Pb _{.947}		982	22	975	9	-0.3	R			MA6	1.0	01Sc41
¹⁹⁷ Bi-C _{16,417}		-21466	243	-21136	9	1.4	U			GS1	1.0	00Ra23 *
		-21187	31			1.7	U			GS2	1.0	03Li.A
¹⁹⁷ Bi- ¹³³ Cs _{1.481}		118870	26	118890	9	0.8	R			MA8	1.0	03We.A *
¹⁹⁷ Po-C _{16.417}		-14434	145	-14340	50	0.6	0			GS1	1.0	00Ra23 *
		-14305	90			-0.4	R			GS2	1.0	03Li.A *
197 Au(α , ⁸ He) ¹⁹³ Au		-26919	9	-26920	9	-0.1	1	92	86 ¹⁹³ Au	l		89Ka04
$^{197}\text{Bi}^{m}(\alpha)^{193}\text{Tl}$		5890.8	10.	5898	5	0.7	0			Ora		72Ga27
		5889.7	10.			0.8	3			Ora		74Le02 Z
107 100		5899.6	5.			-0.4	3			Lvn		85Co06 Z
197 Po(α) 195 Pb		6420.7	10.	6412	4	-0.9	3					67Si09 Z
		6410.1	5.			0.3	3					67Tr06 Z
197p m () 103pr m		6409.4	9. 2	<i></i>	0.5	0.2	3					71Ho01 Z
$^{\prime\prime\prime} Po^{m}(\alpha)^{195} Pb^{m}$		6510.1	5.	6515.8	2.6	1.1	4					671r06 Z
		6511.4	9.			0.5	U					/1Ho01 Z
197 • (() 193 • :		6518.0	3.	7100	50	-0.7	4					82Bo04 Z
$\operatorname{At}(\alpha)^{133}\mathrm{Bi}$		7103.0	5.	7100	50	0.0	3			Ter		6/1r06 Z
		7104.5	5. 5			0.1	0			Jya		90EnU1
$197 \Lambda m(\alpha) 193 \mathbf{p};m$		/104.3 6816 0	3. 10	6916	5	0.0	5			Jya		9951107 86Cc12
At $(\alpha)^{-1}$ Bl		6846.2	10.	0840	3	0.0	5					005m07
		0040.2	э.			0.0	3			јуа		775IIIU/
Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
--	-----------	--------------------------------	--------------------------	-------------------------	----------	----------------	--------	-----	----------------------	-------------	-----	------------------
197 Rn(α) 193 Po		7411.8	20.	7410	50	0.0	U			RIa		95Mo14
197 Rn ^m (α) 193 Po ^m		7410.8 7523.1	7. 30.	7509	7	-0.5	4 U			Jya RIa		96En02 95Mo14
107 107		7508.7	7.				5			Jya		96En02
196 Pt(n, γ) 197 Pt		5846.4	0.4	5846.29	0.27	-0.3	-					78Ya07 Z
		5846.0	0.9			0.3	-			ILn DN:n		81Ho.B Z
		5846.0	0.5			-0.0	_			Bdn		03Ei A
	ave.	5846.36	0.27			-0.3	1	99	93 ¹⁹⁶ Pt	Dun		average
197 Au(γ ,n) 196 Au		-8080	5	-8072.4	2.9	1.5	_			McM		79Ba06
		-8072	7			-0.1	_					79Be.A
	ave.	-8077	4			1.2	1	52	52 ¹⁹⁶ Au			average
196 Hg(n, γ) 197 Hg		6785.3	1.5	6785.6	1.5	0.2	1	97	84 ¹⁹⁷ Hg	BNn		78Zg.A Z
197 Pt(β^{-}) ¹⁹⁷ Au		719.0	0.6	718.7	0.6	-0.6	1	97	94 ¹⁹⁷ Pt			71Pr03
¹⁹⁷ Pb ^m (IT) ¹⁹⁷ Pb		319.31	0.11			• •	3					Ens01
$*^{197}$ Hg $-C_{16.417}$	M-A=	3046/(28) key	/ IOF m1X / for 197 D	ture gs+m at 2	298.93 K	ev						NDS950**
* PD-C _{16.417} * ¹⁹⁷ Bi C	M = A = -	24403(28) Kev 19650(90) kev	for mix	ture $g \in m$ at f	19.51 K	teV						Elisui **
* $BI = C_{16,417}$ * $^{197}Bi = ^{133}Cs$	0-11888	(19030(90) Ke)	-19690(1	1) keV correc	ted -16(72) keV	for					03We A **
* 51 C51.481	possi	ble contamina	tion from	1^{197}Bi^{m}	100	22) KC (101					03We.A **
* ¹⁹⁷ Po-C _{16,417}	M-A=-	13330(110) ke	V for mi	xture gs+m at	230#80	keV						Nubase **
$*^{197}$ Po-C _{16.417}	M-A=-	13210(32) keV	/ for mix	ture gs+m at 2	230#801	keV						Nubase **
¹⁹⁸ Hg-C ₁₆₅		-33231.56	0.43	-33231.0	0.4	1.4	1	71	71 ¹⁹⁸ Hg	ST2	1.0	02Bf02
¹⁹⁸ Pb- ²⁰⁸ Pb _{.952}		-5748	23	-5739	16	0.4	2		-	MA6	1.0	01Sc41
¹⁹⁸ Pb-C _{16.5}		-27990	104	-27966	16	0.2	U			GS1	1.0	00Ra23
100		-27951	30			-0.5	R			GS2	1.0	03Li.A
¹⁹⁸ Bi-C _{16.5}		-21063	162	-20790	30	1.7	0			GS1	1.0	00Ra23 *
198p:n C		-20794	30				2			GS2	1.0	03L1.A
¹⁹⁸ Po ²⁰⁸ Pb		-20222	24	5616	10	0.0	1	61	61 ¹⁹⁸ Po	MA6	1.0	03LI.A 01Sc41
$^{198}Po-C_{10}$		-16600	104	-16611	19	-0.1	Ū	01	01 10	GS1	1.0	00Ra23
¹⁹⁸ Hg ³⁵ Cl- ¹⁹⁶ Hg ³⁷ Cl		3885.91	1.66	3886	3	0.1	1	57	57 ¹⁹⁶ Hg	H33	2.5	80Ko25
198 Po(α) 194 Pb		6312.8	5.	6309.3	2.1	-0.7	_		. 0			67Si09 Z
		6305.7	5.			0.7	-					67Tr06 Z
		6301.2	8.			1.0	-					71Ho01 Z
		6311.1	3.			-0.6	-					82Bo04 Z
		6307.7	5. 2 1			0.3	1	100	60 194 Dh	Lvn		93 Wa04
$^{198}\Delta t(\alpha)^{194}Bi$	ave.	6887.5	2.1	6893.0	22	0.0	3	100	00 PD			67Tr06 7
$M(\alpha)$ Di		6904.9	7.	0075.0	2.2	-1.7	3			Ora		75Ba.B Z
		6893.3	3.5			-0.1	3			Lvn		92Hu04 *
		6892.5	4.			0.2	3			Jya		96En01
$^{198}\mathrm{At}^{m}(\alpha)^{194}\mathrm{Bi}^{n}$		6990.0	5.	6995.4	2.4	1.1	4					67Tr06 Z
		6997.5	10.			-0.2	4			_		80Ew03 Z
		6997.6	4.			-0.5	4			Lvn		92Hu04
$198 \mathbf{D}_{m}(\alpha)^{194} \mathbf{D}_{n}$		6996.6	4.	7240	4	-0.3	4			Jya		96En01
$\operatorname{KII}(\alpha) \to \operatorname{Po}$		7353.8	10.	7549	4	_0.9	5			I vn		04Ca52 95Bi17
		7344.7	6.			0.8	5			Jva		96En02
198Pt(14C,16O)196Os		6130	40				3			BNL		83Bo29
198 Pt(t, α) 197 Ir		10885	20				3			LAl		83Ci01
198Pt(p,d)197Pt		-5332	3				2			Ors		78Be09 *
197 Au(n, γ) 198 Au		6512.35	0.11	6512.33	0.09	-0.2	-			ILn		79Br26 Z
		6512.32	0.16			0.1	-		o = 107 ·	Bdn		03Fi.A
198 . (0-)198**	ave.	6512.34	0.09	1070 0	0.5	-0.1	1	100	97 ¹⁹⁷ Au			average
$\operatorname{Au}(\beta)$) Hg		13/2.3	0.7	13/2.3	0.5	0.1	-					65Be08
	91/6	1372.0	1.2			-0.4	1	74	70 ¹⁹⁸ Au			average
	ave.	1312.4	0.0			0.1	1	/+	, 0 Au			average

A.H.	Wapstra e	et al./	Nuclear	Physics A	729	(2003)	129–336
------	-----------	---------	---------	-----------	-----	--------	---------

Item	Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
198 Tl(β^+) 198 Hg 198 Bi ⁿ (IT) 198 Bi ^m	3460 248.5	80 0.5				2 3			Lvn		61Gu02 92Hu04
* ¹⁹⁸ Bi-C ₁₆₅	M-A=-19350(100) keV for	mixture gs+m	n+n at 28	30(40) ai	nd 53	0(40)	keV			Nubase **
$*^{198}$ At(α) ¹⁹⁴ Bi	$E(\alpha)=6755(4), 653$	9(10), 630	50(10) to grou	ind-state	, 218, 39	96 lev	els				92Hu04 **
* ¹⁹⁸ Pt(p,d) ¹⁹⁷ Pt	$Q - Q(^{196}Pt(p,d)) = 3$	65(3,Be)									AHW **
¹⁹⁹ Hg_C ³⁵ Cl	124023 43	0.53	124016 5	0.4	_5 2	в			H34	2.5	80Ko25
$\operatorname{Ing} \operatorname{C}_2 \operatorname{Cl}_5$	124023.43	0.33	124010.5	0.4	-1.2	1	49	43 ¹⁹⁹ Ho	H48	1.5	03Ba49
¹⁹⁹ Hg- ¹⁸³ W O	23144.4	0.9	23142.4	0.9	-1.5	1	43	39 ¹⁸³ W	H48	1.5	03Ba49
199Tl-C16 582	-30123	30				2			GS2	1.0	03Li.A
¹⁹⁹ Pb-C _{16,583}	-27028	137	-27083	28	-0.4	U			GS2	1.0	03Li.A *
¹⁹⁹ Bi-C _{16,583}	-22328	31	-22328	13	0.0	R			GS2	1.0	03Li.A
	-22263	30			-2.2	R			GS2	1.0	03Li.A *
¹⁹⁹ Po-C _{16.583}	-16250	145	-16334	25	-0.6	U			GS1	1.0	00Ra23 *
	-16327	38			-0.2	R			GS2	1.0	03Li.A
100	-16340	38			0.2	R			GS2	1.0	03Li.A *
$^{199}B1^{m}(\alpha)^{195}T1$	5598.7	6.				4					66Ma51
$^{199}Po(\alpha)^{195}Pb$	60/4.1	2.	(102.2	1.0	1.5	3					68Go.B Z
$PO^{(\alpha)}(\alpha) PD^{(\alpha)}$	6190.7	5. 5	0185.2	1.9	-1.5	4					675109 Z
	6182.2	э. з			1.1	4					68Go B Z
	6183.5	3.			-0.1	4					82Bo04 Z
$^{199}At(\alpha)^{195}Bi$	6775.1	5	6780	50	0.1	3					67Tr06 Z
	6781.3	3.	0700	20	0.0	3			Ora		75Ba.B Z
199 Rn(α) 195 Po	7133.7	15.	7130	50	0.0	4					80Di07
(7132.7	10.			0.0	4					82Hi14
	7138.8	10.			-0.1	4					84Ca32
	7112.2	15.			0.4	4			Jya		96Le09
199 Rn ^m (α) 195 Po ^m	7205.1	15.	7205	6	0.0	4					80Di07
	7205.1	10.			0.0	4					82Hi14
	7204.1	10.			0.1	4			•		84Ca32
1995 (7205.1	15.			0.0	4			Jya		96Le09
199 Ha(α t) 197 Ha	/812.3	40.	6667	2	1 1	4	16	16 197110	0.00		991a20 *
¹⁹⁸ Pt(¹⁸ O ¹⁷ E) ¹⁹⁹ Ir	-0038	0 /1	-0007	3	-1.1	3	10	10 Hg	OIS		02De21
$^{198}Pt(n v)^{199}Pt$	-8240	0.5				3			BNn		83Ca04 7
198 Au(n γ) ¹⁹⁹ Au	7584 27	0.15	7584 25	0.15	-0.1	1	98	72 ⁻¹⁹⁹ Au	ILn		79Br26 Z
198 Hg(n, γ) 199 Hg	6665.2	0.5	6663.9	0.3	-2.6	1	48	28 ¹⁹⁹ Hg	CRn		75Lo03
199 Au(β^{-}) 199 Hg	453.0	1.0	452.0	0.6	-1.0	1	33	28 ¹⁹⁹ Au			68Be06
$^{199}\text{Tl}(\beta^+)^{199}\text{Hg}$	1420	150	1488	28	0.5	U					75Ma05
199 Pb(β^+) 199 Tl	2870	110	2830	40	-0.4	U					70Do.A
199Bim(IT)199Bi	667	5	667	4	0.0	3					80Br23
	667	5			0.0	3					85St02
* ¹⁹⁹ Pb-C _{16.583}	M-A=-24961(28)	keV for n	nixture gs+m	at 429.5	(2.7) ke	V					Nubase **
* ¹⁹⁹ Bi-C _{16.583}	M-A=-20071(28)	keV for 1	⁹⁹ Bi ^m at Eexc	=667(4)	keV						Nubase **
* ¹⁷⁷ P0-C _{16.583}	M-A=-14980(100) keV for	mixture gs+n	1 at 312.0	U(2.8) ke	eV					Nubase **
* ¹⁷⁷ PO-C _{16.583}	M-A=-14909(35)	KeV for 1	"Po" at Eexc	=312.0(2.8) keV	, ,					Nubase **
*···Fr(α)····At	Reassigned to $E(\alpha)$	to isome	r								AHW **
²⁰⁰ Hg-C ¹³ C ³⁵ Cl _e	120707.97	1.22	120707.8	0.4	-0.1	U			H34	2.5	80Ko25
²⁰⁰ Hg- ²⁰⁸ Pb 962	-9205	28	-9213.3	1.3	-0.3	U			MA6	1.0	01Sc41
²⁰⁰ Pb-C _{16.667}	-28179	30	-28173	12	0.2	R			GS2	1.0	03Li.A
²⁰⁰ Bi-C _{16.667}	-21888	57	-21868	26	0.3	R			GS2	1.0	03Li.A *
²⁰⁰ Po-C _{16.667}	-18170	104	-18201	15	-0.3	U			GS1	1.0	00Ra23
	-18204	30			0.1	R			GS2	1.0	03Li.A

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux I	Lab	F	Reference
²⁰⁰ Hg ³⁵ Cl- ¹⁹⁸ Hg ³⁷ Cl		4508.80	0.48	4507.1	0.4	-1.4	1	11	7 ²⁰⁰ Hg H	H33	2.5	80Ko25
200 Po(α) 196 Pb		5979.8	5.	5981.3	2.0	0.3	3		U			67Si09 Z
		5980.0	3.			0.5	3					67Tr06 Z
		5983.4	3.			-0.6	3					70Ra14 Z
200 At(α) 196 Bi		6594.9	5.	6596.4	1.4	0.3	3					67Tr06 Z
		6596.9	2.			-0.3	3		(Ora		75Ba.B Z
200 107		6596.1	2.			0.1	3		I	Lvn		92Hu04
$^{200}\mathrm{At}^{m}(\alpha)^{196}\mathrm{Bi}$		6708.3	5.	6709.0	2.6	0.2	3		(Ora		75Ba.B Z
200		6709.5	3.			-0.1	3		I	Lvn		92Hu04
$^{200}\text{At}^{m}(\alpha)^{190}\text{B1}^{m}$		6542.8	5.	6542.4	1.4	-0.1	4			~		67Tr06 Z
		6542.9	2.			-0.2	4		(Jra		75Ba.B Z
200		6542.1	2.	6420-1	2.2	0.2	4		1	Lvn		92Hu04
$200 \operatorname{At}^{n}(\alpha)^{150} \operatorname{Bi}^{n}$		6439.5	5. 5	6439.1	2.3	-0.1	4			2		0/1r00 *
		6438.5	5. 5			0.1	4			Jra		/5Ba.B *
		6420.2	3. 2			1.1	4		1			6/Va09 *
$200 \mathbf{p}_{n}(\alpha)^{196} \mathbf{p}_{0}$		7042 5	5. 25			0.0	4		I			92Hu04 *
$\operatorname{KII}(\alpha)$ PO		7045.5	12.5	7042.5	26	0.1	4		1			95 Wa04
		7042.1	12.	7043.5	2.0	0.1	U		1	nia Ivo		95Le04
200 Er(or) 196 A t		7652.4	20	7620	50	0.4	U		J	nya DIo		90Le09
$FI(\alpha)$ At		7633.4	30. 0	7620	50	-0.7	5		1	Kia Ivo		95101014 06Ep01
$200 \operatorname{Er}^{m}(\alpha)^{196} \operatorname{Atm}$		7020.7	9.				1			iya Ivo		90En01
$198 \mathbf{p}_t(t, \mathbf{p})^{200} \mathbf{p}_t$		1256	20				2		J	iya		90EII01 *
$199 \mathbf{U}_{\alpha}(\mathbf{p}, \mathbf{v})^{200} \mathbf{U}_{\alpha}$		4330	20	8028 40	0.12	22	D		1	DNn		678020 7
$ng(n,\gamma)$ ng		8029.1	0.5	8028.40	0.12	-2.3	B		1	[¬] Pn		75L 003 Z
		8029.0	0.5			-2.4	Б		1	In		70Br25 Z
		8028.31	0.13			-0.0	_		1	Rdn		03Ei A
	ave	8028.37	0.17			_0.2	1	97	82 200 Hg	Jun		average
$^{200}Au(B^{-})^{200}Hg$	ave.	2220	100	2240	50	0.2	2	,,	02 Hg			59Ro53
$\operatorname{Hu}(p)$ Hg		2220	100	2240	50	0.2	2					60Gi01
		2260	70			-0.4	2					72He36
$^{200}Au^{m}(\beta^{-})^{200}H\sigma$		3202	50			0.1	2					72Cu07
$^{200}\text{Tl}(\beta^+)^{200}\text{Hg}$		2450	10	2456	6	0.6	2					57He43
11(p) 11g		2459	7	2.00	0	-0.4	2					62Va10
* ²⁰⁰ Bi-C _{16,667}	M-A=-20	0338(28) keV	/ for mixt	ure gs+m at 1	00#70 k	eV						Nubase **
$*^{200} At^{m}(\alpha)^{196} Bi^{n}$	$E(\alpha)=653$	6.7(5.Z) from	$h^{200}At^{n}$ 2	30.9 above 20	$^{0}At^{m}$							92Hu04 **
$*^{200} At^{m}(\alpha)^{196} Bi^{n}$	$E(\alpha)=653$	5.8(5,Z) fron	n 200 Atn 22	30.9 above 20	$^{0}At^{m}$							92Hu04 **
$*^{200} At^{m}(\alpha)^{196} Bi^{n}$	$E(\alpha)=630$	1(5); 6535(5)) from ²⁰⁰	At ⁿ 230.9 abc	ove 200 A	t ^m						92Hu04 **
$*^{200} At^{m}(\alpha)^{196} Bi^{n}$	$E(\alpha)=630$	6(5): 6538(3)) from ²⁰⁰	At ⁿ 230.9 abo	ove 200 A	t ^m						92Hu04 **
$*^{200} Fr^{m}(\alpha)^{196} At^{m}$	Correlated	with ¹⁹⁶ At ^m	$E(\alpha)=688$	80(15): 2 case	es only							96En01 **
			(,									
²⁰¹ Hg- ¹⁸⁵ Re O		22440	5	22432.7	1.4	-1.0	U		I	H48	1.5	03Ba49
²⁰¹ Hg-C ₂ ³⁵ Cl ₄ ³⁷ Cl		128995.43	0.61	128988.9	0.6	-4.3	В		I	H34	2.5	80Ko25
²⁰¹ Pb-C _{16.75}		-27418	198	-27115	24	1.5	U		(GS2	1.0	03Li.A *
²⁰¹ Bi-C _{16.75}		-22935	30	-22991	16	-1.9	R		(GS2	1.0	03Li.A
		-22995	30			0.1	R		(GS2	1.0	03Li.A *
²⁰¹ Po-C _{16.75}		-17760	190	-17740	6	0.1	U		(GS1	1.0	00Ra23 *
		-17649	30			-3.0	в		(GS2	1.0	03Li.A
$^{201}Po^m - C_{16.75}$		-17305	30	-17285	6	0.7	U		(GS2	1.0	03Li.A
²⁰¹ At-C _{16.75}		-11573	31	-11583	9	-0.3	U		(GS2	1.0	03Li.A
201 Hg 35 Cl-199 Hg 37 Cl		4972.65	0.37	4972.4	0.6	-0.2	1	38	34 ²⁰¹ Hg I	H33	2.5	80Ko25
-		4971.8	1.0			0.4	1	14	13 ²⁰¹ Hg I	H48	1.5	03Ba49
$^{201}\text{Bi}(\alpha)^{197}\text{Tl}$		4500.3	6.				4		-			66Ma51 *
201 Po(α) 197 Pb		5793.9	5.	5798.9	1.7	1.0	4					67Tr06 Z
		5799.4	2.			-0.2	4					68Go.B Z
		5800.4	4.			-0.4	4					70Ra14 Z
201 Po ^m $(\alpha)^{197}$ Pb ^m		5898.9	5.	5903.7	1.7	0.9	3					67Tr06 Z
		5904.4	2.			-0.4	3					68Go.B Z
		5903.8	4.			0.0	3					70Ra14 Z
201 At(α) ¹⁹⁷ Bi		6470.7	3.	6473.2	1.6	0.8	4					67Tr06 Z
		6476.2	5.			-0.6	4					74Ho27 Z
		6474.0	2.			-0.3	4		(Ora		75Ba.B Z

Item	Input	value	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
201 Rn(α) 197 Po	6860.5	5 2.5	6860	50	0.0	4			Lvn		93Wa04
	6863.8	37.			-0.1	4			Ara		95Le04
201 Rn ^m (α) ¹⁹⁷ Po ^m	6906.8	3 5.	6909.8	2.2	0.6	5					67Va17 Z
	6909.9	2.5			0.0	5			Lvn		93Wa04
201 107 .	6915.9	€ 7.			-0.8	5			Ara		95Le04
201 Fr(α) 197 At	7538.0) 15.	7520	50	-0.4	4					80Ew03
$201 p_{t}(\theta =)201 A_{t}$	7510.8	5 7.			0.1	4			Jya		96En01
$201 \text{ Pt}(\beta) = 201 \text{ Tt}$	2660	50	1024	27	0.6	2					63G006 70D=00
201 Pb C	M A= 25225(28	40) koV for	1924	21 2 at 620	0.0 14 koV	ĸ					79D009
* FD-C _{16.75}	M = A = -23223(28) M = A = -20573(28)) keV for	201 B^m at Eas	1 at 029.	14 KCV						NDS042**
$*^{201}PO-C$	M = A = -16330(10)	0 keV for	mixture as+	m at 474	1 1(2 5)	ke\	,				Nubase **
$*^{201}\text{Bi}(\alpha)^{197}\text{Tl}$	$E(\alpha)=5240(6)$ from	$m^{201}Bi^m$	at 846.34	in ut 12	(2.3)	RC .					NDS942**
²⁰² Hg-C ¹³ C ³⁵ Cl ₄ ³⁷ Cl	125976.0)1 1.32	125974.9	0.6	-0.4	1	4	4 ²⁰² Hg	H34	2.5	80Ko25
202 Pb-C _{16,833}	-27823	30	-27841	9	-0.6	_		0	GS2	1.0	03Li.A *
10.855	ave27839	17			-0.1	1	26	26 ²⁰² Pb			average
²⁰² Bi-C _{16,833}	-22282	30	-22258	22	0.8	2			GS2	1.0	03Li.A
202 Po-C _{16.833}	-19270	104	-19242	16	0.3	U			GS1	1.0	00Ra23
	-19243	30			0.0	R			GS2	1.0	03Li.A
²⁰² Hg ³⁵ Cl ₂ - ¹⁹⁸ Hg ³⁷ Cl ₂	9774.8	37 1.06	9774.2	0.7	-0.3	1	6	5 ²⁰² Hg	H33	2.5	80Ko25
²⁰² Hg ³⁵ Cl ⁻²⁰⁰ Hg ³⁷ Cl	5266.7	0.43	5267.1	0.6	0.3	1	29	25 ²⁰² Hg	H33	2.5	80Ko25
202 Po(α) 198 Pb	5700.9	2.	5701.0	1.7	0.1	3					68Go.B Z
202 • ((-) 198 p.	5701.0	5 3.	6252 7	1.4	-0.2	3					70Ra14 Z
202 At(α) ¹⁵⁰ Bi	6355.0	5 3. 7 2	6353.7	1.4	-0.7	3					63H018 Z
	6353	, 5. 5 5			0.7	3					74Ho27 Z
	6353 9	$\frac{1}{2}$			0.1	3			Ora		75Ba B Z
	6354	5			-0.1	3			Lvn		92Hu04 *
$^{202}\mathrm{At}^{m}(\alpha)^{198}\mathrm{Bi}^{m}$	6259.9	2.	6258.9	1.2	-0.5	4					63Ho18 Z
	6256.8	3 3.			0.7	4					67Tr06 Z
	6257.2	2 5.			0.3	4					74Ho27 Z
	6259.0) 2.			0.0	4			Ora		75Ba.B *
202 108	6260.0) 5.			-0.2	4			Lvn		92Hu04 *
202 Rn(α) ¹⁹⁸ Po	6771.0) 3.	6773.5	1.9	0.8	2					67Va17 Z
	6775	3 2.5			-0.7	2			Lvn		93Wa04
$202 E_{r}(\alpha)^{198} A_{t}$	6773.4	+ /. 7 15	7280	5	0.0	2			Ara		95Le04
$FI(\alpha)$ At	7382 4	5 11	/389	5	-0.0	4			I vn		00Ew05 *
	7389 (5 6			-0.1	4			Iva		96En01 *
202 Fr ^m (α) ¹⁹⁸ At ^m	7382.5	5 11.	7387	5	0.4	5			Lvn		92Hu04 *
	7388.0	5 6.			-0.2	5			Jya		96En01
202 Ra(α) 198 Rn	8019.1	60.				6			Jya		96Le09
²⁰² Hg(d, ³ He) ²⁰¹ Au- ²⁰⁶ Pb() ²⁰⁵ Tl	-979.9	3.1	-980	3	0.0	1	100	100 ²⁰¹ Au			94Gr07
201 Hg(n, γ) 202 Hg	7754.9	0.5	7753.92	0.21	-2.0	В			BNn		75Br02 Z
	7756.4	4 0.5			-5.0	В		201	CRn		75Lo03 Z
202	7753.9	0.22			-0.1	1	95	52 ²⁰¹ Hg	Bdn		03Fi.A
202 Au(β^{-}) 202 Hg	3500	300	2950	170	-1.8	2					67Wa23
202 DI (>>202 TI	2700	200	50	1.7	1.2	2	~ 4	A C 202 TE			72Bu05
$202 PD(\mathcal{E})^{202} II$ 202 A m (TT) 202 A m	201 / 201 /	20	50	15	-0.3	1	54	46 202 11	True		54Hub1
202 Pb C	M A = 22747(29	koV for	202 pb^m of Eq.	-2160	92 ko	, 3			LVII		92H004
$*^{10-C_{16,833}}$ $*^{202} At(\alpha)^{198} Bi$	$F(\alpha) = 6228(5) = 60$	70(10) 50	29(10) to ore	und_stat	.03 KCN 164	้ 303	level	s			92Hp04 **
$*^{202} \operatorname{At}^{m}(\alpha)^{198} \operatorname{Bi}^{m}$	Assignment to 202	At^m by ref	Recalibra	ted Z	, 104,	505	ie vel				92Hu04 **
$*^{202} At^{m}(\alpha)^{198} Bi^{m}$	$E(\alpha) = 6135(5)$ and	d 6277(5)	from $Atn(\alpha)$	Bin. ²⁰²	At ⁿ (IT)	Atm	=391	7(0.2)			92Hu04 **
*	and ¹⁹⁸ Bi ⁿ (IT	Bim=248	.5(0.5)	, 1							92Hu04 **
$*^{202}$ Fr(α) ¹⁹⁸ At	$E(\alpha)=7251(10)$ has	is a double	et structure								92Hu04 **
$*^{202}$ Fr(α) ¹⁹⁸ At	$E(\alpha) = 7237(8)$, is	a doublet									92Hu04 **
$*^{202}$ Fr(α) ¹⁹⁸ At	202 Fr E(α)'s in co	rrelation w	vith At daugh	ters							96En01 **
$*^{202}$ Fr ^m (α) ¹⁹⁸ At ^m	$E(\alpha)=7237(8)$, is	a doublet	-								92Hu04 **

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
²⁰³ Pb_C		-26594	30	-26609	7	_0.5	П			GS2	1.0	03I i A
$^{203}Po-C$		-18581	30	-18580	28	0.0	2			GS2	1.0	
$^{203}\Delta t = ^{208}Pb$		9690	25	9730	13	1.6	2			MA6	1.0	01Sc41
10.976	ave	9730	13	2150	15	0.0	1	100	100 ²⁰³ At	1017 10	1.0	average
²⁰³ At-C	ave.	-13042	30	-13058	13	_0.5	R	100	100 71	G\$2	1.0	
203 Fr $^{-133}$ Cs		145205	17	15050	15	0.5	2			MA8	1.0	03We A
203 Tl 35 Cl $^{-201}$ Hg 37 Cl		4995 23	1 49	4992.0	13	_0.9	1	12	11 ²⁰³ TI	H36	2.5	85De40
203 Po(α) ¹⁹⁹ Pb		5496	5	4992.0	1.5	-0.9	3	12	11 11	1150	2.5	68Go B *
$^{203} \Lambda t(\alpha)^{199} B_i$		6210.3	1	6210.1	0.8	0.2	2					63Ho18 7
All(u) bi		6208.7	3	0210.1	0.0	0.2	2					67Tr06 Z
		6209.4	2			0.5	2					68Go B Z
		6211.7	3			-0.5	2			Ora		75Ba B
203 Rn(α) ¹⁹⁹ Po		6628.6	5	6629.8	23	0.3	4			oru		67Va17 Z
10000		6630.2	2.5	002710	2.0	-0.1	4			Lvn		93Wa04
		6630	10			0.0	Ū			Jva		95Uu01
203 Rn ^m (α) ¹⁹⁹ Po ^m		6679.5	3.	6680.3	1.6	0.3	5			-)		67Va17 Z
(0)		6680.9	2.5			-0.2	5			Lvn		93Wa04
		6683.9	7.			-0.5	5			Ara		95Le04
		6679.8	3.			0.2	5			Jya		96Le09
203 Fr(α) ¹⁹⁹ At		7275.6	5.	7260	50	-4.0	U			-		67Va20 Z
		7281.7	10.			-2.6	U					80Ew03 Z
		7263.4	10.			-0.8	U			Jya		94Le05
203 Ra(α) 199 Rn		7729.6	20.				5			Jya		96Le09
203 Ra ^m (α) ¹⁹⁹ Rn ^m		7768.4	20.				5			Jya		96Le09
²⁰³ Tl(p,t) ²⁰¹ Tl		-6240	15				2			Yal		71Ki01
202 Hg(d,p) 203 Hg $-^{204}$ Hg() 205 Hg		325	5	326	4	0.2	1	53	47 ²⁰⁵ Hg	Pit		72Mo12
²⁰³ Tl(p,d) ²⁰² Tl		-5630	20	-5625	15	0.3	1	54	54 ²⁰² Tl	Yal		71Ki01
203 Au(β^{-}) 203 Hg		2040	60	2126	3	1.4	U					94We02
203 Hg(β^{-}) 203 Tl		489.2	2.	492.1	1.2	1.4	_					54Th17
		493.2	2.			-0.6	_					55Ma40
		493.2	3.			-0.4	_					58Ni28
	ave.	491.6	1.3			0.4	1	92	84 ²⁰³ Hg			average
203 Pb(ϵ) 203 Tl		980	20	975	6	-0.3	1	10	10 ²⁰³ Pb			65Le07
$^{203}\text{Bi}(\beta^+)^{203}\text{Pb}$		3260	50	3247	22	-0.3	1	20	18 ²⁰³ Bi			58No30
203 At(β^+) 203 Po		5060	200	5144	29	0.4	U					87Se04
$*^{203}$ Po(α) ¹⁹⁹ Pb	$E(\alpha)=53$	83.8(3,Z) to	4(4) lev	el								NDS **
²⁰⁴ Hg-C ¹³ C ³⁵ Cl ₃ ³⁷ Cl ₂		131776.05	1.25	131775.9	0.4	-0.1	1	2	1 ²⁰⁴ Hg	H34	2.5	80Ko25
²⁰⁴ Hg-C ₁₇		-26505.90	0.39	-26506.1	0.4	-0.4	1	87	87 ²⁰⁴ Hg	ST2	1.0	02Bf02
$^{204}\text{Pb} - ^{208}\text{Pb}_{981}$		-4047	21	-4052.09	0.17	-0.2	U			MA6	1.0	01Sc41
²⁰⁴ Po-C ₁₇		-19689	30	-19682	12	0.2	R			GS2	1.0	03Li.A
$^{204}At - C_{17}$		-12748	30	-12749	26	0.0	_			GS2	1.0	03Li.A
.,	ave.	-12752	27			0.1	1	94	94 ²⁰⁴ At			average
204Hg 35Cl2-200Hg 37Cl2		11066.85	0.55	11068.1	0.5	0.9	1	13	7 ²⁰⁰ Hg	H33	2.5	80Ko25
²⁰⁴ Hg ³⁵ Cl- ²⁰² Hg ³⁷ Cl		5800.67	0.53	5801.0	0.7	0.3	1	26	21 ²⁰² Hg	H33	2.5	80Ko25
204 Pb(α , ⁸ He) ²⁰⁰ Pb		-28043	13	-28040	13	0.3	2		-	INS		90Ka10
204 Po(α) 200 Pb		5484.6	1.5	5484.8	1.4	0.2	3					69Go23 *
		5486.3	3.			-0.5	3					70Ra14 Z
204 At(α) 200 Bi		6069.9	3.	6069.8	1.5	0.0	2					63Ho18 Z
		6066.2	3.			1.2	2					67Tr06 Z
		6071.3	3.			-0.5	2			Ora		75Ba.B
		6072.0	3.			-0.7	2					81Va27 Z
204 Rn(α) 200 Po		6544.3	3.	6545.5	1.9	0.4	4					67Va17 Z
		6547.5	2.5			-0.8	4			Lvn		93Wa04
		6537.4	7.			1.1	4			Ara		95Le04
204 Fr(α) 200 At		7170.4	5.	7171.3	2.5	0.2	4					67Va20 Z

Item		Input va	llue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
204 Fr(α) 200 At		7169.4	5.	7171.3	2.5	0.4	4					74Ho27 Z
		7170.6	5.			0.1	4			Lvn		92Hu04 *
		7179.0	6.			-1.3	4			Jya		94Le05
		7167.8	7.			0.5	4			Ara		95Le04
204 Fr ^m (α) 200 At		7218.8	8.	7221	4	0.3	U			Lvn		92Hu04
204 Fr ^m (α) ²⁰⁰ At ^m		7108.2	5.	7108.1	2.1	0.0	4					74Ho27 Z
		7105.5	3.			0.9	4			Bka		82Bo04 Z
		7108.4	5.			-0.1	4			Lvn		92Hu04 *
		7115.6	7.			-1.1	4			Jya		94Le05 *
204p (7114.7	7.	7/2/	0	-0.9	4			Ara		95Le04
20° Ra(α) -20° Rn		7628.1	12.	/636	8	-0.2	5			Ara		95Le04
		7634.0	23. 10			-0.1	5			Jya Iya		95Le15
204 Pb(p t) 202 Pb		6835	10.	6837	8	0.2	1	66	66 202 DI	Jya Vol		71K;01
$204 \mu_{\alpha} (d^{3} \mu_{\alpha})^{203} \Lambda_{\mu} = 206 \text{ pb}()^{205} \text{ T1}$		1582.0	2.0	1582.0	2.0	-0.2	1	100	100 203 A	, 141		04Gr07
$^{204}Hg(d, he)$ Au - Fb() II		-1382.0	5.0	-1382.0	17	1.4	1	12	11 203 H	u m A1d		70Ap14
$^{203}T1(p_{20})^{204}T1$		-12+2	03	6656 10	0.20	0.3	1	0/	76 ²⁰³ T	g Alu MMn		74Co21 7
11(11,7) 11		6654.88	0.3	0050.10	0.29	87	B	94	70 1	Bdn		03Fi A
204 Pb(n d) 203 Pb		-6165	10	-6170	6	-0.5	-			Yal		71Ki01
204 Pb(d t) ²⁰³ Pb		-2160	20	-2137	6	1.1	_			Ald		67Bi01
204 Pb(n d) 203 Pb	ave	-6171	9	-6170	6	0.1	1	51	51 ²⁰³ Pl)		average
204 Au(β^{-}) ²⁰⁴ Hg		4500	300	3940#	200#	-1.9	F	01	01 1			67Wa23 *
$^{204}\text{Tl}(B^{-})^{204}\text{Pb}$		764.24	0.31	763.76	0.18	-1.5	_					67Pa08
(,-)		763.47	0.22			1.3	_					68Wo02
	ave.	763.73	0.18			0.2	1	97	78 ²⁰⁴ T			average
204 At(β^+) 204 Po		6220	160	6458	26	1.5	U					86Ve.B
204 Fr ⁿ (IT) ²⁰⁴ Fr ^m		276.1	0.5				5					Nubase
$*^{204}$ Po(α) ²⁰⁰ Pb	Printing	error in ref .:	²⁰⁴ Po r	not ²⁰⁶ Po. ,	Z correc	ted						AHW **
$*^{204}$ Fr(α) ²⁰⁰ At	$E(\alpha)=70$)31(5), 6916	(8) to gr	ound-state, 1	113 leve	1						92Hu04 **
$*^{204}$ Fr ^{<i>m</i>} (α) ²⁰⁰ At ^{<i>m</i>}	$E(\alpha)=69$	969(5); and 7	013(5)	from ²⁰⁴ Fr ⁿ 2	276.1 ab	ove 204	Fr ^m	to 200	⁰ At ⁿ			95Bi.A **
*	230.	9 above ²⁰⁰ A	At ^m									92Hu04 **
$*^{204}$ Fr ^m (α) ²⁰⁰ At ^m	$E(\alpha)=70$	020(7) from	204 Fr ⁿ 2	76.1 above F	Frm to ²⁰	0 At ⁿ 23	30.9	abov	e ²⁰⁰ At ^m			95Bi.A **
$*^{204}$ Au(β^{-}) ²⁰⁴ Hg	F: report	ted 4 s activi	ty does	not exist								NDS87a**
²⁰⁵ Tl- ¹³³ Cs _{1,541}		120129	11	120126.1	1.4	-0.3	U			MA8	1.0	03We.A
$^{205}Bi-C_{17.082}$		-22559	30	-22611	8	-1.7	U			GS2	1.0	03Li.A
²⁰⁵ Po-C _{17.083}		-18773	30	-18797	21	-0.8	2			GS2	1.0	03Li.A
205 Fr $-^{133}$ Cs $_{1.541}$		144293.8	9.7	144293	8	-0.1	2			MA8	1.0	03We.A
²⁰⁵ Tl ³⁵ Cl- ²⁰³ Tl ³⁷ Cl		5031.43	1.07	5033.4	0.6	0.7	_			H36	2.5	85De40
		5032.88	1.01			0.4	-			H42	1.5	93Si05
	ave.	5032.5	1.3			0.7	1	19	13 ²⁰⁵ T			average
205 Po(α) 201 Pb		5324.1	10.				3					67Ti04
205 At(α) 201 Bi		6016.3	4.	6019.5	1.7	0.8	3					63Ho18 Z
		6020.5	2.			-0.5	3					68Go.B Z
		6018.9	5.			0.1	3					74Ho27 Z
205 Rn(α) 201 Po		6386.6	3.	6390	50	0.0	5					67Va17 Z
		6386.6	6.			0.0	5					71Ho01 Z
205 201		6385.7	2.5			0.0	5			Lvn		93Wa04
205 Fr(α) 201 At		7056.5	5.	7054.9	2.7	-0.3	3					67Va20 Z
		7052.2	5.			0.5	3					74Ho27 Z
		7057.3	5.			-0.5	3					81R104 Z
2050 (~)2010		7052.9		7400	50	0.3	3			Ara		95Le04
200 Ka(α) ²⁰¹ Kn		7506.7	20.	/490	50	-0.4	F			Ŧ		8/Hel0 *
		7496.6	25.			-0.2	0			Jya I-		95Le15
$205 n - m(m)^{201} n - m$		/486.4	20.	7517	20	1.7	5			Jya		96Le09
$\kappa a^{m}(\alpha)^{\kappa}\kappa n^{m}$		/501.7	10.	/51/	20	1.5	В			Ara		95Le04
		1522.1	25.			-0.2	0			Jya		95Le15
		/51/.0	20.				0			Jya		90Le09

Item		Input va	lue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
²⁰⁴ Hg(d,p) ²⁰⁵ Hg		3443	5	3444	4	0.2	1	53	53 ²⁰⁵ Hg	Ald		70An14
²⁰⁵ Tl(d,t) ²⁰⁴ Tl		-1288.7	0.6	-1288.7	0.5	0.0	1	61	57 ²⁰⁵ Tl	Mun		90Li40
204 Pb(n, γ) 205 Pb		6731.53	0.15	6731.67	0.11	1.0	_			ILn		83Hu13 Z
		6731.80	0.16			-0.8	-		204	Bdn		03Fi.A
205	ave.	6731.66	0.11			0.2	1	98	79 ²⁰⁴ Pb			average
205 Pb(ϵ) 205 Tl		41.4	1.1	50.5	0.5	8.3	В					78Pe08
$^{205}Bi(\beta^+)^{205}Pb$		2701.4	10.	2708	1	0.7	-					62B025
		2713.4	10.			-0.7	1	100	100 205 D:			02Pe08
$*^{205} \operatorname{Ra}(\alpha)^{201} \operatorname{Rn}$	F: possibl	y mixture wi	th 205^{\prime} Ra ⁿ	$(\alpha)^{201} \mathrm{Rn}^m$		0.0	1	100	100 DI			87He10 **
²⁰⁶ P; C		21420	20	21501	0	2.4	II			GEI	1.0	021 ; A
$^{206}Po-C$		-21429	30	-19519	9	-2.4	U			GS2	1.0	
$^{206}At - C_{17.167}$		-13305	30	-13333	22	-0.9	R			GS2	1.0	03Li A
206 Pb 35 Cl ₂ $-^{202}$ Hg 37 Cl ₂		9722.09	0.57	9722.4	1.2	0.3	1	73	70 ²⁰⁶ Pb	H36	2.5	85De40
²⁰⁶ Pb ³⁵ Cl ⁻²⁰⁴ Pb ³⁷ Cl		4370.72	1.17	4371.78	0.15	0.4	Ū			H36	2.5	85De40
		4371.29	0.81			0.4	1	1	1 ²⁰⁴ Pb	H42	1.5	93Si05
206 Po(α) 202 Pb		5327.4	4.	5326.9	1.3	-0.1	2					67Ti04 Z
		5327.4	1.5			-0.3	2					69Go23 *
		5325.1	3.			0.6	2					70Ra14 Z
206 At(α) 202 Bi		5888.4	2.	5888.4	1.9	0.0	3					68Go.B *
206		5888.4	5.			0.0	3					81Va27 *
200 Rn(α) 202 Po		6381.8	3.	6383.8	1.6	0.7	4					67Va17 Z
		6384.6	3. 2.5			-0.2	4			Lun		/1G035 Z
$206 \operatorname{Er}(\alpha)^{202} \Delta t$		6925.9	7	6923	4	-0.4	4			LVII		67Va20 *
$\Pi(\alpha)$ Π		6918.9	7.	0923	4	-0.4	4					74Ho27 *
		6924.0	7.			-0.1	4			ORa		81Ri04 *
		6924.8	7.			-0.2	4			Lvn		92Hu04 *
206 Fr ⁿ (α) 202 At ⁿ		7068.8	5.	7068	4	-0.2	6					81Ri04 Z
207 202		7067.1	5.			0.2	6			Lvn		92Hu04 *
206 Ra(α) 202 Rn		7416.3	5.	7415	4	-0.2	3					67Va22 Z
		7414.3	10.			0.1	3			•		87He10
		7412.2	10.			0.3	0			Jya		95Le15
		7406	15			0.0	0			Jya Jya		950001
$^{206}Ac(\alpha)^{202}Fr$		7944.6	30			0.5	5			Iva		98Es02
$^{206}Ac^n(\alpha)^{202}Fr^m$		7903.8	30.				6			Jva		98Es02
204 Pb(α .d) 206 Bi		-15798.	11.5	-15793	8	0.5	R			Pit		76Da20
205 Tl $(n, \gamma)^{206}$ Tl		6503.7	0.4	6503.8	0.4	0.3	1	93	84 ²⁰⁶ Tl	MMn		74Co21 Z
		6502.87	0.27			3.5	В			Bdn		03Fi.A
²⁰⁵ Tl(³ He,d) ²⁰⁶ Pb		1761.7	1.4	1760.3	0.5	-1.0	1	12	12 ²⁰⁵ Tl	Mun		90Li40
205 Pb(n, γ) 206 Pb		8086.66	0.06	8086.67	0.06	0.1	1	99	81 ²⁰⁵ Pb			96Ra16 Z
206 Pb(d,t) 205 Pb		-1831.2	0.5	-1829.43	0.06	3.5	U			Mun		90Li40
$^{206}\text{Bi}(\varepsilon)^{206}\text{Pb}$		3753	10	3758	8	0.5	2					74Go20
$^{206}\text{At}(\beta^+)^{206}\text{Po}$		5687	150	5762	22	0.5	U					77Li16
200 Fr ⁿ (IT) ²⁰⁰ Fr ^m	D 1 1	531	2	2115 7			7					81Ri04
$*^{200} Po(\alpha)^{202} Pb$	Printing e	$\frac{1}{2}$ arror in ref.: $\frac{2}{2}$	² Po not	²¹¹ Po. ,Z co	orrected							AHW **
* $At(\alpha)^{202}B1$ + 206 A $t(\alpha)^{202}B$:	$E(\alpha) = 57(\alpha) = 57(\alpha)$	12.8(2, L) to 7	2.4 level	to around -t	ato 70 4	laval						NDS072
* $AI(\alpha)$ DI * 206 Er(α) ²⁰² At	$E(\alpha) = 577$	(3.0(3, L), 3/(3.1(5.7), 3/(3.1(5.7)))	$\nu_{2.0(J,L)}$	2 for being a	doublet	level						AHW
$*^{206} \text{Fr}(\alpha)^{202} \text{At}$	$E(\alpha) = 678$	363(57), cor	rection -	2 for being a	doublet							AHW **
$*^{206} Fr(\alpha)^{202} At$	$E(\alpha) = 670$	(3, 2), (0)	rection -	2 for being a	doublet							AHW **
$*^{206}Fr(\alpha)^{202}At$	$E(\alpha) = 679$	2(5); correct	ion -2 fo	r being a dou	blet							AHW **
$*^{206}$ Fr ⁿ (α) ²⁰² At ⁿ	E(α)=693	30(5) and 679	2(7) con	bined with E	(γ)'s 53	1, 391.	7					92Hu04 **

Α.	Н.	Wapstra	et al.	/Nuclear	Physics A	729	(2003)	129-336

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
²⁰⁷ Pb ³⁵ Cl- ²⁰⁵ Tl ³⁷ Cl		4417.32	1.40	4419.4	0.5	1.0	1	7	6 ²⁰⁵ Tl	H42	1.5	93Si05
206 Fr ^x $-^{207}$ Fr ₄₉₈ 205 Fr ₅₀₂		930	90	*			U			P24	2.5	82Au01
207 Po(α) 203 Pb		5216.0	2.5	5215.8	2.5	0.0	1	96	59 ²⁰⁷ Po	Dba		70Af.A
207 At(α) 203 Bi		5872.5	3.	5872	3	0.0	1	100	82 ²⁰³ Bi			69Go23 Z
207 Rn(α) 203 Po		6256.3	3.	6251.1	1.6	-1.6	3					67Va20 Z
		6247.3	3.			1.3	3					71Go35 Z
202 202		6250.4	2.5			0.3	3			Lvn		93Wa04
207 Fr(α) 203 At		6907.8	5.	6900	50	-0.2	-					67Va20 Z
		6895.8	5.			0.0	-					74Ho27 Z
		6900.9	5.			-0.1	_	0.0	07 207 5			81R104 Z
207 5 () 203 5	ave.	6901.5	2.9	5050	50	-0.1	I	98	97 ²⁰⁷ Fr			average
207 Ra(α) 203 Rn		7273.8	5.	7270	50	0.0	5					67Va22 Z
		7268.7	10.			0.1	5			T		8/He10
$207 \mathbf{p} - m(m)^2 203 \mathbf{p} - m$		7462.5	12.	7469	0	-0.1	5			Jya		950001
$-\infty$ Ka ^m (α)- $-\infty$ Kh ^m		7403.5	10.	/468	8	0.5	0			Inco		8/He10
		7474.7	15.			-0.4	6			Jya Iya		95Le15
$207 \text{ A}_{2}(\alpha)^{203} \text{ Fr}$		7861 2	15.	7840	50	-0.5	0			Jya		90Le09
$Ac(\alpha)$ Fr		7844.0	23. 25	7840	30	-0.4	2			Jya		94Le03
205 Tl(t p) 207 Tl		/844.9	25. 15	1871	5	0.4	1	13	13 ²⁰⁷ TI	1 ya 1 d		50E802 60Ha11
$206 \text{ Pb}(p, x)^{207} \text{ Pb}$		4000	0.15	40/4 6727 78	0.00	-0.4	1	15	15 11	MMn		09Ha11 81Ko11 7
$FD(\Pi,\gamma)$ FD		6737.72	0.15	0737.78	0.09	-0.5	_			II n		83Hu13 7
		6737.72	0.13			0.3	_			Bdn		03Ei A
	91/4	6737.74	0.17			0.2	1	07	80 207 ph	Dull		overage
$207 H_{\alpha}(\beta^{-})^{207} T_{1}$	ave.	4815	150			0.0	2	91	09 10			81 Io B
$^{207}Tl(B^{-})^{207}Pb$		1431	8	1418	5	_16	1	46	45 ²⁰⁷ TI			67Da10
$^{207}Po(\beta^+)^{207}Bi$		2907	10	2909	7	0.2	1	43	41 ²⁰⁷ Po			58Ar56
207 Rn(β^+) 207 At		4617	70	4610	30	_0.1	R	75	41 10			757e A
$\operatorname{Kn}(\mathcal{P})$ / Kn		4017	70	4010	50	0.1	к					/520.11
²⁰⁸ Pb- ¹³³ Cs		124532.0	56	124525.2	13	-12	U			MA8	1.0	03We A
²⁰⁸ Po-C		-18710	31	-18754 3	1.9	-14	Ŭ			GS2	1.0	03L i A
²⁰⁸ Ph ³⁵ C1- ²⁰⁶ Ph ³⁷ C1		5136.93	0.41	5136.88	0.13	-0.1	1	4	2 ²⁰⁶ Ph	H42	1.5	93Si05
207 Fr $^{-208}$ Fr $^{-206}$ Fr x		-890	60	*	0.15	0.1	Ū		2 10	P24	2.5	82Au01
$^{208}Po(\alpha)^{204}Pb$		52163	2	5215 3	13	-0.5	2			121	2.5	69Go23 Z
10(0) 10		5214.0	3.	021010	110	0.5	2					70Ra14 Z
		5215.1	2.			0.1	2					89Ma05
208 At(α) 204 Bi		5750.6	3.	5751.0	2.2	0.2	3					69Go23 Z
		5751.6	3.			-0.2	3					81Va27 Z
208 Rn(α) 204 Po		6269.3	4.	6260.7	1.7	-2.1	4					55M069Z
		6260.0	3.			0.2	4					71Go35 Z
		6257.5	5.			0.6	4					74Ho27
		6258.7	2.5			0.8	4			Lvn		93Wa04
208 Fr(α) 204 At		6778.3	5.	6790	40	0.1	_					67Va20 Z
		6767.7	5.			0.3	-					74Ho27 Z
		6767.7	5.			0.3	-					81Ri04 Z
	ave.	6771.2	2.9			0.3	1	76	70 ²⁰⁸ Fr			average
208 Ra(α) 204 Rn		7273.1	5.				5					67Va22 Z
208 Ac(α) 204 Fr		7720.8	15.	7730	50	0.1	5			Jya		94Le05
200 201		7769.7	40.			-0.9	5			JAa		96Ik01
$^{208}\mathrm{Ac}^{m}(\alpha)^{204}\mathrm{Fr}^{n}$		7892.1	20.	7899	14	0.3	6			Dba		94An01
		7910.4	20.			-0.6	6			Jya		94Le05
207 209		7871.7	50.			0.5	6			JAa		96Ik01
207 Pb(n, γ) 208 Pb		7367.95	0.15	7367.87	0.05	-0.5	-			MMn		81Ke11 Z
		7367.96	0.10			-0.9	-					81Su.A Z
		7367.81	0.11			0.5	-			ILn		83Hu13 Z
		7367.774	0.098			1.0	-			D /		98Be19 Z
		7367.92	0.16			-0.3	-	00	00 208 m	Bdn		03F1.A
	ave.	7367.87	0.05			0.0	1	99	89 -00 Pb			average

Item		Input va	lue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{208}\mathrm{Tl}(eta^-)^{208}\mathrm{Pb}$		4989.7 4997.7	7. 10.	4999.0	1.7	1.3 0.1	U U					48Ma29 54El24
209 Bi $-^{133}$ Cs _{1.571}		128937.6	4.7	128933.7	1.6	-0.8	U			MA8	1.0	03We.A
²⁰⁹ Fr- ²²⁰ Ra _{.925}		-27584	36	-27551	16	0.9	-	00	00 209 5-	MA3	1.0	92Bo28
209 B; 35 C1 207 Ph 37 C1	ave.	-2/550	10	7451.0	0.8	-0.1	I II	99	99 Fr	H36	25	average 85De40
$^{208}\text{Fr}^{-209}\text{Fr}^{-207}\text{Fr}$		720	60	640	50	-0.0	1	12	9 ²⁰⁸ Fr	P24	2.5	82Au01
$^{209}\text{Bi}(\alpha)^{205}\text{Tl}$		3137.0	2.2	3137.2	0.8	0.1	1	12	10 ²⁰⁹ Bi	121	2.5	03De11
209 Po(α) 205 Pb		4974	5	4979.2	1.4	1.0	2					66Ha29 *
()		4980.0	2.			-0.4	2					69Go23 *
		4979.3	2.			0.0	2					89Ma05 *
209 At(α) 205 Bi		5757.2	2.	5757.1	2.0	0.0	1	100	100 209 At			69Go23 Z
209 Rn(α) 205 Po		6157.5	3.	6155.5	2.0	-0.6	3			_		71Go35 Z
200		6154.2	2.5			0.5	3			Lvn		93Wa04
209 Fr(α) 203 At		6777.7	5.	6777	4	0.0	2					67Va20 Z
$209 \mathbf{D}_{\alpha}(\alpha)^{205} \mathbf{D}_{\alpha}$		6///.3	5. 5	7144	4	0.0	2					/4H02/ Z
$-\infty$ Ka(α)- ∞ Kli		7147.0	5. 5	/144	4	-0.6	6			GSa		07 Va22 Z
209 A $c(\alpha)^{205}$ Fr		7733 3	15	7730	50	_0.0	3			USa		68Va04
		7738.4	20.	1150	50	-0.2	3			Dba		94An01
		7729.2	15.			0.0	3			Jya		94Le05
		7728.2	40.			0.0	U			JAa		96Ik01
		7725.1	10.			0.1	3			GSa		00He17
209 Th(α) 205 Ra		8238.0	50.				6			JAa		96Ik01
209 Bi(p,t) 207 Bi		-5864.8	2.0	-5864.9	2.0	0.0	1	98	97 ²⁰⁷ Bi	MSU		76Be.B *
²⁰⁸ Pb(d,p) ²⁰⁹ Pb		1700	10	1712.7	1.3	1.3	U		200			67Mu16
2095.		1718	4	7450.0	1.0	-1.3	1	11	11 ²⁰⁹ Pb	Pit		72Ko03 *
$^{209}B_1(\gamma,n)^{208}B_1$		-7460	2	-7459.8	1.9	0.1	2			McM		79Ba06
$209 \text{B1}(0,t)^{200} \text{B1}$		-1201	5	-1202.5	1.9	-0.3	2	01	07 209 DL	ANL		64Er06
$209 \mathbf{P} \mathbf{p} (\beta^{+}) 209 \mathbf{A} t$		3028	1.2	3051	21	-0.5	I P	91	87 PD			74Wy01
x^{209} Po(α) ²⁰⁵ Ph	$E(\alpha) - 487$	5920 76 8(5 7) 80%	+0	aval	21	0.0	ĸ					NDS **
* $10(\alpha)$ 10 * $^{209}Po(\alpha)^{205}Ph$	$E(\alpha) = 487$ $F(\alpha) = 488$	82 8(2 Z) 80%	$t_0 2.31$	evel								NDS **
$*^{209}Po(\alpha)^{205}Pb$	$E(\alpha)=488$	32.6(2.0), 462	2(5) to 3	pround-state(+	-80% 2.3	3), 262,	8 leve	el				89Ma05**
$*^{209}$ Ra(α) ²⁰⁵ Rn	$E(\alpha)=700$)3(10) to grou	ind-state	, 6625(5) to 3	87.0 lev	el		-				03He06 **
* ²⁰⁹ Bi(p,t) ²⁰⁷ Bi	$Q - Q(^{208})$	Pb(p,t)) = -241	(2,Be),	Q(Pb)=-5623	.82(0.20))						AHW **
* ²⁰⁸ Pb(d,p) ²⁰⁹ Pb	$Q - Q(^{209})$	Bi(d,p))=-662	2(4),Q(E	Bi)=2380.01(0	.14)							AHW **
²¹⁰ Fr- ²²⁶ Ra		-27198	24	-27198	24	0.0	1	98	98 ²¹⁰ Fr	MA3	1.0	92Bo28
209 Fr $-^{210}$ Fr $_{408}$ 208 Fr $_{}$		-770	50	-765	29	0.0	Ū	20	70 II	P24	2.5	82Au01
210 Pb(α) ²⁰⁶ Hg		3792.4	20.	100		0.0	2				2.0	62Ka27
$^{210}\text{Bi}(\alpha)^{206}\text{Tl}$		5042.8	2.	5036.4	0.8	-3.2	В					60Wa14 *
		5037.3	1.1			-0.8	1	50	34 ²¹⁰ Bi			76Tu.A *
210 Po(α) 206 Pb		5407.53	0.07	5407.45	0.07	0.0	1	100	98 ²¹⁰ Po			73Go39 Z
210 At(α) 206 Bi		5630.9	1.5	5631.2	1.0	0.2	3					69Go23 *
210 200		5631.4	1.3			-0.2	3					81Va27 *
210 Rn(α) 206 Po		6162.1	3.	6158.9	2.2	-1.0	3					55Mo69 Z
210 - ()206 -		6155.9	3.		20	1.0	3					/1Go35 Z
210 Fr(α) 200 At		6699.9	5.	6650	30	-1.0	B					67Va20
$- \kappa Ra(\alpha)^{200}Rn$		7156.6	5.	7152	4	-0.9	5			CE.		6/Va22 Z
$210 \Lambda_{c}(\alpha)^{206}E_{r}$		/14/ 7607.2	2	7610	50	0.9	5			USa		03He00 *
m(u) 11		7607.2	10.	/010	50	0.0	5			GSa		00He17

Item		Input va	lue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
210 Th(α) 206 Ra		8052.7	17.				4			Jva		95Uu01
		7962.0	50.	8053	17	1.8	В			JAa		96Ik01 *
$^{209}\text{Bi}(n,\gamma)^{210}\text{Bi}$		4604.5	0.3	4604.63	0.08	0.4	_					71Mo03
		4604.68	0.14			-0.3	_			MMn		83Ts01 Z
		4604.63	0.10			0.0	_			Bdn		03Fi.A
	ave.	4604.64	0.08			0.0	1	100	86 ²⁰⁹ Bi			average
210 Pb(β^{-}) 210 Bi		63.5	0.5	63.5	0.5	0.0	1	100	98 ²¹⁰ Pb			67Ha03
$^{210}\text{Bi}(\beta^{-})^{210}\text{Po}$		1160.5	1.5	1161.3	0.8	0.5	_					62Da03
-		1161.5	1.5			-0.1	_					67Hs01
	ave.	1161.0	1.1			0.3	1	52	50 ²¹⁰ Bi			average
210 At(ε) 210 Po		3870	30	3981	8	3.7	В					63Sc15
$*^{210}\text{Bi}(\alpha)^{206}\text{Tl}$	$E(\alpha)=468$	85.3(2,Z), 464	18.3(2,Z) to	0 265.83, 304.	90 levels	3						NDS **
*	Their	214 Bi(α) may	y be high t	00								AHW **
$*^{210}\text{Bi}(\alpha)^{206}\text{Tl}$	$E(\alpha)=494$	46(1), 4909(1) from ²¹⁰ H	Bi ^m at 271.31								NDS921**
*	to 26	5.83, 304.901	evels									NDS909**
$*^{210}$ At(α) ²⁰⁶ Bi	$E(\alpha)=552$	23.8, 5464.8,	5441.8(1.5	Z) to ground	-state, 59	.90, 82	.821	vls				NDS909**
$*^{210}$ At(α) ²⁰⁶ Bi	$E(\alpha)=552$	24.1, 5465.3,	5442.8(1.3	,Z) to ground	-state, 59	.90, 82	.82 1	vls				NDS909**
$*^{210}$ Ra(α) ²⁰⁶ Rn	$E(\alpha)=700$	03(10) to grou	ind-state, 6	5447(5) to 574	.9 level							03He06 **
$*^{210}$ Th(α) ²⁰⁶ Ra	Low ener	gy; may be es	scape	. /								96Ik01 **
			1									
²¹¹ Fr- ²²⁶ Ra,934		-28200	25	-28196	23	0.2	1	82	81 ²¹¹ Fr	MA3	1.0	92Bo28
²⁰⁷ Fr- ²¹¹ Fr _{.327} ²⁰⁵ Fr _{.673}		-930	100	-600	50	1.3	U			P24	2.5	82Au01
208 Fr $-^{211}$ Fr $_{394}$ 206 Fr $_{606}^{x}$		-260	50	*			U			P24	2.5	82Au01
²¹⁰ Fr- ²¹¹ Fr ₄₉₈ ²⁰⁹ Fr ₅₀₂		580	50	617	26	0.3	U			P24	2.5	82Au01
$^{211}\text{Bi}(\alpha)^{207}\text{Tl}$		6749.5	0.7	6750.3	0.5	1.2	_					61Ry02 Z
		6751.1	0.6			-1.2	_					71Gr17 Z
	ave.	6750.4	0.5			-0.1	1	100	58 ²¹¹ Bi			average
211 Po(α) 207 Pb		7594.7	0.5				2					62Wa18 Z
211 Po ^m (α) ²⁰⁷ Pb		9056.8	5.				2					82Bo04
211 At(α) 207 Bi		5979.4	2.	5982.4	1.3	1.5	2					69Go23 Z
		5981.6	3.			0.3	2					82Bo04 *
		5985.9	2.			-1.7	2					85La17 Z
211 Rn(α) 207 Po		5967.9	2.	5965.4	1.4	-1.2	2					55Mo69 Z
		5963.1	2.			1.2	2					71Go35 Z
211 Fr(α) 207 At		6660.3	5.	6660	5	0.0	1	99	82 ²⁰⁷ At			67Va20 Z
211 Ra(α) 207 Rn		7045.3	5.	7043	4	-0.5	4					67Va22 Z
		7040	5			0.5	4			GSa		03He06 *
$^{211}Ac(\alpha)^{207}Fr$		7624.8	8.	7620	50	-0.1	2					68Va04
		7616.7	10.			0.1	2			GSa		00He17
211 Th(α) 207 Ra		7942.9	14.				6			Jya		95Uu01
211 Pb $(\beta^{-})^{211}$ Bi		1378	8	1367	6	-1.4	1	47	42 ²¹¹ Bi			65Co06
$*^{211} At(\alpha)^{207} Bi$	Recalibra	ted as in ref.										91Rv01 **
$*^{211}$ Ra(α) ²⁰⁷ Rn	Average	of $E(\alpha)=6907$	(5) and sev	veral branches	to know	n level	s					03He06 **
²¹² Fr- ²²⁶ Ra 0.29		-27631	28	-27632	28	0.0	1	97	97 ²¹² Fr	MA3	1.0	92Bo28
209 Fr $-^{212}$ Fr $_{562}^{.936}$ 205 Fr 427		-1270	70	-1205	22	0.4	U			P24	2.5	82Au01
206 Fr ^x $-^{212}$ Fr $_{120}$ 205 Fr $_{861}$		340	130	*			U			P24	2.5	82Au01
207 Fr $-^{212}$ Fr $_{122}^{139}$ ²⁰⁶ Fr $_{827}^{300}$		-1150	70	*			Ū			P24	2.5	82Au01
$^{212}\text{Bi}(\alpha)^{208}\text{Tl}$		6207.22	0.04	6207.262	0.028	2.9	0			BIP		61Rv02 Z
		6207.09	0.08	02071202	0.020	2.1	0			BIP		69Gr28 *
		6207 262	0.028				2			BIP		72Go A *
$^{212}\text{Bi}^{m}(\alpha)^{208}\text{Tl}$		6458 1	30.				3			2		78Ba44
$^{212}Po(\alpha)^{208}Pb$		8953.85	0.31	8954 12	0.11	1.1	_					71De52 7
10(0) 10		8954 25	0.12	0754.12	0.11	-0.4	_					74Hu15 Z
	ave	8954 12	0.12			0.0	1	100	92 212 Po			average
$^{212}Po^{m}(\alpha)^{208}Pb$	ave.	11874.6	20	11865	12	_0.5	2	100	/2 10			62Pe15
10 (0) 10		11859 3	15	11005	14	0.3	$\frac{2}{2}$					75Fr R
$212 \Delta t(\alpha)^{208} Bi$		7829.0	9	7824	7	_0.4	3					70Re02
		7817.8	10	7624	,	0.5	3					96L i37
$^{212}At^{m}(\alpha)^{208}Bi$		8049 3	10	8050	6	0.1	3					68Va18
··· (w) Di		8052.3	9.	0000	0	-0.2	3					70Re02
			~ *				-					

Item		Input v	alue	Adjusted	i value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{212}\text{At}^{m}(\alpha)^{208}\text{Bi}$		8049.2	10	8050	6	0.1	3					96I i37
212 Rn(α) ²⁰⁸ Po		6392.3	5	6385.0	26	_1.4	3					55M069 Z
Ru(u) 10		6382.5	3.	0505.0	2.0	0.9	3					71Go35 Z
212 Fr(α) ²⁰⁸ At		6531.3	3.	6528.9	1.8	-0.8	2					66Va.A Z
		6528.0	3.			0.3	2					81Va27
		6527.5	3.			0.5	2					82Bo04 *
212 Ra(α) 208 Rn		7030.0	5.	7031.6	1.7	0.3	5					67Va22 Z
		7034.0	5.			-0.4	5					74Ho27 Z
		7032.2	2.			-0.3	5					82Bo04 Z
		7028	5			0.7	5			GSa		03He06 *
$^{212}Ac(\alpha)^{208}Fr$		7521.2	8.	7520	50	0.0	2					68Va04
		7515.1	10.			0.1	2			GSa		00He17
212 Th(α) 208 Ra		7952.3	10.				6					80Ve01
212 Pa(α) 208 Ac		8429.4	30.				6			JAa		97Mi03
212 Pb(β^{-}) 212 Bi		569.3	2.5	569.9	1.9	0.2	-					48Ma30
		576.6	5.			-1.3	-					58Se71
	ave.	570.8	2.2			-0.4	1	73	46 ²¹² Pb			average
$^{212}\text{Bi}(\beta^{-})^{212}\text{Po}$		2256	3	2252.1	1.7	-1.3	-					48Fe09
		2250.5	2.5			0.6	-					48Ma30
	ave.	2252.8	1.9			-0.3	1	80	73 ²¹² Bi			average
$*^{212}\text{Bi}(\alpha)^{208}\text{Tl}$	$E(\alpha)=608$	9.86(0.08,	Z), 6050	.57(0.07,Z) to grou	und-state	e, 39.8	857 lev	vel			NDS925**
$*^{212}Bi(\alpha)^{208}Tl$	$E(\alpha)=608$	9.883(0.0	37,Z), 60	50.837(0.0)28,Z) to	o ground	-state	, 39.8	57 lvl			72Go.A **
$*^{212}$ Fr(α) ²⁰⁸ At	$E(\alpha)=634$	1(3) (reca	librated a	as in ref.) t	o 63.70	level						91Ry01 **
$*^{212}$ Ra(α) ²⁰⁸ Rn	$E(\alpha)=689$	8(5) to gro	ound-stat	e, 6269(5)	to 635.	l level						03He06 **
		., 0										
²⁰⁷ Fr- ²¹³ Fr _{.324} ²⁰⁴ Fr _{.676}		-2540	330	-2100	60	0.5	U			P24	2.5	82Au01
208 Fr $-^{213}$ Fr $_{279}$ 206 Fr $_{721}^{x}$		-700	60	*			U			P24	2.5	82Au01
²⁰⁹ Fr- ²¹³ Fr ₃₂₇ ²⁰⁷ Fr ₆₇₃		-670	60	-700	40	-0.2	U			P24	2.5	82Au01
²⁰⁹ Fr- ²¹³ Fr 196 ²⁰⁸ Fr 804		-980	60	-930	40	0.3	1	7	6 ²⁰⁸ Fr	P24	2.5	82Au01
²¹¹ Fr- ²¹³ Fr ₃₃₀ ²¹⁰ Fr ₆₇₀		-830	60	-744	26	0.6	U			P24	2.5	82Au01
²¹² Fr- ²¹³ Fr ₄₉₈ ²¹¹ Fr ₅₀₂		270	50	317	28	0.4	U			P24	2.5	82Au01
$^{213}\text{Bi}(\alpha)^{209}\text{Tl}$		5982.6	6.				2					64Gr11
213 Po(α) 209 Pb		8537.1	5.	8536.1	2.6	-0.2	-					64Va20 Z
		8536.5	3.			-0.1	_					82Bo04 Z
	ave.	8536.6	2.6			-0.2	1	95	93 ²¹³ Po			average
213 At(α) 209 Bi		9254.2	12.	9254	5	0.0	2					70Bo13
		9254.2	5.			0.0	2			Lvn		87De.A
213 Rn(α) 209 Po		8245.1	8.	8243	5	-0.3	3					67Va20
		8240.0	10.			0.3	3					70Va13
		8242	10			0.1	3			GSa		00He17 *
213 Fr(α) 209 At		6904.0	5.	6904.9	1.8	0.2	_					67Va20 Z
		6908.0	5.			-0.6	-					74Ho27 Z
		6904.6	2.			0.2	-					82Bo04 Z
	ave.	6904.9	1.8			0.0	1	100	100 ²¹³ Fr			average
213 Ra(α) 209 Rn		6860.3	5.	6861	4	0.2	4					67Va22 *
		6862.4	5.			-0.2	4					76Ra37 *
213 Ra ^m (α) ²⁰⁹ Rn		8630.4	5.				4					76Ra37
$^{213}Ac(\alpha)^{209}Fr$		7505.2	8.	7500	50	-0.1	2					68Va04
		7497.0	10.			0.0	0			GSa		00He17
		7497.0	5.			0.0	2			GSa		02He.A
213 Th(α) 209 Ra		7841.5	10.	7840	50	-0.1	7					68Va18
		7836.5	10.			0.0	7					80Ve01
213 Pa(α) 209 Ac		8393.9	15.				4			GSa		00He17
$^{213}\text{Bi}(\beta^{-})^{213}\text{Po}$		1430	10	1423	5	-0.7	1	29	22 ²¹³ Bi			68Va17
$*^{213}$ Rn(α) ²⁰⁹ Po	$E(\alpha)=808$	8(10), 755	50(15) to	ground-sta	ate, 540.	3 level						00He17 **
$*^{213}$ Ra(α) ²⁰⁹ Rn	$E(\alpha)=673$	0.7, 6623.	7, 6520.	7(3,Z) to g	round-st	ate, 110	.1, 21	4.7 lev	vels			NDS918**
$*^{213}$ Ra(α) ²⁰⁹ Rn	$E(\alpha)=673$	1.9, 6624.	9, 6523.	9(5,Z) to g	round-st	ate, 110	.1, 21	4.7 lev	vels			NDS918**

Item	Inpu	t value	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
²¹⁴ Ra- ¹³³ Cs _{1,609}	152235	22	152236	10	0.0	R			MA8	1.0	03We.A
$^{214}\text{Bi}(\alpha)^{210}\text{Tl}$	5621.	3 3.0				2					91Ry01 *
214 Po(α) 210 Pb	7833.	54 0.06	7833.46	0.06	0.0	1	100	98 ²¹⁴ Po			71Gr17 Z
214 At(α) 210 Bi	8987.	2 4.				2					82Bo04 Z
$^{214}\text{At}^m(\alpha)^{210}\text{Bi}$	9046.	4 8.				2					82Ew01
$^{214}At^{n}(\alpha)^{210}Bi$	9220.	8 5.				2					82Ew01 *
214 Rn(α) 210 Po	9212.	6 20.	9208	9	-0.2	2					70To07
	9207.	5 10.			0.1	2					70Va13
214 Fr(α) 210 At	8585.	5 8.	8589	4	0.4	4					68Va18 *
	8590.	95.			-0.5	4					70To18 *
	8583.	8 10.			0.5	4					89An.A
214 Fr ^m (α) 210 At	8711.	7 8.	8712	4	0.0	4					68Va04 Z
	8711.	75.			0.0	4					70To18 *
214 Ra(α) 210 Rn	7271.	75.	7273	3	0.4	4					67Va22 Z
	7275.	6 5.			-0.4	4					74Ho27 Z
	7273.	2 10.			0.0	4			GSa		00He17 *
$^{214}Ac(\alpha)^{210}Fr$	7351.	75.	7350	3	-0.3	2					68Va04 Z
	7347.	6 10.			0.3	2					89An13
	7347.	6 10.			0.3	0			GSa		00He17 *
	7349.	6 5.			0.1	2			GSa		02He.A
214 Th(α) 210 Ra	7828.	6 10.	7826	7	-0.3	6					68Va18
	7823.	5 10.			0.3	6					80Ve01
214 Pa(α) 210 Ac	8270.	9 15.				6			GSa		00He17
214 Pb $(\beta^{-})^{214}$ Bi	1024	20	1019	11	-0.3	1	32	31 ²¹⁴ Bi			52Be78 *
$^{214}\text{Bi}(\beta^{-})^{214}\text{Po}$	3260	30	3270	11	0.3	_					56Da06
4- 7- 1	3275	15			-0.4	_					60Lu07
	ave. 3272	13			-0.2	1	69	69 ²¹⁴ Bi			average
$*^{214}$ Bi(α) ²¹⁰ Tl	Recommended to re	place the fo	llowing $E(\alpha)$:								91Rv01 **
*	$E(\alpha) = 5510.5(1.$	0)	5 . ,								34Le01 **
*	$E(\alpha) = 5515.8(3.1)$	0)									60Wa14 **
$*^{214} At^{n}(\alpha)^{210} Bi$	$E(\alpha) = 8782(5)$ to 27	1.2 level									NDS **
$*^{214}$ Fr(α) 210 At	$E(\alpha)=8425.5, 8352.$	5(8,Z) to gr	ound-state, 72	.7 level							NDS81c**
$*^{214}$ Fr(α) ²¹⁰ At	$E(\alpha) = 8428.3, 8360.$	3(5.Z) to gr	ound-state, 72	.7 level							NDS81c**
$*^{214} Fr^{m}(\alpha)^{210} At$	$E(\alpha) = 8546.8, 8477.$	8(5.Z) to gr	ound-state, 72	.7 level							NDS81c**
$*^{214}$ Ra(α) ²¹⁰ Rn	$E(\alpha) = 7137(10), 650$	5(15) to gro	ound-state, 64	1.9 level							00He17 **
$*^{214}Ac(\alpha)^{210}Fr$	$E(\alpha)=7210(10), 708$	0(15) to gro	ound-state, 13	8.6 level							00He17 **
$*^{214}$ Pb(β^{-}) ²¹⁴ Bi	$E^-=670(20)$ to 351.	92 level, and	d another bran	ich							NDS **
²¹⁵ Bi- ¹³³ Cs	154654	16				2			MA8	1.0	03We A
$^{215}Po(\alpha)^{211}Ph$	7526	45 0.8	7526 3	0.8	_0.1	1	99	94 211 Ph		1.0	71Gr17 7
$^{215}\Delta t(\alpha)^{211}Bi$	8178	5 4	1520.5	0.0	0.1	2	,,	<i>y</i> ¹ 10			82Bo04 Z
$^{215}\mathbf{Pn}(\alpha)^{211}\mathbf{Po}$	8834	7 20	8830	8	0.2	3					60Ho32
$\operatorname{KI}(\mathcal{U}) = 10$	8839	7 20. 8 8	0057	0	-0.1	3					70Va13
$215 Er(\alpha)^{211} At$	0543	0 15	9540	7	0.1	3					70Ro13
$\Pi(u)$ At	0532	7 10	9540	/	-0.2	3					74No02
	9547	1 10.			-0.6	3					84De16
$^{215}\mathbf{R}_{2}(\alpha)^{211}\mathbf{R}_{2}$	8862	7 5	8864	3	0.0	3					68Va18 7
Ra(u) Ri	8865	, J. 5 5	0004	5	_0.2	3					70To18 Z
	8865	3 10			-0.2	3			GS ₂		00He17
$^{215}\Lambda c(\alpha)^{211}$ Er	7748	10. 15	7744	4	-0.1	2			054		68Va04 7
$Ac(\alpha)$ 11	7746	+ J. 10	//++	+	-0.3	0			GS ₂		00He17 *
	7740	3 5			0.2	2			GSa GSa		02He 4
215 Th $(\alpha)^{211}$ Ra	740.	99. 98	7665	6	0.0	5			054		68Va18
in(w) Ka	7667	0 10	7005	0	_0.1	5					89He03
	7664	15			0.1	5			GS ₂		00He17 *
$^{215}Pa(\alpha)^{211}Ac$	8738	6 15	8240	50	0.1	3			0.54		79Sc09
1 ((w) / 10	8244	7 15	0240	50	_0.1	3			GSa		00He17
$*^{215}Ac(\alpha)^{211}Fr$	$E(\alpha) = 7602(10) - 702$. 15. 6(15) 6960	(15) to group	d-state 5	83 2 65	2 82 1	/ls		0.54		NDS915**
$*^{215}$ Th(α) ²¹¹ Ra	$E(\alpha) = 7520(15), 738$	7(15) 7336	(15) to ground	d-state 1	33.6.19	2.02 fv	\$				00He17 **
π $\Pi(\omega)$ Ka	L(u) = 1520(15), 150	, (15), 7550	(15) to ground	a state, I	55.0, 192	L 1VI					0011017 **

Item		Input va	llue	Adjuste	d value	v _i	Dg	Sig	Main flux Lab	F	Reference
216 B ; 133 C e		150852	12				2		MAS	1.0	03We A
$^{216}Po(\alpha)^{212}Ph$		6906 44	0.5	6906 3	0.5	_0.1	1	99	54 212 Ph	1.0	71Gr17 7
$^{216}\Lambda t(\alpha)^{212}$ Bi		70/0 7	3	7050	3	0.1	1	100	100 ²¹⁶ At		82Bo04 7
216 Rn(α) 212 Po		8199.7	10	8200	7	0.0	2	100	100 At		61Ru06
$\operatorname{KI}(\alpha) = 10$		8201.2	10.	8200	/	-0.1	2				70Va13
$^{216}{\rm Er}(\alpha)^{212} \Delta t$		9175.3	12			0.1	4				70Ro13
$^{216}R_{2}(\alpha)^{212}R_{10}$		9525.8	8				4				73No09
$^{216}\Lambda_{c}(\alpha)^{212}$ Er		0243.3	8	0235	6	1.0	2				70To18 7
Ac(u) 11		9243.3	10	9235	0	-1.0	2		GSa		00He17
$216 \Lambda c^{m}(\alpha)^{212} Fr$		9220.0	5	0270	4	0.2	2		054		70To18 7
<i>I</i> ic (u) II		9284	10)21)	7	-0.5	0		GSa		00He17 a
		9278.2	5			0.3	2		GSa		02He A
216 Th $(\alpha)^{212}$ Ra		8070.7	8	8071	6	0.2	6		054		68Va18
II(u) Ka		8071	10	0071	0	0.0	6		GSa		00He17 v
$^{216}\mathrm{Th}^{m}(\alpha)^{212}\mathrm{Ra}$		10099.4	20	10113	12	0.0	6		054		83Hi08
III (ta) Ka		10107.4	40	10115	12	0.0	6				93An07
		10120.8	15			-0.5	6		GSa		00He17
$^{216}Pa(\alpha)^{212}Ac$		8013.7	20	8097	15	17	B		054		79Sc09
1 a(u) / 10		8110.5	20. 50	0077	15	-0.3	U D		IAa		98Ik01
		8097	15			0.5	3		GSa		00He17 *
$*^{216} \Delta c^{m}(\alpha)^{212} Fr$	$F(\alpha) = 9110$	(10) 9026(1)	5) 858	$5(15)$ to σro	und_state	82 4 54	12210	vels	054		00He17 **
$*^{216}$ Th $(\alpha)^{212}$ Ra	$E(\alpha) = 7923$	(10), 7020(1)	(5), 0500	ound_state	618 3 les	/, 02.⊣, 3⊣ /el	12.2 10	veis			00He17 **
$*^{216}$ Pa(α) ²¹² Ac	$E(\alpha) = 7923$ $E(\alpha) = 7948$	(10), 7302(1)	(5) to gr	ound state	133.6 las						00He17 **
* $Ia(\alpha)$ Ac	L(U)=7940	(15), 7815(1	5) to gr	ound-state,	155.0 10						0011017 **
217 Po(α) 213 Pb		6660.3	4.				4				77Vy02 Z
217 At(α) 213 Bi		7200.3	3.	7201.3	1.2	0.4	_				60Vo05 Z
		7200.3	2.			0.5	_				62Wa28 Z
		7204.6	5.			-0.6	-				64Va20 Z
		7193.1	5.			1.6	-		Dba		77Vy02 Z
		7204.0	2.			-1.3	-		Bka		82Bo04
	ave.	7201.4	1.2			-0.1	1	99	78 ²¹³ Bi		average
217 Rn(α) 213 Po		7887.5	4.	7887.1	2.9	-0.1	2				61Ru06 Z
		7886.9	4.			0.1	2				82Bo04 Z
217 Fr(α) 213 At		8471.5	8.	8469	4	-0.3	3				70Bo13
		8468.4	5.			0.2	3		Lvn		87De.A
217 Ra(α) 213 Rn		9159.1	8.	9161	6	0.2	4				70To07
		9163.2	10.			-0.2	4				70Va13
$^{217}Ac(\alpha)^{213}Fr$		9831.6	10.				2				73No09
$^{217}Ac^{m}(\alpha)^{213}Fr$		11843.8	17.				2				85De14
217 Th(α) 213 Ra		9424.1	10.	9433	4	0.9	5				68Va18
		9424.1	20.			0.5	U				73Ha32
		9421.1	15.			0.8	U				00Ni02
		9442	15			-0.6	U		GSa		00He17 *
		9435.6	5.			-0.5	5		GSa		02He29 *
217 Pa(α) 213 Ac		8486.7	10.	8489	4	0.2	3				68Va18
		8489.8	15.			-0.1	U				79Sc09
		8486.7	50.			0.0	U		JAa		98Ik01
		8490.8	15.			-0.1	U		GSa		00He17
		8489.3	5.			-0.1	3		GSa		02He29 *
217 Pa ^m (α) 213 Ac		10351	20	10349	5	-0.1	U				79Sc09
		10330.8	50.	-		0.4	U		JAa		98Ik01
		10346.1	15.			0.2	0		GSa		00He17
		10349.1	5.				3		GSa		02He29 *
$^{217}U(\alpha)^{213}Th$		8155.6	20.				8		Cou		00Ma65
$*^{217}$ Th(α) ²¹³ Ra	$E(\alpha) = 9268$	8(15), 8731(1	5). 8459	9(15) to oro	und-state	546 35	822.7	lvls			00He17 **
$*^{217}$ Th $(\alpha)^{213}$ Ra	$F(\alpha) = 9260$	(5) 8725(5)	8455(5	to ground	-state 54	6 35 822	7 lev	els			02He29 **
$*^{217}Pa(\alpha)^{213}\Delta c$	$F(\alpha) = 8337$	(5), 0723(5) (5), 7873(5)	7778(5	7710(5)	to as 166	1 612 5 4	534.3	lvls			02He20 **
$*^{217} Pa^{m}(\alpha)^{213} \Delta \alpha$	Average of	$5 F(\alpha)^{2} t_{0}$	$\frac{1}{kn}$	evels	.5 55,700	,012.3,0	10 4.0				02He20 **
π ia (α) AC	Average 01	J E(0) \$ 10	KHOWH I	0 1015							0211027 **

Item		Input va	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
218 Po(α) 214 Pb		6114.76	0.09	6114.68	0.09	0.0	1	100	99 ²¹⁴ Pb			71Gr17 Z
218 At(α) ²¹⁴ Bi		6874	3				2					58Wa.A *
218 Rn(α) 214 Po		7265.0	5.	7262.5	1.9	-0.5	_					56As38 Z
		7262.4	2.			0.1	_					82Bo04 Z
	ave.	7262.7	1.9			-0.1	1	96	94 ²¹⁸ Rn			average
218 Fr(α) 214 At		8014.0	2.				3					82Bo04 Z
218 Fr ^m (α) 214 At		8099.9	5.	8100	4	0.1	3					82Ew01 Z
		8100.9	5.			-0.1	3					99Sh03
218 Ra(α) 214 Rn		8549.1	8.	8546	6	-0.4	3					70To07
210 211		8541.0	10.			0.5	3					70Va13
$^{218}Ac(\alpha)^{214}Fr$		9377.4	15.				5					70Bo13
218 Th(α) 214 Ra		9861.5	20.	9849	9	-0.6	5					73Ha32
218		9846.1	10.			0.3	5					73No09
218 Pa(α) 214 Ac		9794.1	20.	9815	10	0.4	F					79Sc09 *
218774 > 214mm		9815	10				3			GSa		00He17 *
$^{218}U(\alpha)^{214}$ Th	$\mathbf{F}(\mathbf{x}) = \mathbf{c}(\mathbf{c})$	8/86.6	25.				1					92An04
$*^{218}$ At(α) 214 B1	$E(\alpha)=669$	6.3(3.0,Z) to	53.201	evel								NDS **
$*^{210}$ Pa(α) ²¹⁴ Ac	$E(\alpha) = 961$	4(20) proba	bly pile-	up with e								00He1/ **
$*^{210}$ Pa(α) ²¹⁴ Ac	$E(\alpha)=954$	14(10) to 91.	8 level									00He1/ **
219 At(α) 215 Bi		6390.9	50.	6324	15	-1.3	U					53Hy83
219 Rn(α) 215 Po		6946.21	0.3	6946.1	0.3	-0.1	1	100	95 ²¹⁵ Po			71Gr17 Z
219 Fr(α) 215 At		7448.7	2.0	7448.5	1.8	-0.1	3					68Ba73 Z
		7448.2	4.			0.1	3					82Bo04 Z
219 Ra(α) 215 Rn		8138.0	3.				4					94Sh02
$^{219}Ac(\alpha)^{215}Fr$		8826.5	10.				4					70Bo13
219 Th(α) 215 Ra		9514.1	20.				4					73Ha32
219 Pa(α) 215 Ac		10084.6	50.				3					87Fa.A
219 U(α) ²¹⁵ Th		9860.4	40.				6					93An07
²¹⁰ Fr ²²⁰ Fr ²⁰⁸ Fr		-2930	60	-2930	40	0.0	1	9	7 ²⁰⁸ Fr	P24	2.5	82Au01
211 Fr 220 Fr 208 Fr 208 Fr 208		-4850	70	-4890	40	-0.2	1	5	4 ²⁰⁸ Fr	P24	2.5	82Au01
$^{212}\text{Fr} - ^{220}\text{Fr}$ 208 Fr (70)		-5450	60	-5410	40	0.2	1	7	4 ²⁰⁸ Fr	P24	2.5	82Au01
212 Fr $-^{220}$ Fr $_{262}^{.521}$ 209 Fr $_{728}^{.679}$		-3730	60	-3776	28	-0.3	U			P24	2.5	82Au01
213 Fr $-^{220}$ Fr $_{252}^{209}$ Fr $_{640}^{738}$		-5170	50	-5146	12	0.2	U			P24	2.5	82Au01
212 Fr $-^{220}$ Fr $_{102}$ 210 Fr $_{908}$		-3160	60	-3050	30	0.7	U			P24	2.5	82Au01
220 At(α) ²¹⁶ Bi		6053.3	6.				3					89Bu09
220 Rn(α) 216 Po		6404.75	0.10	6404.67	0.10	0.0	1	100	56 ²¹⁶ Po			71Gr17 Z
220 Fr(α) ²¹⁶ At		6799.0	2.	6800.7	1.9	0.9	_					68Ba.A *
		6811.6	5.			-2.2	-					74Ho27 *
	ave.	6800.7	1.9			0.0	1	100	100 220Fr			average
220 Ra(α) 216 Rn		7593.3	10.	7592	6	-0.1	3					61Ru06
		7595.3	10.			-0.3	3					70Va13
		7598.3	20.			-0.3	3			Dbb		90An19
220 217		7587.2	10.			0.5	3			GSa		00He17
$^{220}\mathrm{Ac}(\alpha)^{210}\mathrm{Fr}$		8347.1	10.	8348	4	0.1	5					70Bo13
220mm () 216m		8348	5			0.0	5					97Sh09 *
220 Th(α) ²¹⁰ Ra		8953.1	20.				5					73Ha32
220 Pa(α) ²¹⁶ Ac		9829.1	50.				3					87Fa.A
$*^{220}$ Fr(α) ²¹⁰ At	$E(\alpha)=667$	5.2, 6631.0,	6570.2(2,Z) to grour	id-state,	45.0, 10)6.9 le	evels				NDS869**
$*^{220}$ Fr(α) ²¹⁰ At	$E(\alpha)=668$	37.5, 6642.5,	6583.5(2,Z) to grour	nd-state,	45.0, 10)6.9 le	evels				NDS869**
* ²²⁰ Ac(α) ²¹⁰ Fr	E(α)=779	92, 7855 to 4	09.3, 34	9.3 levels								NDS971**
²¹¹ Fr- ²²¹ Fr 159 ²⁰⁹ Fr 841		-3080	60	-3099	24	-0.1	U			P24	2.5	82Au01
221 Rn(α) 217 Po		6146.8	3.				3					77Vy02 Z
221 Fr(α) 217 At		6457.3	2.0	6457.8	1.4	0.2	_					62Wa28 *
		6458.5	2.0			-0.4	_					68Le07 *
	ave.	6457.9	1.4			-0.1	1	99	79 ²¹⁷ At			average
221 Ra(α) 217 Rn		6883.7	5.	6880.4	2.0	-0.7	3					61Ru06 *
		6881.3	3.			-0.3	3					95Ch74 *

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
221 Ra(α) 217 Rn		6878 3	3	6880.4	2.0	0.7	3					97Li23 *
$^{221}Ac(\alpha)^{217}Fr$		7786.2	10	7780	50	-0.1	4					70Bo13
110(00) 11		7782.1	5.	1100	20	0.0	4			Lvn		87De.A
		7791.3	15.			-0.2	4					92An.A
221 Th(α) 217 Ra		8628.5	5.	8626	4	-0.5	5					70To07 Z
		8626.0	10.			0.0	5					70Va13 Z
		8626.4	10.			-0.1	5			Dbb		90An19
		8614.2	10.			1.1	5			GSa		00He17
221 Pa(α) 217 Ac		9247.7	30.				3					89Mi17
$*^{221}$ Fr(α) ²¹⁷ At	$E(\alpha)=634$	1.1(2,Z), 61	25.1(3,2	Z) to ground-	state, 21	7.6 level	l					NDS916**
$*^{221}$ Fr(α) ²¹⁷ At	$E(\alpha)=634$	1.3(2,Z), 61	27.2(3,2	Z) to ground-	state, 21	7.6 level	l					NDS916**
$*^{221}$ Ra(α) ²¹⁷ Rn	$E(\alpha)=676$	1.2, 6668.2,	6613.2,	, 6591.2(5,Z)	to gs, 89	9, 152, 1	76 le	vels				NDS916**
$*^{221}$ Ra(α) ²¹⁷ Rn	$E(\alpha)=661$	0(3,Z) to 14	9.2 leve	:1								97Li23 **
$*^{221}$ Ra(α) 217 Rn	E(α)=675	4, 6662, 660	07() to	ground-state	, 93.02,	149.2 le	vel					97Li23 **
²²² Fr- ²²⁶ Ra		-7410	25	-7401	23	0.4	1	82	82 ²²² Fr	MA3	1.0	92Bo28
213 Fr $-^{222}$ Fr 212 Fr		-1940	60	-1921	25	0.1	Ū	02	52 11	P24	2.5	82Au01
222 Rn(α) ²¹⁸ Po		5590 39	03	5590 3	03	0.0	1	100	99 ²¹⁸ Po	121	2.0	71Gr17 Z
222 Ra(α) ²¹⁸ Rn		6680.0	5	6679	4	-0.2	1	71	65 ²²² Ra			56As38 Z
$^{222}Ac(\alpha)^{218}Fr$		7137.5	2	0077	·	0.2	4		00 14			82Bo04 Z
$^{222}Ac^{m}(\alpha)^{218}Fr^{p}$		7140.3	20.				5					72Es03
222 Th(α) ²¹⁸ Ra		8127.7	10.	8127	5	-0.1	4					70To07
In(a) Ita		8130.7	8.	0127	0	-0.5	4					70Va13
		8126.7	15.			0.0	4					92An.A
		8120.6	10.			0.6	4			GSa		00He17
222 Pa(α) 218 Ac ^m		8697.0	30.	8697	13	0.0	7					70Bo13
		8696.7	15.			0.0	7			GSa		95Ho.C
213 Fr $-^{223}$ Fr $_{087}$ 212 Fr $_{013}$		-1900	60	-1919	25	-0.1	U			P24	2.5	82Au01
223 Fr(α) ²¹⁹ At		5431.6	80.	5562	3	1.6	U					55Ad10
		5562	3				3					01Li44
223 Ra(α) 219 Rn		5978.9	0.3	5978.99	0.21	0.3	_			Orm		62Wa18 *
		5979.1	0.3			-0.4	_			BIP		71Gr17 *
	ave.	5979.00	0.21			0.0	1	100	95 ²¹⁹ Rn			average
$^{223}Ac(\alpha)^{219}Fr$		6783.2	1.0				4					69Le.A *
223 Th(α) 219 Ra		7568	10	7567	4	-0.1	5					87El02 *
		7567.4	10.			-0.1	5			Dbb		90An19 *
		7566.1	5.			0.1	5					92Li09 *
223 Pa(α) 219 Ac		8345.0	10.	8330	50	-0.4	5					70Bo13
		8350.0	15.			-0.5	U			Dbb		90An19
		8339.9	15.			-0.3	U			GSa		95Ho.C
222 210		8321.6	5.			0.1	5			Jya		99Ho28
$^{223}\mathrm{U}(\alpha)^{219}\mathrm{Th}$		8940.9	40.				5					91An10
$*^{223}$ Ra(α) ²¹⁹ Rn	$E(\alpha)=574$	7.0(0.4,Z), 3	5715.7(0).3,Z), 5606.7	7(0.3,Z)							62Wa18 **
*	to 126	5.77, 158.64	, 269.48	levels								NDS018**
$*^{223}$ Ra(α) 219 Rn	$E(\alpha)=574$	7.0(0.40,Z),	5716.2	3(0.29,Z), 56	06.73(0.	30,Z)						71Gr17 **
*	to 126	./7, 158.64	, 269.48	levels		150						NDS018**
$*^{223}Ac(\alpha)^{219}Fr$	$E(\alpha)=666$	1.6, 6646.7,	6563.70	(1.0,Z) to gro	und-stat	e, 15.0,	98.58	IVIS				NDS924**
$*^{223}$ Th(α) ²¹⁹ Ra	$E(\alpha) = 732$	4(10) to 113	5.8, 7285	5(10) 55% to	140.0, 2	26% to 1	52.01	level				92L109 **
$*^{223}$ Th(α) ²¹⁹ Ra	$E(\alpha)=729$	U(10) 55% t	0 140.0,	, 26% to 152.	0 level							92L109 **
$*^{223}$ Th $(\alpha)^{219}$ Ra	E(α)=731	8(5), 7293(5	5), 7281	(5) to 113.8,	140.0, 1	52.0 leve	els					92L109 **
²²³ Fr- ²²⁴ Fr _{.747} ²²⁰ Fr _{.253}		-620	70	-700	50	-0.5	U			P34	2.5	86Au02
222 Fr $-^{224}$ Fr $^{x}_{.496}$ 220 Fr $_{.505}$		10	70	*			U			P24	2.5	82Au01
223 Fr $-^{224}$ Fr $^{x}_{.747}$ 220 Fr $_{.253}$		-410	70	*			U			P24	2.5	82Au01

Item		Input val	ue	Adjusted v	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
223 Fr $-^{224}$ Fr $_{ee4}^{x}$ 221 Fr $_{226}$		-110	70	*			U			P24	2.5	82Au01
224 Ra(α) 220 Rn		5788.93	0.15	5788.85	0.15	0.0	1	100	56 ²²⁰ Rn			71Gr17 Z
$^{224}Ac(\alpha)^{220}Fr$		6326.9	0.7				2					69Le.A *
224 Th $(\alpha)^{220}$ Ra		7304.7	10.	7298	6	-0.6	4					61Ru06
		7304.7	10.			-0.6	4					70Va13
		7300.7	20.			-0.1	U					89An13
		7286.4	10.			1.2	4			GSa		00He17
224 Pa(α) 220 Ac		7695.2	10.	7694	4	-0.2	6					70Bo13 *
		7692.6	10.			0.1	F			Dbb		90An19 *
		7680	15			0.9	U			GSa		95Ho.C
224 220		7693.3	5.			0.1	6					96Li05 *
224 U(α) 220 Th		8624.3	15.	8620	12	-0.3	6					91An10
224 224-		8612.1	20.			0.4	6					92To02
224 Fr(β^{-}) 224 Ra		2830	50				2					75We23
$*^{224}$ Ac(α) 220 Fr	$E(\alpha)=621$	3.8, 6207.0, 6	5141.7, 6	059.8(0.7,Z)								69Le.A **
*	to gro	ound-state, 7.1	, 73.5, 1	56.9 levels								NDS860**
$*^{224}$ Pa(α) 220 Ac	$E(\alpha)=/49$	90(10) to 68.7	I level									NDS9/1**
$*^{224}$ Pa(α) ²²⁰ Ac	F: intensit	ties in contrad	iction w	ith ref.								96L105 **
$*^{224}$ Pa(α) 220 Ac	$E(\alpha)=748$	38(5), 7375(5)	to 68.71	, 184.21 levels	6							NDS971**
224 Fr ^x $-^{225}$ Fr $_{747}$ 221 Fr $_{253}$		50	80	*			U			P24	2.5	82Au01
224 Fr ^x $-^{225}$ Fr $_{498}$ 223 Fr $_{502}$		190	80	*			U			P24	2.5	82Au01
225 Ra(α) 221 Rn		5097	5				2					00Li37
$^{225}Ac(\alpha)^{221}Fr$		5936.1	2.	5935.1	1.4	-0.5	_					67Ba51 Z
		5934.5	2.			0.3	_					67Dz02 Z
	ave.	5935.2	1.4			-0.1	1	99	80 221 Fr			average
225 Th $(\alpha)^{221}$ Ra		6920.7	3.	6921.4	2.1	0.2	4					61Ru06 *
		6922.1	3.			-0.2	4					87Li.A *
225 Pa(α) 221 Ac		7392.5	5.				5			Lvn		87De.A
		7383.5	19.	7390	50	0.2	U					00Sa52
225 U(α) 221 Th		8012.7	20.	8014	7	0.1	6			Dbb		89An13
		8022.9	20.			-0.4	6					89He13
		8021.9	15.			-0.5	6					92To02
		8013.0	20.			0.1	6					94Ye08
225		8010	10			0.4	6			GSa		00He17 *
$^{225}Np(\alpha)^{221}Pa$		8786.5	20.				4					94Ye08
225 Fr(β^{-}) 225 Ra		1820	30				2		225			75We23 *
223 Ra(β^{-}) 223 Ac		360	10	356	5	-0.4	1	23	18 ²²³ Ac			55Ma.A
225	-	360	30			-0.1	U					55Pe24
$*^{225}$ Th $(\alpha)^{221}$ Ra	$E(\alpha)=680$	0.2, 6746.2, 6	503.2, 6	480.2, 6443.2(3,Z)							61Ru06 **
* 225	to gro	ound-state, 53.	2, 299.2	, 321.4, 359.01	evels							NDS90c**
$*^{225}$ Th $(\alpha)^{221}$ Ra	$E(\alpha)=679$	9.3, 6745.3, 6	504.3, 6	483.3, 6447.3(3,Z)							87L1.A **
* 225 x x () 221 mm	to gro	ound-state, 53.	2, 299.2	, 321.4, 359.01	evels							NDS90c**
$*^{225}U(\alpha)^{221}$ Th	$E(\alpha) = 786$	8(15), 7621(1	(5) to gro	bund-state, 250	.9 level							00He17 **
$*^{225}$ Fr(β) ²²⁵ Ra	E =1640	(10). 28% to 2	25.2 lev	el (ref.)								89An02 **
*	but lo	wer levels als	o fed dir	ectly								NDS906**
133Cs-226Ra 588		-109487	9	-109489.0	1.5	-0.2	U			MA3	1.0	92Bo28
.300		-109500	13			0.8	U			MA4	1.0	99Am05
223Fr-226Fr 493 220Fr 507		-800	80	-930	100	-0.7	U			P24	2.5	82Au01
225 Fr-226 Fr 706 221 Fr 204		-570	100	-680	100	-0.5	U			P24	2.5	82Au01
225 Fr $-^{226}$ Fr $_{408}^{224}$ Fr $_{502}^{x}$		-260	90	*			U			P24	2.5	82Au01
226 Ra(α) 222 Rn		4870.70	0.25	4870.62	0.25	0.0	1	100	99 ²²² Rn			71Gr17 Z
226 Ac(α) 222 Fr		5496.1	5.	5536	21	0.8	1	18	18 ²²² Fr			75Va.A Z
226 Th $(\alpha)^{222}$ Ra		6448.5	3.0	6450.9	2.2	0.8	_					56As38 *
		6454.8	3.6			-1.1	_			Dba		75Va.A
	ave.	6451.1	2.3			-0.1	1	94	59 ²²⁶ Th			average

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$^{226}P_{a}(\alpha)^{222}\Delta c$		6986.9	10				5					64Mc21
$^{226}\text{L}(\alpha)^{222}\text{Th}$		7747 4	30	7701	4	_15	U U					73Vi10 *
0(a) 11		7706.6	15	7701	4	-0.4	5					90∆n22
		7701.6	5			-0.4	5			Iva		99Gr28
		7691.4	10			0.0	0			GSa		00He17
		7696.5	10.			0.9	5			GSa		$01C_2 B$
$226 Np(\alpha)^{222} P_{2}$		8180.1	20	8200	50	0.7	8			Oba		01Ca.D
$\operatorname{Inp}(u)$ I a		8205.5	20.	8200	50	_0.2	8					94Ve08
226 Er(β^{-}) 226 Pa		3704	100			0.2	2					87Ve A
$^{226}Ac(B^{-})^{226}Th$		1115	7	1113	5	0.3	2					68Va17
$M(\beta)$ In	ave	1115	6	1115	5	_0.3	1	55	41 226Th			average
$+^{226}$ Th $(\alpha)^{222}$ Pa	$E(\alpha) = 622$	1115	0) to ground a	toto 111	-0.5	1	55	41 11			NDC 978 date
$*$ $\Pi(\alpha)$ Ka $^{226} U(\alpha)^{222} Th$	$E(\alpha)=0.55$ $E(\alpha)=7.42$	$4.0(3, L), 0_2$ $0(20) to 2^+$	224.0(5,Z)	$rac{1}{2}$	lale, III.	12 level						ND56/6**
$* O(\alpha)$ In	$E(\alpha)=745$	0(30) 10 2	level at 1	85.5(0.5)								941608 **
²²⁵ Fr- ²²⁷ Fr.708 ²²⁰ Fr.292		-410	130	-530	100	-0.4	U			P24	2.5	82Au01
²²⁴ Fr ^x - ²²⁷ Fr ₄₉₃ ²²¹ Fr ₅₀₇		-220	80	*			U			P24	2.5	82Au01
$^{227}Ac(\alpha)^{223}Fr$		5042.27	0.14				2					86Ry04 Z
227 Th $(\alpha)^{223}$ Ra		6146.60	0.10	6146.60	0.10	0.0	1	100	95 ²²³ Ra	BIP		71Gr17 *
227 Pa(α) 223 Ac		6581.5	3.	6580.4	2.1	-0.4	5					63Su.A
		6579.3	3.			0.4	5					90Sh15 *
$^{227}U(\alpha)^{223}Th$		7230	30	7211	14	-0.6	6					69Ha32 *
		7206	16			0.3	6					91Ho05
$^{227}Np(\alpha)^{223}Pa$		7815.0	20.	7816	14	0.1	6					90Ni05
1 ()		7818.0	20.			-0.1	6					94Ye08
226 Ra(n, γ) 227 Ra		4561.43	0.27				2			ILn		81Vo03 Z
227 Fr $(\beta^{-})^{227}$ Ra		2476	100				3					75We23
$^{227}Ac(\beta^{-})^{227}Th$		45.5	1.0	44.8	0.8	-0.7	_					55Be20
		43.5	1.5			0.8	_					59No41
	ave.	44.9	0.8			-0.1	1	99	95 ²²⁷ Th			average
$*^{227}$ Th(α) ²²³ Ra	$E(\alpha)=603$	8.01(0.15.7	0. 5977.7	2(0.10.Z). 57	56.89(0.)	15.Z)	-					71Gr17 **
*	to gro	und-state, 6	1.424. 28	6.182 levels	20105(01	,_)						NDS018**
$*^{227}$ Pa(α) ²²³ Ac	$E(\alpha) = 646$	3 6421 63	55 (all err	ors 3 keV es	timated b	w evalu	ator)					90Sh15 **
*	to grou	und-state 4	2.4 50.7	110.06 level	s	, y e , ai a	utor)					NDS018**
$*^{227} U(\alpha)^{223}$ Th	$F(\alpha) = 686$	0(30) to $24'$	7(1) level	110.00 level								NDS **
* C(u) III	L(u)=000	0(50) 10 21	/(1) level									NDD 444
224 Fr ^x $-^{228}$ Fr _{.491} 220 Fr _{.509}		-540	320	*			D		z - 224 z	P24	2.5	82Au01 *
228 Th(α) 224 Ra		5520.17	0.22	5520.08	0.22	0.0	1	100	56 -2-4 Ra			71Gr17 Z
226 Pa(α) 224 Ac		6266.7	3.	6264.5	1.5	-0.7	3					58Hi.A *
		6264.7	3.			-0.1	3					93Sh07 *
228		6263.5	2.			0.5	3					94Ah03 *
$^{228}U(\alpha)^{224}Th$		6803.6	10.				5					61Ru06
228 Pu(α) 224 U		7949.7	20.				7			Dbb		94An02
228 Ra(β^{-}) 228 Ac		46.7	2.	45.8	0.7	-0.4	3					61To10
		45.7	1.			0.1	3					72He.A
		45.7	1.0			0.1	3					95So11
228 Pa(ε) 228 Th		2109	15	2152	4	2.9	U					73Ku09
* ²²⁴ Fr ^x - ²²⁸ Fr _{.491} ²²⁰ Fr	Systematio	cal trends su	uggest ²²⁸	Fr 880 less b	ound							GAu **
$*^{228}$ Pa(α) 224 Ac	$E(\alpha)=611$	9.2(3,Z), 61	106.2(3,Z)), 6079.2(3,Z) to 37.2,	51.9, 7	8.4 le	evels				93Sh07 **
$*^{228}$ Pa(α) 224 Ac	$E(\alpha)=611$	8(3) to 37.2	2 level									93Sh07 **
$*^{228}$ Pa(α) ²²⁴ Ac	E(α)=611	7(2) to 37.1	level									94Ah03 **
²²⁹ Fr- ¹³³ Cs		201262	40				2			MA8	1.0	03We A
$^{229}Ra^{-133}Cs$		197782	21	197769	20	_0.6	1	91	91 229 Ro	MAR	1.0	03We A
229 Th $(\alpha)^{225}$ P		5167 /	1 2	5167.6	10	0.0	1	91	71 Ka	Kum	1.0	71BoB2
m(u) Ka		5168.2	2	5107.0	1.0	_0.1	_			ixani		87He28 7
	01/0	5167.6	2. 1.0			0.5	1	00	05 225 D a			overego
	ave.	5107.0	1.0			0.0	1	77	25 Ka			average

Item		Input v	alue	Adjusted	value	v_i	Dg	Sig	Main flux	Lab	F	Reference
229 Pa(α) 225 Ac		5835.6	5.	5835	4	-0.2	1	71	64 ²²⁵ Ac			63Su.A *
$^{229}U(\alpha)^{225}Th$		6475.5	3.				5					61Ru06 Z
$^{229}Np(\alpha)^{225}Pa$		7012.7	20.	7010	50	0.0	6					68Ha14
- F(m) - F		7015.8	23.			0.0	6					00Sa52
229 Pu(α) 225 U		7592.9	30.	7600	50	0.1	7			Dbb		94An02
		7598.0	10.			0.0	7			GSa		01Ca.B
229 Ra(β^{-}) 229 Ac		1760	40	1810	30	1.2	1	64	56 229 Ac			75We23 *
$^{229}Ac(\beta^{-})^{229}Th$		1140	150	1170	30	0.2	U					73Ch24 *
· ·		1090	50			1.5	1	44	44 229 Ac			75We23 *
$*^{229}$ Th(α) ²²⁵ Ra	$E(\alpha)=49$	78.3(1.2,Z),	4967.3(1	I.2,Z), 4845.	1(1.2,Z)							71Gr17 **
*	to 10	0.60, 111.60), 236.25	levels								71Gr17 **
$*^{229}$ Th(α) ²²⁵ Ra	$E(\alpha) = 49$	979.3(2,Z), 4	1968.3(2,	Z), 4845.1(2	2,Z)							87He28 **
*	to 10	0.60, 111.60), 236.25	levels								NDS906**
*	calib	rated with 7	1BaB2 v	alue for 484	5							AHW **
$*^{229}$ Pa(α) ²²⁵ Ac	$E(\alpha)=56$	70.2, 5630.2	2, 5615.2,	, 5580.2, 553	36.2 (all	3,Z)						63Su.A **
*	to 64	.70, 105.06,	120.80,	155.65, 199.	.85 levels	8						NDS **
$*^{229}$ Ra(β^{-}) 229 Ac	E^- to gro	ound-state										NDS **
$*^{229}$ Ac(β^{-}) ²²⁹ Th	E^- to gro	ound-state										NDS **
230 Ra $-^{133}$ Cs $_{1.729}$		200530	13				2			MA8	1.0	03We.A
230 Ra $-^{226}$ Ra $_{1.018}$		11225	35	11189	13	-1.0	U			MA3	1.0	92Bo28
230 Th(α) 226 Ra		4770.1	1.5	4770.0	1.5	0.0	1	99	99 ²²⁶ Ra			66Ba14 Z
230 Pa(α) 226 Ac		5439.5	0.7	5439.4	0.7	0.0	1	99	86 ²²⁶ Ac			66Ba14 Z
230 U(α) 226 Th		5992.8	0.7				2					66Ba14 Z
$^{230}Np(\alpha)^{226}Pa$		6778.1	20.				6					68Ha14
230 Pu(α) 226 U		7175.0	15.	7180	8	0.3	6					90An22
		7180.1	17.			0.0	6			Jya		99Gr28
		7182.2	10.			-0.2	6			GSa		01Ca.B
²³⁰ Th(p,t) ²²⁸ Th- ²³² Th() ²³⁰ Th		-492.5	0.5	-492.5	0.5	-0.1	1	99	60 230Th			94Le22
²³⁰ Th(d,t) ²²⁹ Th		-541	6	-536.6	2.3	0.7	_					90Bu17
		-525	6			-1.9	_			ANL		67Er02 *
	ave.	-533	4			-0.9	1	28	27 229Th			average
230 Ra(β^{-}) 230 Ac		710	300				3					80Gi04 *
$^{230}Ac(\beta^{-})^{230}Th$		2700	100	2940	300	2.4	В					80Gi04
230 Pa(ε) 230 Th		1310.3	3.	1310.5	2.8	0.1	1	90	87 ²³⁰ Pa			70Lo02
230 Pa(β^{-}) 230 U		561	15	560	5	-0.1	R					70Lo02
* ²³⁰ Th(d,t) ²²⁹ Th	Q=-525(6) to 229 Th ⁿ	¹ at 0.003	5(0.0010)								94He08 **
$*^{230}$ Ra(β^{-}) ²³⁰ Ac	E ⁻ =500(200) to 211	.8 level									NDS935**
231 Pa(α) 227 Ac		5150.4	1.5	5149.9	0.8	-0.4	_					69Le.A *
		5149.8	1.0			0.1	_					76Ba99 *
	ave.	5150.0	0.8			-0.1	1	99	96 ²²⁷ Ac			average
$^{231}U(\alpha)^{227}Th$		5576.9	3.	5576.3	1.7	-0.2	2					94Li12 *
		5576	2			0.1	2					97Mu08
231 Np(α) 227 Pa		6368.4	8.				6					73Ja06
231 Pu(α) 227 U		6838.6	20.				7					99La14
²³¹ Pa(p,t) ²²⁹ Pa		-4133	2	-4133.1	1.6	0.0	_					98Le15
		-4133	3			0.0	_					91Gr13 *
	ave.	-4133.0	1.7			-0.1	1	97	93 ²²⁹ Pa			average
230 Th $(n, \gamma)^{231}$ Th		5118.00	0.20	5118.02	0.20	0.1	1	98	84 231 Th	ILn		87Wh01 Z
$^{231}Ac(\beta^{-})^{231}Th$		2100	100				2					60Ta19
231 Th $(\beta^{-})^{231}$ Pa		389.2	2.	391.6	1.5	1.2	1	55	51 ²³¹ Pa			75Ho14
$*^{231}$ Pa(α) ²²⁷ Ac	$E(\alpha)=50$	15.9(1.5,Z)	to 46.35	level								NDS **
$*^{231}$ Pa(α) ²²⁷ Ac	$E(\alpha)=47$	36.2(1.0,Z)	to 330.04	level								NDS **
$*^{231}U(\alpha)^{227}Th$	$E(\alpha)=54$	71(3), 5456	(3), 5404	(3) to 9.3, 24	4.4, 77.7	levels						94Li12 **
* ²³¹ Pa(p,t) ²²⁹ Pa	Q=-4145	5(3) to 11.6	level									98Le15 **
	-											

Item		Input va	alue	Adjusted v	alue	v _i	Dg	Sig	Main flux	Lab	F	Reference
$C_{18} H_{16} - \frac{232}{222} Th$		87142.4	2.	87145.2	2.1	0.6	1	18	18 ²³² Th	M20	2.5	73Br06
$C_{24}H_{16}$ $-$ ²⁵² Th ⁵⁷ Cl ⁵⁵ Cl		152393.4	1.8	152389.9	2.1	-0.8	1	23	23 ²³² Th	M20	2.5	73Br06
232 Th(α) 228 Ra		4081.6	1.4				2			DID		89Sa01
$^{232}U(\alpha)^{228}Ih$		5413.63	0.09				2			BIP		726033
$^{232}\Lambda_{C}(B^{-})^{232}$ Th		3700	10.				2					75Ja00 00Be B
$^{232}Pa(\beta^{-})^{232}U$		1344	20	1337	7	-03	3					63Bi01
ru(p) e		1336	8	1557	,	0.1	3					71Ka42
k^{232} Th(α) ²²⁸ Ra	$E(\alpha)=401$	12.3(1.4), 394	7.2(2.0) t	o ground-stat	e, 63.8	23 level						NDS973*
$(\alpha)^{228}$ Th	$E(\alpha)=532$	20.12(0.14,Z)	, 5263.36	(0.09,Z) to gr	ound-s	tate, 57.	7591	evel				NDS973*
233 U(α) 229 Th		4908.4	12	4908 5	12	0.2	1	94	68 ²²⁹ Th	Kum		68Ba25
$^{233}Nn(\alpha)^{229}Pa$		5628.5	50	4908.5	1.2	0.2	2	94	00 11	Kum		50Ma14
$^{233}Pu(\alpha)^{229}U$		6416.3	20.				6					57Th10
$^{233}\text{Am}(\alpha)^{229}\text{Np}^p$		6898	17				8					00Sa52
$^{233}Cm(\alpha)^{229}Pu$		7468.5	10.				8			GSa		01Ca.B
232 Th(n, γ) 233 Th		4786.69	0.25	4786.39	0.09	-1.2	_					74Ke13
		4786.34	0.10			0.5	_			Bdn		03Fi.A
	ave.	4786.39	0.09			0.0	1	100	93 ²³³ Th			average
233 Th(β^{-}) 233 Pa		1245	3	1243.1	1.4	-0.6	1	22	15 ²³³ Pa			57Fr.A
233 Pa(β^{-}) 233 U		568	4	570.1	2.0	0.5	-					54Br37
		568	5			0.4	-					55On05
		568	5			0.4	1	50	40 23311			63BI03
$(\beta^{-})^{233}$ Pa	PrvCom t	to ref.	2.0			0.8	1	58	40 0			58St50 *
234 U(α) 230 Th		4857.4 4860.4	1.0 2.	4857.7	0.7	0.4 -1.3	-					55Go.A 67Ba43
	ave.	4857.9	0.9			-0.2	1	57	36 ²³⁴ U			average
234 Pu(α) 230 U		6310.1	5.				3					60Ho.A
234 Am(α) 230 Np ^p		6572.6	20.				8					90Ha02
234 Cm(α) 230 Pu		7365.2	10.				7			GSa		01Ca.B
²³⁴ U(d,t) ²³³ U		-579	6	-587.4	2.1	-1.4	1	12	11 ²³³ U	ANL		67Er02
234 Th $(\beta^{-})^{234}$ Pa ^m		192	2	195.1	1.0	1.5	3					55De40
		193	2			1.0	3					63Bj02
234p m (m) 234p		198.	1.5			-1.9	3					/3G040
$^{234}N_{P}(\theta^{+})^{234}U$		/8	3	1910	0	0.2	4					NDS 67Uo04
$\operatorname{Inp}(p)$ 0		1812	10	1810	0	-0.2	2					67Wa09
k^{234} Pu $(\alpha)^{230}$ U	With corr	ection like in	ref.			0.5	2					91Ry01 *
²³⁵ U C H		06022.8	2.9	06020 7	2.0	12	п			M20	25	72 P +06
$C_{18} H_{18} = -235 H_{18}$		- 20232.8	5.0 4.8	-90920.7	∠.0 2.0	1.5 _1.1	U			M20	2.3 2.5	73Br06
$^{235}U(\alpha)^{231}Th$		4678	2	4678.3	0.7	0.1	_			11120	2.5	60Ba44
		4681	3		,	-0.9	_					60Vo07
		4675.5	3.0			0.9	_					64Sc27
		4677	3			0.4	_					66Ga03
225 221	ave.	4677.9	1.3			0.3	1	29	17 ²³⁵ U			average
$^{235}Np(\alpha)^{231}Pa$		5197.2	2.0	5194.0	1.5	-1.6	1	56	42 ²³¹ Pa	Bka		73Br12
235 Pu(α) 231 U		5951.5	20.				3					57Th10
233 Am(α) 231 Np ^p		6552	100		0.57	<u> </u>	8					99Sa.D
$U(n,\gamma)^{2/3}$ U		5297.1	0.5	5297.49	0.23	0.8	-					72Ri08
		5297.4	0.5			0.3	1	01	50 2341			//K015
	ave.	5297.32	0.26			0.6	1	81	50 2540			average

235 Th $(\beta^{-})^{235}$ Pa		1470	80	1920	70	5.7	В					89Yu01
235 Pa(β^{-}) 235 U		1410	50				2					68Tr07
$^{235}Np(\epsilon)^{235}U$		123.5	2.	124.2	0.9	0.4	-					58Gi05
		123.6	1.			0.6	-		225			72Mc25
225 221	ave.	123.6	0.9			0.7	1	91	86 ²⁵⁵ Np			average
* $^{255}Np(\alpha)^{251}Pa$	$E(\alpha)=510$ to gs a	15.2(3), 5097. and levels at 1	2(3), 5050 9.21, 58.5).8(2,Z), 5024 7, 84.21, 183	4.8(2,Z), 4 .50	1924.8(2	2,Z)					AHW ** NDS018**
$236U(\alpha)^{232}$ Th		4573 1	1.0	4573-1	0.9	0.0	1	78	60 ²³² Th			78Ba C
$^{236}Pu(\alpha)^{232}I$		5867.15	0.08	4575.1	0.9	0.0	3	70	07 11			84Rv02 Z
$^{235}U(n \gamma)^{236}U$		6545	2	6545 45	0.26	0.2	Ŭ					70Ka22
0(11,7) 0		6545.1	0.5	05-15.15	0.20	0.7	_					74Ju.B Z
		6545.4	0.5			0.1	_					75We.A Z
	ave.	6545.2	0.4			0.6	1	54	32 ²³⁶ U			average
236 Pa(β^{-}) 236 U		3350	100	2900	200	-4.5	в					63Wo04
		2900	200				2					68Tr07
236Npm(IT)236Np		60	50				5					NDS915
$^{236}Np^{m}(\beta^{-})^{236}Pu$		525	10	537	6	1.2	4					56Gr11
1 1 1		544	8			-0.9	4					69Le05
237 Np(α) 233 Pa		4956.7	1.5	4958.3	1.2	1.0	_			Kum		68Ba25 *
• • •		4959.9	3.			-0.5	-					69Va06
	ave.	4957.3	1.3			0.7	1	77	75 ²³³ Pa			average
237 Pu(α) 233 U		5747	5	5748.4	2.3	0.3	1	21	15 ²³³ U			93Dm02
237 Am(α) 233 Np ^p		6146.2	5.				4					75Ah05 Z
236 U(n, γ) 237 U		5125.9	0.5	5125.8	0.5	-0.3	1	83	83 ²³⁷ U	BNn		79Vo05 Z
237 Pa(β^{-}) 237 U		2250	100				2					74Ka05
$C_{18} H_{22} - \frac{238}{U}$		121366.0	2.4	121362.5	2.0	-0.6	1	12	12 ²³⁸ U	M20	2.5	73Br06
$C_{24}^{10}H_{20}^{22}-238U^{35}Cl_2$		168010.8	1.4	168007.0	2.0	-1.1	1	34	34 ²³⁸ U	M20	2.5	73Br06
$^{238}U(\alpha)^{234}Th$		4271.5	5.	4269.7	2.9	-0.3	2					57Ha08 Z
		4265.1	5.			0.9	2					60Vo07 Z
		4272.9	5.			-0.6	2					61Ko11 Z
238 Pu(α) 234 U		5593.20	0.2	5593.20	0.19	0.4	1	90	76 ²³⁸ Pu			71Gr17 Z
238 Am(α) 234 Np		6041.7	30.				3					72Ah04
$^{238}Cm(\alpha)^{234}Pu$		6611.5	50.	6620	40	0.2	4					48St.A *
		6632.0	50.			-0.2	4					52Hi.A
238 U(n, α) 235 Th		8700	50				2					81Wa11
$^{237}Np(n,\gamma)^{238}Np$		5488.32	0.20				2			BNn		79Io01 Z
238 Pa(β^{-}) 238 U	_	3460	60				2					85Ba57 *
$*^{238}$ Cm(α) 234 Pu	PrvCom to	o ref.										58St50 **
$*^{238}$ Pa(β^{-}) 238 U	Reports re	esult from the	esis									82Gi.A **
239 Pu(α) 235 U		5244.60	0.25	5244.51	0.21	-0.4	1	68	44 ²³⁹ Pu			79Ry.A *
$^{239}Am(\alpha)^{235}Np$		5924.6	2.0	5922.4	1.4	-1.1	2			Bka		71Go01 *
		5920.2	2.0			1.1	2					75Ah05 *
239 Cf(α) 235 Cm ^p		7760.1	25.				10					81Mu12
238 U(n, γ) 239 U		4806.55	0.30	4806.38	0.17	-0.6	2			ANL		72Bo46 Z
		4806.30	0.21			0.4	2			ILn		79Br25 Z
238 Pu(n, γ) 239 Pu		5646.7	0.5	5646.2	0.3	-1.0	1	38	24 ²³⁸ Pu			75Ma.A Z
239 Np(β^{-}) 239 Pu		722.5	1.0	722.5	1.0	0.0	1	98	98 ²³⁹ Np			59Co63
$*^{239}$ Pu(α) ²³⁵ U	$E(\alpha)=515$	6.59(0.25,Z)	to 0.08 le	vel								NDS **
$*^{239}$ Am(α) ²³⁵ Np	$E(\alpha)=582$	24.6(4,Z), 577	75.6(2,Z),	5733.6(2,Z) t	to gs, 49.1	0, 91.6	levels					NDS033**
$*^{239}$ Am(α) ²³⁵ Np	$E(\alpha)=577$	2.7(2,Z) to 4	9.10 level									NDS033**

Item		Input	value	Adjusted	l value	v _i	Dg	Sig	Main flux	Lab	F	Reference
240 Pu(α) ²³⁶ U 240 Am(α) ²³⁶ Np ^p		5255.88 5468.9	0.15 1.0	5255.75	0.14	-0.3	1 3	90	59 ²³⁶ U			72Go33 Z 70Go42 Z
240 Cm(α) 236 Pu		6397.8	0.6				4			Kum		71BaB2 *
$^{240}Cf(\alpha)^{236}Cm$		7718.9	10.				8					70Si19
239 Pu(n, γ) 240 Pu		6534.1	1.0	6534.20	0.23	0.1	-					70Ch.A
		6534.3	0.4			-0.3	-					74Ju.B Z
	91/4	6534.2	0.4			0.0	1	73	4.1 239 D u			JJWE.A Z
$240 \text{ LI}(B^{-})^{240} \text{ Nm}^{m}$	ave.	386	20	380	22	-0.1	R	13	41 Fu			53Kn23
$^{240}Nn^{m}(IT)^{240}Nn$		20	15	500	22	0.5	3					81Hs02
$^{240}Np(\beta^{-})^{240}Pu$		2199	30	2188	15	-0.4	2					510r.A
$^{240}Np^{m}(\beta^{-})^{240}Pu$		2210	20	2208	21	-0.1	R					59Bu20
$^{240}\text{Am}(\varepsilon)^{240}\text{Pu}$		1395	35	1385	14	-0.3	R					72Ah07
$*^{240}$ Cm(α) ²³⁶ Pu	E(α)=6290	0.5, 6247.7(0.6,Z) to g	round-state,	44.63 leve	1						NDS915**
241 Pu(α) 237 U		5139.6	3.	5140.0	0.5	0.1	_					68Ah01 *
		5139.3	1.2			0.6	_			Kum		68Ba25 *
	ave.	5139.3	1.1			0.6	1	18	17 ²³⁷ U			average
241 Am(α) 237 Np		5637.81	0.12	5637.82	0.12	0.1	1	100	98 ²³⁷ Np			71Gr17 *
$^{241}Cm(\alpha)^{237}Pu$		6182.8	2.0	6185.2	0.6	1.2	U					67Ba42 *
		6185.2	0.6			0.0	-			Kum		71BaB2 *
		6185.0	2.0			0.1	_					75Ah05 *
241 an 227 a 1	ave.	6185.2	0.6			0.0	1	99	94 ²³⁷ Pu			average
$^{241}Cf(\alpha)^{237}Cm^{p}$		7459.0	5.	0250	20		9					70Si19
$E^{\alpha}E^{\alpha}S^{\alpha}B^{\alpha}B^{\alpha}B^{\beta}B^{\beta}B^{\beta}B^{\beta}B^{\alpha}B^{\alpha}B^{\alpha}B^{\alpha}B^{\alpha}B^{\alpha}B^{\alpha}B^{\alpha$		8064.1	30.	8250	20	6.2	C 11			GSa		85H1.A *
240 P u(p 20241 P u		6230.2 5241-3	20.	5241 521	0.030	0.3	11			USa		75Ma A
ru(ii,γ) ru		5241.5 5241.52	0.7	5241.521	0.050	0.3	1	100	62 241 Pu	Пп		98Wb01 7
241 Am(d t) 240 Am		-388	15	-390	14	-0.1	2	100	02 I U	Kon		76Gr19
$^{241}Np(\beta^{-})^{241}Pu$		1360	100	1300	70	-0.6	2			nop		59Va32
- P(P) /		1250	100			0.5	2					66Qa02
241 Pu(β^{-}) 241 Am		20.8	0.2	20.78	0.13	-0.1	_					56Sh31
		20.7	0.3			0.3	-					99Dr13
		20.78	0.20			0.0	-					99Ya.A
241 241	ave.	20.77	0.13			0.1	1	100	98 ²⁴¹ Am			average
$^{241}Cm(\varepsilon)^{241}Am$		767.5	1.2	767.4	1.2	-0.1	1	95	95 ²⁴¹ Cm			89Su.A *
$*^{241}$ Pu(α) ²³⁷ U	$E(\alpha)=4896$	5.6(3,Z), 48	53.6(3,Z) t	o 159.96, 20	4.19 levels	3						NDS869**
$*^{241}$ Pu(α) ²³⁷ U	$E(\alpha) = 4896$	5.3(1.2,Z), 4	853.3(1.2,	Z) to 159.96	, 204.19 le	vels						NDS869**
$*^{241}$ Am $(\alpha)^{237}$ Np	$E(\alpha)=5483$	5.56(0.12,Z)), 5442.80(0.13,Z) to 59	9.54, 102.9	6 levels						NDS **
$*^{241}$ Cm(α) ²³⁷ Pu	$E(\alpha) = 6080$	J.6(2, Z), 59	26.6(2,Z) t	o ground-sta	$201 181_{\circ}$	level						NDS869**
$*^{241}$ Cm(α) ²³⁷ Pu	$E(\alpha) = 5939$	9.0(0.0,Z), 3 2 7(2 7) 58	884.7(0.0, 84.7(2,7)	Z) to 145.54 a 145.54, 20	, 201.18 le	veis						NDS869**
$*^{241}E_{s}(\alpha)^{237}B_{Lp}$	$E(\alpha)=393\alpha$	$(2, \mathbb{Z}), 30$	04.7(2,2) l roup (payt	0 145.54, 20	h safar	, ,						06Ni00 **
$*^{241}$ Cm $(\varepsilon)^{241}$ Am	$Q(\varepsilon)=5.5(1)$	1.2) to 636.8	36 level	nem) is mue	ii saici							AHW **
242		1007.0	•	1001 5	1.0							52.4
$-Pu(\alpha)^{200}U$		4987.3	2.0	4984.5	1.0	-1.4						55AS.A *
		4707.J 1987 0	5.0			-1./	U			Kum		58Bo25 +
	ave	4984 1	1.2			0.4	1	93	54 238 I I	ixuiii		average *
$^{242}Am(\alpha)^{238}Nn$	ave.	5587 5	0.5	5588 50	0.25	2.0	U I	25	J- U			79Ba67 *
		5589.9	0.8	2200.20	0.20	-1.8	Ŭ					90Ho02 *
242 Cm(α) 238 Pu		6215.63	0.08			1.0	2					71Gr17 Z
$^{242}Cf(\alpha)^{238}Cm$		7516.9	4.				5					70Si19 Z
242 Es(α) 238 Bk ^p		7982.2	30.	8053	20	2.4	С			GSa		85Hi.A
		8053.2	20.				11			GSa		96Ni09

Item		Input v	alue	Adjust	ed value	v _i	Dg	Sig	Main flux	Lab	F	Reference
$\begin{array}{c} {}^{241}\mathrm{Pu}(\mathbf{n},\gamma)^{242}\mathrm{Pu}\\ {}^{241}\mathrm{Am}(\mathbf{n},\gamma)^{242}\mathrm{Am}\\ {}^{242}\mathrm{Np}(\beta^{-})^{242}\mathrm{Pu}\\ {}^{242}\mathrm{Pu}(\alpha)^{238}\mathrm{U}\\ {}^{242}\mathrm{Pu}(\alpha)^{238}\mathrm{U}\\ {}^{242}\mathrm{Pu}(\alpha)^{238}\mathrm{U}\\ {}^{242}\mathrm{Pu}(\alpha)^{238}\mathrm{U}\\ {}^{242}\mathrm{Au}(\alpha)^{238}\mathrm{U} \end{array}$	$E(\alpha) = 4904$ $E(\alpha) = 4905$ $E(\alpha) = 4900$ $E(\alpha) = 4900$	6309.5 5537.64 2700 4.6, 4860.6((5.2(3,Z), 486 0.4(1.2,Z), 4	0.7 0.1 200 2,Z) to gr 63.2(3,Z) .856.1(1.1	6309.7 round-stat to ground 2,Z) to gro	0.7 e, 44.916 d-state, 44 pund-state	0.3 level .916 leve , 44.916	1 2 2 el level	96	61 ²⁴² Pu	ILn		72Ma.A 88Sa18 Z 79Ha26 NDS029** NDS029** NDS029**
$*^{242} \text{Am}(\alpha)^{238} \text{Np}$	$E(\alpha)=5208$ $E(\alpha)=5208$	3.3(0.8,Z), 5	141.4(0.	9,Z) from 9,Z) from	$^{242}\text{Am}^m$ t	o 342.439	9, 407. , 407.	58 lvl	s			NDS029** 90Ho02 **
$^{243} \Delta m(\alpha)^{239} Np$		5438.8	1.0	5438.8	1.0	0.0	1	98	96 ²⁴³ Am	Kum		68Ba25 *
$^{243}Cm(\alpha)^{239}Pu$		6168.8	1.0	5450.0	1.0	0.0	2	70	<i>yo 1</i> m	Rum		69Ba57 *
243 Bk(α) 239 Am		6874.4	4.				3					66Ah.A Z
$^{243}Cf(\alpha)^{239}Cm^p$		7178	10				5					67Fi04 *
243 Es(α) 239 Bk		8072.1	10.				10					89Ha27
243 Es(α) 239 Bk ^p		8031.4	3.				11					89Ha27
242 222		8027.3	20.	8031	3	0.2	U			GSa		93Ho.A
243 Fm(α) 239 Cf		8689.1	25.				11	_	242-			81Mu12
242 Pu(n, γ) ²⁴³ Pu		5034.2	3.	5034.2	2.6	0.0	1	75	75 ²⁴³ Pu			76Ca25
243 Pu(β^{-}) 243 Am		578	10	579.4	2.9	0.1	-					69Ho10
		580	10			-0.1	1	17	1.2 243 Du			//Dr0/
$*^{243} \Lambda m(\alpha)^{239} Nn$	$F(\alpha) = 5275$	3/9 (107) 5	222 2(1)	(7) to 7	66 117 8	0.1 1 Javale	1	17	15 - Pu			NDS **
$*^{243}Cm(\alpha)^{239}Pu$	$E(\alpha) = 5275$ $E(\alpha) = 5785$	5.2(1.0,Z), 5 5.7(1.0,Z), 5	742 8(1)	(0,Z) to 74	5 46 330	4 ICVCIS 13 levels						NDS **
$*^{243}Cf(\alpha)^{239}Cm^{p}$	Unhindered	$1 E(\alpha) = 706$	0(10) th	ere is a w	eaker E(α	=7170(1)	0)					AHW **
		(01)				,(-	,					
$^{244}_{244}$ Pu(α) $^{240}_{240}$ U		4665.6	1.0				2					69Be06 Z
$^{244}Cm(\alpha)^{240}Pu$		5901.74	0.05				2			BIP		71Gr17 *
244 Bk(α) 240 Am		6778.8	4.	7220.0	1.0	0.0	3					66Ah.B *
$\sin Cr(\alpha)^{2}$ Cm		7327.1	2.	/328.9	1.8	0.9	5					675:08 Z
244 Es(α) 240 Bkp		76964	20			-1.0	7					73Es02
244 Pu(t α) 243 Nn ^p		12405	10				2					79E102
244 Pu(d,t) ²⁴³ Pu		234	5	236	4	0.4	1	69	65 ²⁴⁴ Pu	ANL		76Ca25
$^{243}Am(n,\gamma)^{244}Am^{m}$		5277.90	0.07				2			ILn		84Vo07 Z
²⁴⁴ Am ^m (IT) ²⁴⁴ Am		85.0	1.0	88.6	1.7	3.6	F					84Ho02 *
244 Am(β^{-}) 244 Cm		1427.3	1.0				3					62Va08 *
$*^{244}$ Cm(α) ²⁴⁰ Pu	$E(\alpha)=5804$	1.77(0.05,Z)	, 5762.10	5(0.03,Z)	to ground-	state, 42	.82 le	vel				NDS904**
$*^{244}$ Bk(α) ²⁴⁰ Am	$E(\alpha) = 6667$	7.5(4,Z), 66	25.5(3,Z)	to ground	d-state, 42	.82 level						NDS904**
$*^{244} \text{Am}^{m}(\text{IT})^{244} \text{Am}$	F: value in	Fig. 1 only	, no sour	ce no erro	r							AHW **
$*^{2^{++}}Am(\beta^{-})^{2^{++}}Cm$	$E^{-}=38/(1)$	to 1040.18	level									NDS86b**
245 Cm(α) 241 Pu		5623	1				2			Kum		75Ba65
245 Bk(α) 241 Am		6454.7	4.	6454.5	1.4	0.0	2					74Po08 *
		6454.5	1.5			0.0	2					75Ba25 *
$^{245}Cf(\alpha)^{241}Cm$		7257.5	2.0	7258.5	1.9	0.5	2					67Fi04
		7265	5			-1.3	2					96Ma72
245 Es(α) ²⁴¹ Bk		7909.4	3.				3					89Ha27
245 Es(α) ²⁴¹ Bk ^p		7858.5	1.				4					89Ha27
245 Fm(α) ²⁴¹ Cf ^p		8285.5	20.				11			C C		67Nu01
244 Pu $(d p)^{245}$ Pu		8824.3 2558	20.	2546	14	0.8	15			USa A NI		90IN109 *
245 Pu($(R-)^{245}$ Am		2338	30	1206	14	-0.8	P			ANL		73ELA *
$*^{245}$ Bk(α) ²⁴¹ Am	$F(\alpha) = 6340$	0 6309 0	6146.0 4	1200 5886 0 (at	147)	-1.7	к					91Rv01 **
*	to grou	ind-state, 41	.18. 205	.88. 471 8	1 levels							NDS945**
$*^{245}$ Bk(α) ²⁴¹ Am	$E(\alpha) = 6347$	7.8. 6307.8	6146.8.	5885.8 rec	alibrated	as in ref						91Rv01 **
*	to grou	ind-state, 41	.18, 205	.88, 471.8	1 levels							NDS929**
$*^{245}$ Md ^m (α) ²⁴¹ Es ^p	Second E(x) 8635(20))									96Ni09 **
* ²⁴⁴ Pu(d,p) ²⁴⁵ Pu	Q=2252(15	5) to 306 lev	/el									NDS **

Item		Input v	alue	Adjusted	value	v _i	Dg	Sig	Main flux	Lab	F	Reference
246 Cm(α) 242 Pu		5474 9	2	5475 1	0.9	0.1	_			Kum		66Ba07
cin(u) ru		5475.2	1.	5475.1	0.9	-0.1	_			Rum		84Sh31
	ave.	5475.1	0.9			0.0	1	99	99 ²⁴⁶ Cm			average
$^{246}Cf(\alpha)^{242}Cm$		6861.6	1.				3					77Ba69
246 Es(α) 242 Bk ^p		7492.0	4.				5					89Ha27
46 Fm $(\alpha)^{242}$ Cf		8371.4	20.	8378	12	0.3	6					66Ak01
		8376.5	20.			0.1	6					67Nu01
		8386.7	20.			-0.4	6			GSa		96Ni09
246 Md(α) 242 Es		8884.7	20.				12			GSa		96Ni09
244Pu(t,p)246Pu		2085	20	2071	15	-0.7	1	57	54 ²⁴⁶ Pu	LAl		79Br19
246Cm(d,t)245Cm		-196	6	-200.4	1.5	-0.7	U			ANL		67Er02
246 Pu(β^-) 246 Am ^m		374	10	371	9	-0.3	1	89	46 ²⁴⁶ Pu			56Ho23
$^{246}Am^{m}(IT)^{246}Am$		30	10				2					84So03
$^{246}\text{Am}^{m}(\beta^{-})^{246}\text{Cm}$		2420	20	2406	15	-0.7	1	57	57 246 Am ^m	1		56Sm85
246 Bk(ε) 246 Cm		1350	60				2					89Sc.A
246 Cm(α) 242 Pu	$E(\alpha) = 5385.3$	8(2,Z), 534	42.3(2,Z) t	to ground-sta	ate, 44.54	l level						NDS025*
246 Cm(α) 242 Pu	$E(\alpha) = 5385.6$	5(1,Z), 534	42.6(1,Z) t	to ground-sta	ate, 44.54	l level						NDS025*
$^{246}Cf(\alpha)^{242}Cm$	$E(\alpha) = 6750.0$)(1.0,Z), 6	708.2(1.0,	,Z) to ground	d-state, 4	2.13 leve	el					NDS *
$^{247}Cm(\alpha)^{243}Pu$		5354.6	4.	5353	3	-0.3	1	71	63 ²⁴⁷ Cm			71Fi01
$^{247}Bk(\alpha)^{243}Am$		5889.6	5.		-		2					69Fr01
$^{247}\mathrm{Cf}(\alpha)^{243}\mathrm{Cm}^p$		6399.6	5.				4					84Ah02
247 Es(α) 243 Bk ^p		7443.8	1.				5					89Ha27
247 Fm(α) 243 Cf		8060.8	50.	8213	18	3.0	U			Dba		67Fl15
		8213	18				6					89He03
247 Fm ^m (α) ²⁴³ Cf		8314.9	30.	*			F					67Fl15
		8260.0	30.	*			F			GSa		97He29
$^{247}\mathrm{Md}^m(\alpha)^{243}\mathrm{Es}^p$		8567.0	25.	8564	16	-0.1	12					81Mu12
		8562.9	20.			0.1	12			GSa		93Ho.A
246Cm(d,p)247Cm		2931	8	2931	4	0.0	1	25	24 ²⁴⁷ Cm	ANL		67Er02
247 Cf(ε) 247 Bk		646	6				3					56Ch.A
247 Cm(α) 243 Pu	$E(\alpha) = 5267.3$	8(4,Z), 52	12.3(4,Z),	4870.3(4,Z)	to gs, 58	3.1, 402.0	5 level					NDS928*
247 Bk(α) 243 Am	$E(\alpha) = 5794, :$	5710, 568	8(5,Z) to g	gs, 84.0, 109	0.2 levels							NDS928*
247 Fm(α) 243 Cf	$E(\alpha) = 8060(1)$	15) summ	ed with e ⁻									AHW *
247 Fm ^{<i>m</i>} (α) ²⁴³ Cf	Only one cas	se										97He29 *
$Fm^{m}(\alpha)^{2+3}Cf$	Not found in	later wor	k on ²⁵¹ No	o decay								01He35 *
248 Cm(α) 244 Pu		5161.81	0.25	5161.73	0.25	0.0	1	100	68 ²⁴⁸ Cm			77Ba69 2
$^{248}Cf(\alpha)^{244}Cm$		6361.2	5.				3					84Ah02
248 Es(α) 244 Bk		7165.8	20.	7160#	50#	-0.3	F					84Li.A
248 Es(α) 244 Bk ^p		7020.4	5.				5					89Ha27
248 Fm(α) 244 Cf		8009.4	30.	8002	11	-0.2	6					66Ak01
		7999.3	20.			0.2	6					67Nu01
		8002.3	15.			0.0	6					85He.A
248 Md(α) 244 Es ^p		8497.3	30.				9					73Es01
²⁴⁸ Cm(p,t) ²⁴⁶ Cm	-	-2894	15	-2887	5	0.5	1	10	10 ²⁴⁸ Cm	ANL		74Fr01
²⁴⁸ Cm(d,t) ²⁴⁷ Cm		49	8	44	5	-0.6	1	35	23 ²⁴⁸ Cm	ANL		67Er02
$^{248}\text{Bk}^{m}(\beta^{-})^{248}\text{Cf}$		870	20				4					78Gr10
$^{248}Cf(\alpha)^{244}Cm$	$E(\alpha) = 6257.8$	8(5,Z), 62	16.8(5,Z) t	to ground-sta	ate, 42.97	level						NDS86c*
249 Bk(α) ²⁴⁵ Am		5520.4	2.0	5525.0	2.3	2.3	5					66Ah.A
		5526.1	1.0			-1.1	5			Kum		71BaB2
$^{249}Cf(\alpha)^{245}Cm$		6296.0	0.7			-	3			Kum		71BaB2
249 Es(α) 245 Bk ^p		6881.3	5.	6886.0	1.9	0.9	4					70Ah01
		6886.8	2.		-	-0.4	4					89Ha27
249 Fm(α) 245 Cf ^p		7663.3	20.	7658	15	-0.3	4					73Es01
		7650.1	23.			0.3	4			GSa		85He06
249 Md(α) 245 Es ^p		8161.3	20.	8163	14	0.1	5					73Es01
		8157.3	20.			0.3	U			GSa		85He22
		8165	20			-0.1	5			GSa		01He35

Item	Input	value	Adjuste	d value	v _i	Dg	Sig	Main flux Lab	F	Reference
249 Md ^{<i>m</i>} (α) ²⁴⁵ Es ^{<i>q</i>}	8212.2	20.				7		GSa		01He35
248 Cm(n, γ) 249 Cm	4713.37	0.25				2		ILn		82Ho07 Z
249 Bk(β^{-}) 249 Cf	125	2	124.0	1.4	-0.5	4				59Va02
240	123	2			0.5	4				74GI10
$*^{249}$ Bk(α) ²⁴⁵ Am	$E(\alpha)=5431.8, 541$	12.8, 538	4.8(all 2,Z)	to gs, 19.	20, 47.07	levels				NDS929**
$*^{249}$ Bk $(\alpha)^{249}$ Am	$E(\alpha) = 543/.1(1.0, \alpha)$,Z) to gro	ound-state. I	Energies of	of higher	branch	les			/1BaB2 **
* +249Cf(a))245Cm	$E(\alpha) = 6102.8(0.7)$	7 5912	er, calibrate $2(1,0,7)$ to	d with sar	ne ground	1 State	α.			/5Ba2/ **
$*^{249}Md(\alpha)^{245}E_{e}^{p}$	$E(\alpha) = 0193.8(0.7)$,Z), 3013	$(1.0, \mathbb{Z})$ to	ground-s	trone	10 100	51			01He35 **
* $\operatorname{Mu}(\alpha)$ Es	$E(\alpha) = 8022(20) p$	artiy sun			luons					0111033 **
250 Cf(α) 246 Cm	6129.1	0.6	6128.44	0.19	-1.1	2		Kum		71BaB2
	6128.44	0.2			0.4	2				86Ry04 Z
250 Fm(α) 246 Cf	7540.7	30.	7557	12	0.5	4				66Ak01
	7561.1	30.			-0.1	4				73Es01
	/560.1	15.			-0.2	4				//Be36
$250 M d(\alpha)^{246} E_{\alpha} P$	7550.0	33. 20	7050	17	0.0	4				72E=01
$Mu(\alpha) \to Es^{\alpha}$	7947.4	30. 20	1939	17	0.4	7				75ESU1 85He22
248 Cm(t n) 250 Cm	2064	10			-0.5	2				73Ba72
Cin(t,p) Cin	2004	10				2				150012
$^{251}Cf(\alpha)^{247}Cm$	6175.8	1.0				2		Kum		71BaB2 *
251 Es(α) 247 Bk	6593.5	5.	6596.7	2.6	0.6	3				70Ah01 *
	6597.8	3.			-0.4	3				79Ah03 *
251 Fm(α) ²⁴⁷ Cf	7425.1	2.0				4				73Ah02 *
251 Md(α) ²⁴⁷ Es ^p	7672.5	20.				7				73Es01
251 No(α) 247 Fm ^p	8739.5	20.	8757	9	0.8	8		Bka		67Gh01
	8732.4	15.			1.6	U		GSa		89He03
	8/62.9	20.			-0.5	0		GSa		9/He29
$251 No^{m}(\alpha)^{247} Em^{q}$	8610.6	20.			-0.4	8		GSa		07He20
$^{251}Cm(\beta^{-})^{251}Bk$	1420	30. 20				4		USa		78L 013
$^{251}\text{Bk}(\beta^{-})^{251}\text{Cf}$	1093	10				3				84Li05
$*^{251}Cf(\alpha)^{247}Cm$	$E(\alpha) = 5680 \ 1(1 \ 0)$	Z to 40°	3 6(1 0) leve	-1		0				NDS926**
$*^{251}Es(\alpha)^{247}Bk$	$E(\alpha) = 6488.5(5.Z)$	0.6458.5	$\mathbf{i}(5,\mathbf{Z})$ to gro	und-state.	29.9 lev	el				NDS926**
$*^{251}$ Es(α) ²⁴⁷ Bk	$E(\alpha) = 6492.8(3.Z)$), 6462.8	(3.Z) to gro	und-state.	29.9 lev	el				NDS926**
$*^{251}$ Fm(α) ²⁴⁷ Cf	$E(\alpha) = 7305.7(3,Z)$), 6833.7	(2,Z) to gro	und-state	and 480.4	4 level				NDS926**
$*^{251}$ No ^m (α) ²⁴⁷ Fm ^q	Only 2 cases. See	e ²⁵⁵ Rf ^m (α)							97He29 **
$*^{251}$ No ^m (α) ²⁴⁷ Fm ^q	Not found in later	r work or	n ²⁵¹ No deca	ау						01He35 **
$252Cf(\alpha)^{248}Cm$	6216.05	0.04				n				86D-01 7
252 Es(α) ²⁴⁸ B ¹ / _p	6730 5	3				4				73Ei06
252 Em(α) ²⁴⁸ Cf	7152.7	5. 2				-+ 1				84Ah07 -
$^{252}No(\alpha)^{248}Fm$	8545.9	20	8550	6	0.2	Т.				67Gh01
110(0) 1111	8551.0	6	0550	0	-0.2	7				77Be09
	8542.8	15.			0.5	7				85He.A
252 Lr(α) 248 Md ^p	9163.8	20.				11		GSa		01He35
252 Es(ε) 252 Cf	1260	50				3				73Fi06 *
$*^{252}$ Es(α) ²⁴⁸ Bk ^p	$E(\alpha) = 6632.1(3,Z)$), 6522.1	(3,Z) to 0, 7	70.64 abov	ve ²⁴⁸ Bk ^p					NDS898**
$*^{252}$ Fm(α) ²⁴⁸ Cf	$E(\alpha) = 7038.9(2,Z)$), 6998.1	(2,Z) to gro	und-state,	41.53 le	vel				NDS902**
$*^{252}Es(\epsilon)^{252}Cf$	pK to 969.83 leve	el, recalci	ulated for no	on-unique	first forb	idden	or			AHW **
*	allowed trans	ition; uni	ique first for	bidden w	ould give	1440((100)			AHW **
$253Cf(\alpha)^{249}Cm$	6107 2	5	6126	4	0.2	2				66 P ~01
Ci(u) Cill	6124.5	5. 5	0120	4	-0.5	3				68Be21 *
253 Es(α) ²⁴⁹ Bb	6730 24	5. 0.05			0.5	5				71Gr17 7
$L_{3}(u) DK$	0739.24	0.05				5				/1011/ Z

Item	Inputy	value	Adjust	ted value	v _i	Dg	Sig	Main flux Lab	F	Reference
253 Em $(\alpha)^{249}$ Cf	7199	3				4				67Ah02 *
$^{253}No(\alpha)^{249}Fm$	8419	20	8421	8	0.1	5		Bka		67Gh01 *
110(0) 1111	8419	30	0421	0	0.1	5		DKa		67Mi03 *
	8430	20			-0.4	5				85He.A *
	8420	10			0.1	5				01He.A *
$^{253}Lr(\alpha)^{249}Md$	8941.6	20.	8937	9	-0.2	6		GSa		85He22
	8935.6	10.			0.1	6		GSa		01He35
$^{253}\mathrm{Lr}^m(\alpha)^{249}\mathrm{Md}^m$	8862.4	20.	8862	9	0.0	7		GSa		85He22
	8862.4	10.			0.0	7		GSa		01He35
$*^{253}Cf(\alpha)^{249}Cm$	$E(\alpha)=5981(5,Z) t$	o 48.74	level							NDS902**
$*^{253}Cf(\alpha)^{249}Cm$	$E(\alpha) = 5978.4(5,Z)$), 5920.4	4(5,Z) to 48	8.74, 110.10	6 levels					NDS902**
$*^{253}$ Fm(α) ²⁴⁹ Cf	$E(\alpha) = 7083.2(4,Z)$), 6943.2	2(3,Z), 684	6.2(3,Z), 6	673.2(3,Z)					67Ah02 **
*	to ground-stat	e and le	vels at 144	.98, 243.13	8, 416.8					NDS99a**
$*^{253}$ No(α) ²⁴⁹ Fm	$E(\alpha) = 8010(20)$ to	280.31	evel							01He.A **
$*^{253}$ No(α) ²⁴⁹ Fm	$E(\alpha) = 8010(30)$ to	280.31	evel							01He.A **
$*^{253}$ No(α) ²⁴⁹ Fm	$E(\alpha) = 8021(20)$ to	280.31	evel							01He.A **
$*^{253}$ No(α) ²⁴⁹ Fm	$E(\alpha) = 8011(10)$ to	280.31	evel							01He.A **
$^{254}Cf(\alpha)^{250}Cm$	5926.9	5.				3				68Be21 7.
$^{254}Es(\alpha)^{250}Bk$	6615 7	1.5				6				72BaD2 *
$^{254}Es(\alpha)^{250}Bk^{n}$	6531.6	1.5				7				72BaD2 Z
$^{254}\text{Es}^{m}(\alpha)^{250}\text{Bk}$	6699.9	2.0				5				73Ah04 *
254 Em(α) 250 Cf	7306.8	5.	7307.5	1.9	0.2	3		Bka		64As01 Z
1(u) 01	7307.6	2.	100110	,	-0.1	3		Dia		84Ah02 *
254 No(α) 250 Fm	8229.8	20.	8226	13	-0.2	5				67Gh01
	8240.0	30.			-0.5	5				67Mi03
	8215.6	20.			0.5	5				85He22
254 Lr(α) 250 Md ^p	8595.6	20.	8596	14	0.0	9				85He22
	8595.6	20.			0.0	9				01Ga20
$^{254}\text{Es}^{m}(\beta^{-})^{254}\text{Fm}$	1172	2				4				62Un01
$*^{254}$ Es(α) ²⁵⁰ Bk	$E(\alpha)=6415.4(1.5,$	Z) to 97	.493 level							NDS898**
$*^{254}$ Es ^m (α) ²⁵⁰ Bk	$E(\alpha) = 6558.9(2,Z)$), 6383.9	9(2,Z) to 35	5.587, 211.8	822 levels					NDS898**
$*^{254}$ Fm(α) 250 Cf	$E(\alpha) = 7192.3(2,Z)$), 7150.3	3(2,Z) to gr	ound-state,	, 42.721 le	vel				NDS019**
255 Es(α) 251 Bk	6439.3	3.0	6436.3	1.3	-1.0	4				66Rg01 *
	6435.6	1.5			0.5	4		Kum		71BaB2 *
255 Fm(α) 251 Cf	7237.0	4.	7239.7	1.8	0.7	3				64As01 *
(7240.4	2.			-0.3	3				75Ah01 *
$^{255}Md(\alpha)^{251}Es$	7901.8	5.	7905.9	2.6	0.8	4				70Fi12 *
	7910.7	5.			-1.0	4				71Ho16 *
	7905.4	4.			0.1	4		ARa		00Ah02 *
$^{255}No(\alpha)^{251}Fm$	8442	6				5				71Di03 *
	8422	20	8442	6	1.0	U		GSa		98Ho13 *
255 Lr(α) 251 Md ^p	8563.6	18.	8555	15	-0.5	9				76Be.A *
	8442.7	50.			2.3	F		Bka		95Gh04 *
255 251	8532.6	30.			0.8	9				01Ga20 *
233 Rf(α) 231 No	9042	20	9058	9	0.8	9		Bka		69Gh01 *
	9053	15			0.3	0		GSa		85He06 *
	9064	20			-0.3	0		GSa		9/He29 *
255 D cm (~) 251 NT. m	9062	10			-0.4	9		GSa		0711-20
$KI^{(\alpha)} N0^{m}$	8864.3 E(a)=6202(2.7)	15.	2) 101			9		GSa		9/He29 *
$*^{255}E_{s}(\alpha)^{251}BK$	$E(\alpha) = 0.503(3, Z) t$	0 33./(U	(3) level	.1						NDS902**
$*^{255}Es(\alpha)^{251}Bk$	$E(\alpha)=6299.3(1.5, -2015, -2015)$	L) to 35	.7(0.3) leve	el	20.11					NDS **
$*^{255}$ Fm(α) ²⁵¹ Cf	$E(\alpha) = /121.5, 701$ $E(\alpha) = 7126.9, 702$	8.5(4,Z) to ground	-state, 106.	30 level					NDS902**
$*^{255}M_{4}(\alpha)^{251}\Gamma_{-}$	$E(\alpha) = /126.8, 702$ $E(\alpha) = 7222.5(5.7)$	1.8(2,Z	io ground	-state, 106.	50 level					NDS902**
* $\operatorname{IM}(\alpha)^{251}$ ES	$E(\alpha) = 1323.3(3,Z)$ $E(\alpha) = 7222.3(5,Z)$) to 461.	40 level							NDS99a**
* 255 Md(α) ²⁵¹ ES	$E(\alpha) = 7332.3(3,Z)$	10 401.								NDC00-
* $NId(\alpha)^{-1}$ ES	$E(\alpha) = \frac{32}{(4)} \text{ to } 4$	+01.401	evel	1(2)						NDS998**
$255 \Gamma(\alpha)^{251} MAp$	$E(\alpha) = 0.0012(9), 01$ $E(\alpha) = 0.0012(9), 01$	21(0) 00	gs allu 19.	1(<i>2)</i> 8370(18) L	ranch					76B ^ · · ·
$^{\circ}$ L1(α) Md ² * ²⁵⁵ Lr(α) ²⁵¹ Md ^p	$\Omega_{ne} \cos \frac{1}{2} \cos \frac{1}{$	stionabl	a 279 Ea doo	av chain	anch					ΔHW/
\sim LI(α) MU	one case in a que	suonabl		ay cham						ATT 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Item	Input value		Adjust	Adjusted value v_i			Sig	Main flux Lab	F	Reference	
$*^{255}$ Lr(α) ²⁵¹ Md ^p	$E(\alpha)=8400(30);$	and a n	nore intens	e 8360(30)) branch					76Be.A **	
$*^{255}$ Rf(α) ²⁵¹ No	$E(\alpha) = 8700(20) t$	to 203 l	evel							01He35 **	
$*^{255}$ Rf(α) ²⁵¹ No	$E(\alpha) = 8766(15),$	8715(1	5) to 142, 2	203 levels,						01He35 **	
$*^{255}$ Rf(α) ²⁵¹ No	$E(\alpha)=8905(20),$	8739(2	0) to groun	d-state, 20)3 level					01He35 **	
$*^{255}$ Rf(α) ²⁵¹ No	$E(\alpha)=8722(10) t$	to 203(3	3) level							01He35 **	
$*^{255}$ Rf ^m (α) ²⁵¹ No ^m	Tentative assignr	ment; c	orrelateds v	with ²⁵¹ No	m					97He29 **	
*	not found in	later w	ork on 251 N	lo decay						01He35 **	
256 Fm(α) 252 Cf	7027.3	5.				3				68Ho13 Z	
$^{256}Md(\alpha)^{252}Es$	7896.6	16.				4				93Mo18	
256 No(α) 252 Fm	8578.3	12.	8581	5	0.3	5				81Be03	
	8582.3	6.			-0.1	5				90Ho03	
$^{256}Lr(\alpha)^{252}Md^{p}$	8787.6	20.	8777	13	-0.5	4				71Es01	
	8761.1	25.			0.6	4				76Be.A	
	8777.4	20.			0.0	4				76Di.A	
256 Rf(α) 252 No	8952.1	23.	8930	20	-1.0	0		GSa		85He06	
	8929.8	20.				8		GSa		97He29	
$^{256}\text{Db}(\alpha)^{252}\text{Lr}^p$	9157.4	20.				13		Gsa		01He35	
256Lrp(IT)256Lr	100	70				5				AHW *	
$*^{256}Lr^{p}(IT)^{256}Lr$	L X-rays follow	α ing α i	rays seen b	y ref.						77Be36 **	
257 Em(α) 253 Cf	6862 7	2	6863 5	14	0.4	4		Bka		67As02 *	
1(u) 01	6864.4	2	000010		-0.4	4		Dim		82Ab01 *	
$^{257}Md(\alpha)^{253}Es$	7557.6	1.				6				93Mo18 *	
$^{257}No(\alpha)^{253}Fm$	8451.8	30.	8466	21	0.5	5				70Es02	
	8480	30			-0.5	5		GSa		96Ho13 *	
$^{257}Lr(\alpha)^{253}Md^{p}$	9020.8	20.	9009	9	-0.6	4				71Es01	
	9001.3	12.			0.7	4				76Be.A	
	9014.0	15.			-0.4	4		GSa		97He29	
257 Rf(α) 253 No	9044.0	15.				6		GSa		97He29	
257 Rf(α) 253 No ^m	8913.0	15.	8915	11	0.2	7		ORb		73Be33	
	8918.1	15.			-0.2	7		GSa		97He29	
257 Rf ^m (α) 253 No	9142.5	20.	9157	7	0.7	U		Bka		69Gh01	
	9158.8	15.			-0.1	0		ORb		73Be33	
	9155.8	8.			0.2	6		ORb		90Be.A	
	9163.9	15.			-0.4	6		GSa		97He29	
$^{257}\text{Db}(\alpha)^{253}\text{Lr}$	9112.1	20.	9230	15	5.9	F		GSa		85He22	
	9230	15				7		GSa		01He35 *	
$^{257}\text{Db}^m(\alpha)^{253}\text{Lr}^m$	9305.1	20.	9308	10	0.2	0		GSa		85He22	
	9308.2	10.				8		GSa		01He35	
$*^{257}$ Fm(α) 253 Cf	$E(\alpha) = 6518.5(2, 2)$	Z) to 24	1.01 level							NDS99a**	
$*^{257}$ Fm(α) 253 Cf	$E(\alpha) = 6756.5(3, 2)$	Z), 6520	0.5(2,Z) to	gs, 241.01	level					NDS99a**	
$*^{257}$ Md(α) ²⁵³ Es	$E(\alpha)=7440(2), 7$	074(1)	to ground-	state, 371.	4 level					93Mo18**	
$*^{257}$ No(α) 253 Fm	$E(\alpha)=8340(20);$	one eve	ent only; m	ay be sum	ming with	e-				AHW **	
$*^{257}\text{Db}(\alpha)^{253}\text{Lr}$	$E(\alpha)=9074(10)$ p	partly s	um with co	nversion e	-					01He35 **	
$^{258}Md(\alpha)^{254}Fs$	7266.8	5.	7271.3	1.9	0.9	7				70Fi12 *	
	7272	2	, 1.0		-0.4	7				93Mo18 *	
258 Lr(α) 254 Md	8870	50	8900	20	0.6	F				76Be.A *	
	8900	20	0,00		0.0	5				88Gr30 *	
$^{258}\text{Db}(\alpha)^{254}\text{Lr}^p$	9445.7	15.	9446	12	0.0	11				85He22	
	9531.0	50.			-1.7	U		GSa		97Ho14	
	9446.8	20.			0.0	11				01Ga20	
$*^{258}$ Md(α) ²⁵⁴ Es	$E(\alpha) = 6713(5)$ to	447.9	level							93Mo18**	
$*^{258}$ Md(α) ²⁵⁴ Es	$E(\alpha) = 6763(4), 6$	718(2)	to 403.8, 4	47.9 level	s					93Mo18**	
$*^{258}Lr(\alpha)^{254}Md$	$E(\alpha) = 8648(10) i$	is conci	dent with 3	K(L) not X	(K) - > I	Ξ(γ)=9	0(50)			AHW **	
$*^{258}$ Lr(α) 254 Md	$E(\alpha)=8752$ found	d as su	m energies	α-rays an	d conversi	on ele	ctrons			AHW **	
$*^{258}Lr(\alpha)^{254}Md$	Mass assignment	t confir	med							92Gr02 **	

Item	Input va	lue	Adjus	sted value	v _i	Dg	Sig	Main flux Lab	F	Reference
259 No(α) 255 Fm ^p	7617.8	10.	7635	4	1.7	5				73Si40 *
	7638.2	4.			-0.7	5				93Mo18 *
259 Lr(α) 255 Md ^p	8582.8	20.	8574	9	-0.4	6				71Es01
	8571.6	10.			0.2	6				92Ha22
259D (8577.7	29.	0021	10	-0.1	U				92Kr01
259 RI(α) 255 No ^p	8999.2	20.	9021	12	1.1	7				69Gh01
	9030	20			-0.4	7		GSa		08Ho13
259 Db(α) 255 Lr	9618.8	20.			-0.7	10		05a		01Ga20
259 Sg(α) 255 Rf	9834	30				10				85Mu11 *
$*^{259}No(\alpha)^{255}Fm^{p}$	Favored $E(\alpha)$; high	hest se	en 7685(1	0)						73Si40 **
$*^{259}$ No(α) ²⁵⁵ Fm ^p	Or E(favored)=755	51(4) if	Coriolis	mixed						NDS902**
$*^{259}$ Rf(α) ²⁵⁵ No ^p	$E(\alpha) = 8870(20); particular (20); part$	artly su	$m E(\alpha) =$	8770(20) w	vith e ⁻					AHW **
$*^{259}$ Sg(α) ²⁵⁵ Rf	$E(\alpha) = 9620(30) \text{ provide } 1000 \text{ provide } 10000 \text{ provide } 1000 \text{ provide } 10000 \text{ provide } 10000 \text{ provide } 10000 \text{ provide } 10000 prov$	obably	to 9/2 63	(10) above	7/2 groun	d-state				AHW **
$*^{259}$ Sg(α) ²⁵⁵ Rf	$E(\alpha) = 9030(50) \text{ mas}$	aybe ui	nhindered	to ²⁵⁵ Rf ^p 1	Nm level a	t 660(60)			AHW **
260 Lr(α) 256 Md ^p	8155.0	20				6				71Es01
260 Db(α) ²⁵⁶ L r ^p	9283.1	20.	9278	10	-0.2	6				70Gh02
D0(0) EI	9262.8	17.	9270	10	0.2	6				77Be36
	9289.2	20.			-0.5	6		GSa		95Ho04 *
	9285.1	20.			-0.3	6		GSa		02Ho11 *
260 Sg(α) 256 Rf	9923.0	30.				9				85Mu11
$*^{260}$ Db(α) 256 Lr ^p	Event #2. Also eve	ent #3]	$E(\alpha)=920$	00						95Ho04 **
$*^{260}\mathrm{Db}(\alpha)^{256}\mathrm{Lr}^{p}$	Two events $E(\alpha) =$	9156 a	nd 9129							02Ho11 **
261 Rf(α) ²⁵⁷ No	8652.8	20.	8650	19	-0.1	0		GSa		96Ho13
(*)	8632.6	50.			0.3	6		PSa		01Tu.B
	8652.8	20.			-0.1	6		GSa		02Ho11
261 Rf ^m (α) 257 No ^p	8409.1	20.	8409	15	0.0	8		Bka		70Gh01
	8388.8	30.			0.7	8		GSa		98Tu01 *
2(1 2)77	8429.5	30.			-0.7	8		Dba		00La34
$^{261}\text{Db}(\alpha)^{257}\text{Lr}^{p}$	9069.2	20.				6				71Gh01
201 Sg(α) 257 Rf ^p	9709.0	30.	9703	17	-0.2	8				85Mu11
261 D1 (m) 257 D1	9/00.0	20.			0.1	8				95H003
$261 \text{ Br}(\alpha)^{237} \text{ Dr}(\alpha)^{257} \text{ N}_{27}$	10562.1	25.	200/20			8				89Mu09
* KI (α) NO ²	In addition 60% E	(<i>u</i>)=83	80(30)							981001 **
$^{262}\text{Db}(\alpha)^{258}\text{Lr}^p$	8794.5	20.	8805	12	0.5	7				71Gh01
	8815.8	20.			-0.5	7				88Gr30
2/2 259	8804.7	20.			0.0	7		GSa		99Dr09
262 Bh(α) 258 Db	10216.2	25.	10300	25	3.4	В		~~		89Mu09 *
262 51 11 () 258 51	10300.0	25.	10 (10	50		12		GSa		97Ho14
202 Bh ^m (α) 236 Db	10531.1	25.	10610	50	1.5	B		C C		89Mu09 *
262Dh(a)258Dh	10605.3 Dunct highest line	25.	£			12		GSa		97Ho14
* $\operatorname{Bh}(\alpha)$ * Db * ²⁶² Bh ^m (α) ²⁵⁸ Db	B: not highest line	, see re , see re	f.							97H014 ** 97H014 **
262				•		_				
203 Rf(α) 239 No ^p	8022	40	8022	29	0.0	7				93Gr.C
263 D1 () 259 T	8022	40			0.0	7				99Ga.A
$^{203}\text{Db}(\alpha)^{239}\text{Lr}^{\rho}$	8484.3	27.	0100	20	0.4	8				92Kr01
$-55 \operatorname{Sg}(\alpha)^{257} \operatorname{Rt}^{q}$	9200.2	40. 60	9180	30	-0.4	11				/4Gh04
$263 S \sigma^{m}(\alpha)^{259} \mathbf{p}_{fp}$	9149.2	00. 40	0201	18	0.0	0				94GIU8 74Gb04
$S_{5}(u)$ KI	9391.1	20.	2371	10	0.0	9		GSa		98Ho13

Item	Input va	alue	Adjus	sted value	v _i	Dg	Sig	Main flux	Lab	F	Reference
264 Bh(α) 260 Db ^p	9767.3	20.				8			GSa		95Ho04 *
264 Hs(α) 260 Sg	10870	210	10591	20	-1.3	U					87Mu15 *
	10590.5	20.				10					95Ho.B
$*^{264}Bh(\alpha)^{260}Db^{p}$	Three more even	ts in re	ef. $E(\alpha)$ =	9365, 9514	4 and 911	3					02Ho11 **
$*^{264}$ Hs(α) ²⁶⁰ Sg	$Q(\alpha)=11000(+1)$	00–300)) from T	(1/2), one of	event onl	у					87Mu15**
265 Sg(α) 261 Rf	8904.7	30.	9080	50	3.5	F			GSa		96Ho13 *
	9077.3	30.				7			GSa		98Tu01
265 Sg(α) 261 Rf ^p	8945.3	60.	8980	30	0.5	F			Dba		94La22 *
	8975.7	30.				8			GSa		98Tu01 *
265 Hs(α) 261 Sg	10586.2	15.				9			GSa		99He11
265 Hs(α) 261 Sg ^p	10524.2	25.	10459	15	-2.6	0			GSa		87Mu15
	10468.3	20.			-0.5	0			GSa		95Ho03
	10459.2	15.				10			GSa		99He11
265 Hs ^m (α) 261 Sg	10890.8	15.				9			GSa		99He11
265 Hs ^m (α) 261 Sg ^q	10712.0	20.	10734	15	1.1	0			GSa		95Ho03
	10733.4	15.				10			GSa		99He11
$*^{265}$ Sg(α) ²⁶¹ Rf	F: this event is d	istruste	ed, see re	f.							02Ho11 **
$*^{265}$ Sg(α) ²⁶¹ Rf ^p	Average but prob	oably d	lue to sev	eral groups	s, see ref.						98Tu01 **
$*^{265}$ Sg(α) ²⁶¹ Rf ^p	Strongest group;	may b	e unhind	ered one. T	There is a	1001	higher	$E(\alpha)$			98Tu01 **
$266 S \alpha(\alpha)^{262} P f$	8762.0	50	0000	20	2.4	Б			Dha		041.022
Sg(u) Ki	8702.0	30. 40	0000	30	0.5	6			GSa		94La22 *
	8853 /	40. 50			-0.5	6			GSa		02Tu01
$^{266}Bh(\alpha)^{262}Dh^{p}$	9432	50.			0.0	9			Bka		00Wi15
$^{266}\text{H}_{s}(\alpha)^{262}\text{S}_{\alpha}$	10335.0	20				8			GSa		01Ho06
$^{266}Mt(\alpha)^{262}Bh$	10005 7	20.				13			GSa		07Ho14
$^{266}Mt^m(\alpha)^{262}Bh^m$	11269.7	50	11920	50	13.0	E			GSa		84Mu07 *
Mit (u) Di	11168 1	30	11720	50	25.0	F			054		89Mu16
	11918.6	50.			25.0	13			GSa		97Ho14 *
$*^{266}Sg(\alpha)^{262}Rf$	Average of two	roups									02Tu05 **
$*^{266}Mt^{m}(\alpha)^{262}Bh^{m}$	One $E(\alpha)$ only:	nav be	gs								AHW **
$*^{266}\mathrm{Mt}^{m}(\alpha)^{262}\mathrm{Bh}^{m}$	One $E(\alpha)=11739$, one	11306; se	everal smal	ler						AHW **
267-14 2262-14		•	~~~~								
207 Bh(α) 205 Db ^p	8965	30	8970	26	0.2	10			Bka		00W115
267 xx ()263 a m	8985	50	10000	10	-0.3	10			Bka		021005
207 Hs(α) 205 Sg ^m	9970	40	10020	18	1.2	10			Dba		95La20
2675-(10032.6	20.			-0.6	10			GSa		98H013
20° Ea(α) 20° Hs ^p	11//0.5	50.				15					95Gn04
268 Mt(α) 264 Bh ^p	10395.5	20.	10432	20	1.8	0			GSa		95Ho04 *
	10432.1	20.			1.0	10			GSa		02Ho11 *
$*^{268}$ Mt(α) ²⁶⁴ Bh ^p	Two events $E(\alpha)$	=1022	1 coinc.	$E(\gamma)=93$ ar	nd 10259	: even	it #3 E	$(\alpha) = 10097$			95Ho04 **
*	could be dec	ay of a	n isomer	with lifetin	me=171 i	ms		()			02Ho11 **
$*^{268}$ Mt(α) ²⁶⁴ Bh ^p	Average of event	19951	Ho04 E(a	α)=10259 a	nd prese	nt 102	294				02Ho11 **
269 Hs(α) 265 S α^{p}	0360 6	30	9330	16	_13	0			GSa		96Ho13 +
11s(u) 5g.	0288.4	50.	9550	10	-1.5	0			054		01Tu B *
	9318 7	20			0.8	9			GSa		02Ho11
269 Ea(α) 265 Hs ^m	11280.1	20.			0.5	10			55u		95Ho03
$*^{269}$ Hs(α) ²⁶⁵ Sg ^p	Event number 2	onlv [.] f	irst event	rejected s	ee ref	10					02Ho11 **
$*^{269}$ Hs(α) 265 Sg ^p	Three events E(a	x)=918	30, 9110,	8880							01Tu.B **
270 Hs(α) 266 Sg	9298.0	30.				7					01Tu.B *
270 Ea(α) 266 Hs	11196	50				9			GSa		01Ho06
$^{270}\mathrm{Ea}^{m}(\alpha)^{266}\mathrm{Hs}$	12333	50				9			Gsa		01Ho06
$*^{270}$ Hs(α) ²⁶⁶ Sg	Also E(α)=8970										01Tu.B **

Item	Input v	alue	Adjusted value		v _i	Dg	Sig	Main flux Lab	F	Reference
271 Ea $(\alpha)^{267}$ Hs 271 Ea $^{m}(\alpha)^{267}$ Hs	10869.8 10899.2	20. 20.				11 11		GSa GSa		98Ho13 98Ho13
$^{272}\text{Eb}(\alpha)^{268}\text{Mt}^{p}$ $*^{272}\text{Eb}(\alpha)^{268}\text{Mt}^{p}$ $*^{272}\text{Eb}(\alpha)^{268}\text{Mt}^{p}$	10981.9 11192.0 B: one event only; E Two events Ea=1100	20. 30. (K) in co)8 and 1	11192 oinc. may 1046	20 explain dise	10.5 crepancy	В 12		GSa GSa		95Ho04 * 02Ho11 * GAu ** 02Ho11**
273 Ea(α) 269 Hs	9875.0 11519.1 11367.9	20. 60. 20.	11370	50	74.6 -3.0	F B 10		GSa Dba GSa		96Ho13 * 96La12 02Ho11
* ²⁷⁷ Ec(α) ²⁷³ Ea ²⁷⁷ Ec(α) ²⁷³ Ea * ²⁷⁷ Ec(α) ²⁷³ Ea	F: this event is distri- 11622.2 11821.0 11334.0 F: this event is distri-	30. 30. 20.	11620	30	-6.6	11 F 12		GSa GSa GSa		96Ho13 96Ho13 * 02Ho11 **
281 Ea(α) ²⁷⁷ Hs	8957.8	180.				4		Dba		99Og10
284 Ec $(\alpha)^{280}$ Ea	9302.3	50.				9		Dba		01Og01
$^{285}\text{Ec}(\alpha)^{281}\text{Ea}$	8793.7	50.				5		Dba		99Og10
$^{287}\text{Ee}(\alpha)^{283}\text{Ec}$	10435.8	20.				13		Dba		99Og07
$^{288}\text{Ee}(\alpha)^{284}\text{Ec}$	9968.8	50.				10		Dba		01Og01
$^{209}\text{Ee}(\alpha)^{283}\text{Ec}$ $^{292}\text{Eg}(\alpha)^{288}\text{Ee}$	9846.6 10707.0	50. 50.				6 11		Dba Dba		99Og10 01Og01