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Abstract. We argue that the most commonly used models for nuclear scattering
at ultra-relativistic energies do not treat energy conservation in a consistent
fashion. Demanding theoretical consistency as a minimal requirement for a
realistic model, we provide a solution for the above-mentioned problem, the
so-called ‘parton-based Gribov–Regge theory’.

In order to keep a clean picture, we do not consider secondary interactions.
We provide a very transparent extrapolation of the physics of more elementary
interactions towards nucleus–nucleus scattering, without considering any nuclear
effects due to final state interactions. In this sense we consider our model a realistic
and consistent approach to describe the initial stage of nuclear collisions.

1. Introduction

The purpose of this paper is to provide the theoretical framework to treat hadron–hadron
scattering and the initial stage of nucleus–nucleus collisions at ultra-relativistic energies, in
particular with view to RHIC (Relativistic Heavy Ion Collider) and LHC (Large Hadron
Collider). The knowledge of these initial collisions is crucial for any theoretical treatment
of parton thermalization and a possible parton–hadron phase transition, the detection of
which being the ultimate aim of all the efforts of colliding heavy ions at very high
energies.

Many popular models [1]–[3] are based on the so-called Gribov–Regge theory [4, 5].
This is an effective field theory, which allows multiple interactions to happen ‘in parallel’,
with the phenomenological object called a ‘Pomeron’ representing an elementary interaction.
Using the general rules of field theory, one may express cross sections in terms of a couple
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of parameters characterizing the Pomeron. Interference terms are crucial, they assure the
unitarity of the theory. Here one observes an inconsistency: the fact that energy needs to
be shared between many Pomerons in the case of multiple scattering is well taken into account
when calculating particle production (in particular in Monte Carlo applications), but energy
conservation is not taken care of in cross section calculations. This is a serious problem and
makes the whole approach inconsistent. Related to the above problem is the fact that different
elementary interactions in the case of multiple scattering are usually not treated equally, so
the first interaction is usually considered to be quite different compared to the subsequent
interactions.

Provided factorization works for nuclear collisions, one may employ the parton model [6, 7],
which allows to calculate inclusive cross sections as a convolution of an elementary cross section
with parton distribution functions, with these distribution functions taken from deep inelastic
scattering. In order to obtain exclusive parton level cross sections, some additional assumptions
are needed, which follow quite closely the Gribov–Regge approach, encountering the same
difficulties.

As a solution of the above-mentioned problems, we present a new approach which we call
the ‘parton-based Gribov–Regge theory’: we have a consistent treatment for calculating cross
sections and particle production considering energy conservation in both cases; in addition, we
introduce hard processes in a natural way and, compared to the parton model, we can deal with
exclusive cross sections without arbitrary assumptions. A single set of parameters is sufficient
to fit many basic spectra in proton–proton and lepton–nucleon scattering, as well as in electron–
positron annihilation (with the exception of one parameter which needs to be changed in order
to optimize electron–positron transverse momentum spectra).

The basic guideline of our approach is theoretical consistency. We cannot derive everything
from first principles, but we use rigorously the language of field theory to make sure not to
violate basic laws of physics, which is easily done in more phenomenological treatments (see
the discussion above).

There are still problems and open questions: there is clearly a problem with unitarity at
very high energies, which should be cured by considering screening corrections due to so-called
triple-Pomeron interactions, which we do not treat rigorously at present but which is our next
project.

2. Problems

Before presenting new theoretical ideas, we want to discuss the open problems in the parton
model approach and in the Gribov–Regge theory.

2.1. Gribov–Regge theory

The Gribov–Regge theory is by construction a multiple scattering theory. The elementary
interactions are realized by complex objects called Pomerons, whose precise nature is not known,
and which are therefore simply parametrized: the elastic amplitude T corresponding to a single
Pomeron exchange is given as

T (s, t) ∼ isα0+α′t

New Journal of Physics 2 (2000) 31.1–31.16 (http://www.njp.org/)

http://www.njp.org/


31.3

Figure 1. Hadron–hadron scattering in Gribov–Regge theory. The thick lines
between the hadrons (incoming lines) each represent a Pomeron. The different
Pomeron exchanges occur in parallel.

with a couple of parameters to be determined by experiment. Even in hadron–hadron scattering,
several of these Pomerons are exchanged in parallel, see figure 1. Using general rules of field
theory (cutting rules), one obtains an expression for the inelastic cross section,

σh1h2
inel =

∫
d2b {1 − exp(−G(s, b))} (1)

where the so-called eikonal G(s, b) (proportional to the Fourier transform of T (s, t)) represents
one elementary interaction (a vertical thick line in figure 1). One can generalize to nucleus–
nucleus collisions, where corresponding formulae for cross sections may be derived.

In order to calculate exclusive particle production, one needs to know how to share the
energy between the individual elementary interactions in the case of multiple scattering. We do
not want to discuss the different recipes used to perform the energy sharing (in particular in Monte
Carlo applications). The point is, whatever procedure is used this is not taken into account in the
calculation of cross sections discussed above. So, in actually, one is using two different models
for cross section calculations and for treating particle production. Taking energy conservation
into account in exactly the same way will considerably modify the cross section results.

This problem was first discussed in [8, 9]. The authors claim that following from the non-
planar structure of the corresponding diagrams, conserving energy and momentum in a consistent
way is crucial, and therefore the incident energy has to be shared between the different elementary
interactions, both real and virtual interactions.

Another very unpleasant and unsatisfactory feature of most ‘recipes’ for particle production
is the fact that the second and subsequent Pomerons are treated differently from the first; although
in the above-mentioned formula for the cross section all Pomerons are considered to be identical.

2.2. The parton model

The standard parton model approach to hadron–hadron or, also, nucleus–nucleus scattering
amounts to presenting the partons of projectile and target by momentum distribution functions,
fh1 and fh2 , and calculating inclusive cross sections for the production of parton jets with the
squared transverse momentum p2⊥ larger than some cutoff Q2

0 as

σh1h2
incl =

∑
ij

∫
dp2⊥

∫
dx+

∫
dx− f i

h1
(x+, p2⊥)f j

h2
(x−, p2⊥)

dσ̂ij

dp2⊥
(x+x−s)θ(p2⊥ −Q2

0)

where dσ̂ij/dp2⊥ is the elementary parton–parton cross section and i, j represent parton flavours.
This simple factorization formula is the result of cancellations of complicated diagrams

(AGK cancellations) due to which only a single scattering term (one Pomeron exchange)
contributes to the inclusive hadron spectra [20]. It hides, therefore, the complicated multiple
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Figure 2. Graphical representation of a contribution to the elastic amplitude of
proton–proton scattering. Here, energy conservation is taken into account: the
energy of the incoming protons is shared among several ‘constituents’ (shown by
splitting the nucleon lines into several constituent lines), and so each Pomeron dis-
poses of only a fraction of the total energy, such that the total energy is conserved.

scattering structure of the reaction. The most obvious manifestation of such a structure is the
fact that at high energies (

√
s � 10 GeV) the inclusive cross section in proton–(anti-)proton

scattering exceeds the total one, so the average number N̄pp
int of elementary interactions must be

greater than one:

N̄h1h2
int = σh1h2

incl /σ
h1h2
tot > 1.

The usual solution is the so-called eikonalization, which amounts to re-introducing multiple
scattering, based on the above formula for the inclusive cross section:

σh1h2
inel (s) =

∫
d2b {1 − exp(−A(b)σh1h2

incl (s))} =
∑

σh1h2
m (s) (2)

with

σh1h2
m (s) =

∫
d2b

(A(b)σh1h2
incl (s))m

m!
exp(−A(b)σh1h2

incl (s)) (3)

representing the cross section for n scatterings. HereA(b) is the proton–proton overlap function
(the convolution of two proton profiles). In this way the multiple scattering is ‘recovered’.
The disadvantage is that this method does not provide any clue how to proceed for nucleus–
nucleus (AB) collisions. One usually assumes the proton–proton cross section for each individual
nucleon–nucleon pair of an AB system. We can demonstrate that this assumption is incorrect
(see [10]).

Another problem, in fact the same as discussed earlier for the Gribov–Regge theory, arises
in the case of exclusive calculations (event generation), since the above formulae do not provide
any information on how to share the energy between many elementary interactions. The Pythia
method [6] amounts to generating the first elementary interaction according to the inclusive
differential cross section, then taking the remaining energy for the second one and so on. In this
way, the event generation will reproduce the theoretical inclusive spectrum for hadron–hadron
interaction (by construction), as it should be. The method is, however, very arbitrary, and—even
more serious—we observe the same inconsistency as in the Gribov–Regge approach: energy
conservation is not at all taken care of in the above formulae for cross section calculations.
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Figure 3. Graphical representation of a contribution to the elastic amplitude
of proton–nucleus scattering, or more precisely a proton interacting with (for
simplicity) two target nucleons, taking into account energy conservation. Here
the energy of the incoming proton is shared between all the constituents, which
now provide the energy to interact with two target nucleons.
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Figure 4. The soft contribution.

3. A solution: parton-based Gribov–Regge theory

In this paper, we present a new approach for hadronic interactions and for the initial stage
of nuclear collisions, which is able to solve several of the above-mentioned problems. We
provide a rigorous treatment of the multiple scattering aspect, such that questions as energy
conservation are clearly determined by the rules of field theory, both for cross section and
particle production calculations. In both cases, energy is properly shared between the different
interactions occurring in parallel, see figure 2 for proton–proton and figure 3 for proton–nucleus
collisions (generalization to nucleus–nucleus is obvious). This is the most important and new
aspect of our approach, which we consider to be a first necessary step to take to construct a
consistent model for high-energy nuclear scattering.

The elementary interactions, shown as the thick lines in the above figures, are in fact a sum
of a soft, a hard and a semi-hard contribution, providing a consistent treatment of soft and hard
scattering. To some extent, our approach provides a link between the Gribov–Regge approach
and the parton model, we call it the parton-based Gribov–Regge theory.

4. Parton–parton scattering

Let us first investigate parton–parton scattering before constructing a multiple scattering theory
for hadronic and nuclear scattering.

We distinguish three types of elementary parton–parton scatterings, referred to as ‘soft’,
‘hard’ and ‘semi-hard’, which we are going to discuss briefly in the following. The detailed
derivations can be found in [10].
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Figure 5. The hard (or valence–valence) contribution.

4.1. The soft contribution

Let us first consider a pure non-perturbative contribution, where all virtual partons appearing
in the internal structure of the diagram have restricted virtualities Q2 < Q2

0, where Q2
0 � 1

GeV2 is a reasonable cutoff for perturbative quantum chromodynamics (QCD) being applicable.
Such soft non-perturbative dynamics is known to dominate hadron–hadron interactions at not too
high energies. Lacking methods to calculate this contribution from first principles, it is simply
parametrized and graphically represented as a ‘blob’, see figure 4. It is traditionally assumed to
correspond to multi-peripheral production of partons (and final hadrons) [11] and is described
by the phenomenological soft Pomeron exchange amplitude Tsoft (ŝ, t) [4]. The corresponding
profile function is expressed via the amplitude Tsoft as

Dsoft(ŝ, b) =
1

8π2ŝ

∫
d2q⊥ exp(−i�q⊥�b)2 ImTsoft(ŝ,−q2⊥)

=
2γ2part

λ
(2)
soft(ŝ/s0)

(
ŝ

s0

)αsoft(0)−1

exp
(
− b2

4λ(2)soft(ŝ/s0)

)
(4)

with

λ
(n)
soft(z) = nR2

part + α′
soft ln z

where ŝ is the usual Mandelstam variable for parton–parton scattering. The parameters αsoft(0)
and α′

soft are the intercept and the slope of the Pomeron trajectory, γpart and R2
part are the vertex

value and the slope for the Pomeron–parton coupling and s0 � 1 GeV2 is the characteristic
hadronic mass scale. The external legs of figure 4 are the ‘partonic constituents’, which are
assumed to be quark–anti-quark pairs.

4.2. The hard contribution

Let us now consider the other extreme, when all the processes are perturbative, i.e. all internal
intermediate partons are characterized by large virtualities Q2 > Q2

0. In such a case, the
corresponding hard parton–parton scattering amplitude can be calculated using perturbative
QCD techniques [12, 13], and the intermediate states contributing to the absorptive part of the
amplitude can be defined in the parton basis. In the leading logarithmic approximation of QCD,
summing up terms where each (small) running QCD coupling constant αs(Q2) appears together
with a large logarithm ln(Q2/λ2QCD) (with λQCD being the infrared QCD scale), and making use
of the factorization hypothesis, one obtains the contribution of the corresponding cut diagram
for t = q2 = 0 as the cut parton ladder cross section σjk

hard(ŝ, Q
2
0)

4, as shown in figure 5, where

4 Strictly speaking, one obtains the ladder representation for the process only by using an axial gauge.
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all horizontal rungs are the final (on-shell) partons and the virtualities of the virtual t-channel
partons increase from the ends of the ladder towards the largest momentum transfer parton–parton
process (indicated symbolically by the ‘blob’ in the middle of the ladder):

σjk
hard(ŝ, Q

2
0) =

1
2ŝ

2 ImT jk
hard(ŝ, t = 0, Q2

0)

= K
∑
ml

∫
dx+B dx−

B dp2⊥
dσml

Born

dp2⊥
(x+Bx

−
B ŝ, p

2
⊥)

× Ejm
QCD(Q2

0,M
2
F , x

+
B)Ekl

QCD(Q2
0,M

2
F , x

−
B)θ(M2

F −Q2
0).

Here dσml
Born/dp

2
⊥ is the differential 2 → 2 parton scattering cross section, p2⊥ is the parton

transverse momentum in the hard process,m, l and x±
B are respectively the types and the shares of

the light cone momenta of the partons participating in the hard process; andM2
F is the factorization

scale for the process (we useM2
F = p2⊥/4). The ‘evolution function’Ejm

QCD(Q2
0,M

2
F , z) represents

the evolution of a parton cascade from scaleQ2
0 toM2

F ; i.e. it gives the number density of partons
of type m with the momentum share z at the virtuality scale M2

F as a result of the evolution of
the initial parton j and taken at the virtuality scale Q2

0. The evolution function satisfies the usual
DGLAP equation [14] with the initial condition Ejm

QCD(Q2
0, Q

2
0, z) = δj

mδ(1 − z). The factor
K � 1.5 effectively takes into account higher-order QCD corrections.

In the following we shall need to know the contribution of the uncut parton ladder
T jk
hard(ŝ, t, Q

2
0) with some momentum transfer q along the ladder (with t = q2). The behaviour of

the corresponding amplitudes was studied in [15] in the leading logarithmic (1/x) approximation
of QCD. The precise form of the corresponding amplitude is not important for our application;
we just use some of the results of [15], namely one can neglect the real part of this amplitude and
it is nearly independent of t. That is the slope of the hard interaction R2

hard is negligibly small,
i.e. compared to the soft Pomeron slope one has R2

hard � 0. So we parametrize T jk
hard(ŝ, t, Q

2
0)

in the region of small t as [16]

T jk
hard(ŝ, t, Q

2
0) = iŝσjk

hard(ŝ, Q
2
0) exp(R2

hardt). (5)

The corresponding profile function is obtained by calculating the Fourier transform T̃hard
of Thard and dividing by the initial parton flux 2ŝ,

Djk
hard(ŝ, b) =

1
2ŝ

2 Im T̃ jk
hard(ŝ, b)

which gives

Djk
hard (ŝ, b) =

1
8π2ŝ

∫
d2q⊥ exp(−i�q⊥�b)2 ImT jk

hard(ŝ,−q2⊥, Q2
0)

= σjk
hard(ŝ, Q

2
0)

1
4πR2

hard
exp

(
− b2

4R2
hard

)
. (6)

In fact, the above considerations are only correct for valence quarks, as discussed in detail
in the next section. Therefore, we also talk about a ‘valence–valence’ contribution and we use
Dval–val instead of Dhard:

Djk
val–val(ŝ, b) ≡ Djk

hard(ŝ, b)

so these are two names for one and the same object.
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Figure 6. The semi-hard ‘sea–sea’ contribution: parton ladder plus ‘soft ends’.

4.3. The semi-hard contribution

The discussion of the preceding section is not valid in case of sea quarks and gluons, since
here the momentum share x1 of the ‘first’ parton is typically very small, leading to an object
with a large mass of the order Q2

0/x1 between the parton and the proton [17]. Microscopically,
such ‘slow’ partons with x1 � 1 appear as a result of a long non-perturbative parton cascade,
where each individual parton branching is characterized by a small momentum transfer squared
Q2 < Q2

0 [4, 18]. When calculating proton structure functions or high-pt jet production cross
sections this non-perturbative contribution is usually included in parametrized initial parton
momentum distributions atQ2 = Q2

0. However, the description of inelastic hadronic interactions
requires one to treat it explicitly in order to account for secondary particles produced during
such non-perturbative parton pre-evolution, and to describe correctly energy-momentum sharing
between multiple elementary scatterings. As the underlying dynamics appears to be identical
to that of soft parton–parton scattering considered above, we treat this soft pre-evolution as the
usual soft Pomeron emission, as discussed in detail in [10].

So for sea quarks and gluons we consider so-called semi-hard interactions between parton
constituents of initial hadrons, represented by a parton ladder with ‘soft ends’, see figure 6.
As in the case of soft scattering, the external legs are quark-anti-quark pairs, connected to soft
Pomerons. The outer partons of the ladder are sea quarks or gluons on both sides (therefore
the index ‘sea–sea’). The central part is exactly the hard scattering considered in the preceding
section. As discussed at length in [10], the mathematical expression for the corresponding
amplitude is given as

iTsea–sea(ŝ, t) =
∑
jk

∫ 1

0

dz+

z+
dz−

z− ImT j
soft

(
s0
z+
, t
)

ImT k
soft

(
s0
z− , t

)
iT jk

hard(z
+z−ŝ, t, Q2

0)

with z± being the momentum fraction of the external leg partons of the parton ladder relative
to the momenta of the initial (constituent) partons. The indices j and k refer to the flavour of
these external ladder partons. The amplitudes T j

soft are the soft Pomeron amplitudes discussed
earlier, but with modified couplings, since the Pomerons are now connected to a parton ladder
on one side. The arguments s0/z± are the squared masses of the two soft Pomerons, z+z−ŝ is
the squared mass of the hard piece.

Performing, as usual, the Fourier transform to the impact parameter representation and
dividing by 2ŝ, we obtain the profile function

Dsea–sea(ŝ, b) =
1
2ŝ

2 Im T̃sea–sea(ŝ, b)
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Figure 7. Two ‘mixed’ contributions.

which may be written as

Dsea–sea(ŝ, b) =
∑
jk

∫ 1

0
dz+ dz−Ej

soft(z
+)Ek

soft(z
−)σjk

hard(z
+z−ŝ, Q2

0)

× 1

4πλ(2)soft(1/(z+z−))
exp

(
− b2

4λ(2)soft(1/(z+z−))

)
(7)

with the soft Pomeron slope λ(2)soft and the cross section σjk
hard being defined earlier. The functions

Ej
soft(z

±) representing the ‘soft ends’ are defined as

Ej
soft(z

±) = ImT j
soft

(
s0
z± , t = 0

)
.

We neglected the small hard scattering slope R2
hard compared to the Pomeron slope λ(2)soft. We

also call Esoft the ‘soft evolution’, to indicate that we consider this as simply a continuation of
the QCD evolution in a region where perturbative techniques no longer apply. As discussed
in [10], Ej

soft(z) has the meaning of the momentum distribution of parton j in the soft Pomeron.
Consistency requires us to also consider the mixed semi-hard contributions with a valence

quark on one side and a non-valence participant (quark–anti-quark pair) on the other, see figure 7.
We have

iT j
val–sea(ŝ) =

∫ 1

0

dz−

z−
∑
k

ImT k
soft

(
s0
z− , q

2
)

iT jk
hard(z

−ŝ, q2, Q2
0)

and

Dj
val–sea(ŝ, b) =

∑
k

∫ 1

0
dz−Ek

soft(z
−)σjk

hard(z
−ŝ, Q2

0)
1

4πλ(1)soft(1/z−)
exp

(
− b2

4λ(1)soft(1/z−)

)
(8)

where j is the flavour of the valence quark at the upper end of the ladder and k is the type
of the parton on the lower ladder end. Again, we neglected the hard scattering slope R2

hard
compared to the soft Pomeron slope. A contribution Dj

sea–val(ŝ, b), corresponding to a valence
quark participant from the target hadron, is given by the same expression,

Dj
sea–val(ŝ, b) = Dj

val–sea(ŝ, b)

since equation (8) stays unchanged under the replacement z− → z+ and only depends on the
total energy squared ŝ for the parton–parton centre-of-mass system.

New Journal of Physics 2 (2000) 31.1–31.16 (http://www.njp.org/)

http://www.njp.org/


31.10

nucleon

spectators

k...participants: 21

Figure 8. Nucleon Fock state.

5. Hadron–hadron scattering

To treat hadron–hadron scattering we use the parton momentum Fock state expansion of hadron
eigenstates [8]

|h〉 =
∞∑

k=1

1
k!

∫ 1

0

k∏
l=1

dxl f
h
k (x1, . . . , xk)δ

(
1 −

k∑
j=1

xj

)
a+(x1) · · · a+(xk)|0〉

where fk (x1, . . . , xk) is the probability amplitude for the hadron h to consist of k constituent
partons with the light cone momentum fractions x1, . . . , xk and a+ (x) is the creation operator
for a parton with the fraction x. A general scattering process is described as a superposition
of a number of pair-like scatterings between parton constituents of the projectile and target
hadrons. Then the hadron–hadron scattering amplitude is obtained as a convolution of the
individual parton–parton scattering amplitudes considered in the previous section and ‘inclusive’
momentum distributions 1

n! F̃
(n)
h (x1, . . . , xn) of n ‘participating’ parton constituents involved in

the scattering process (n ≥ 1), with

1
n!
F̃

(n)
h (x1, . . . , xn) =

∞∑
k=n

1
k!

k!
n!(k − n)!

∫ 1

0

k∏
l=n+1

dxl |fk(x1, . . . , xk)|2δ
(
1 −

k∑
j=1

xj

)
.

We assume that F̃ (n)
h1(h2)(x1, . . . , xn) can be represented in a factorized form as a product of the

contributions ofF h
part(xl), depending on the momentum shares xl of the ‘participating’ or ‘active’

parton constituents, and on the functionF h
remn

(
1−∑n

j=1 xj

)
, representing the contribution of all

‘spectator’ partons that share the remaining share 1 −∑
j xj of the initial light cone momentum

(see figure 8):

F̃
(n)
h (x1, . . . , xn) =

n∏
l=1

F h
part(xl)F h

remn

(
1 −

n∑
j=1

xj

)
. (9)

The participating parton constituents are assumed to be quark–anti-quark pairs (not necessarily of
identical flavours), such that the baryon numbers of the projectile and of the target are conserved.
Then, as discussed in detail in [10], the hadron–hadron amplitude may be written as

iTh1h2(s, t) = 8π2s
∞∑

n=1

1
n!

∫ 1

0

n∏
l=1

dx+l dx−
l

n∏
l=1

( 1
8π2ŝl

∫
d2ql⊥ iT h1h2

1IP (x+l , x
−
l , s,−q2l⊥)

)

F h1
remn

(
1 −

n∑
j=1

x+j

)
F h2
remn

(
1 −

n∑
j=1

x−
j

)
δ(2)

( n∑
k=1

�qk⊥ − �q⊥
)

(10)

where the partonic amplitudes are defined as

T h1h2
1IP = T h1h2

soft + T h1h2
sea–sea + T h1h2

val–val + T h1h2
val–sea + T h1h2

sea–val
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with the individual contributions representing the ‘elementary partonic interactions plus external
legs’. The soft or semi-hard sea–sea contributions are given as

T h1h2
soft/sea–sea(x

+, x−, s,−q2⊥) = Tsoft/sea–sea(s,−q2⊥)F h1
part(x

+)F h2
part(x

−) exp(−[R2
h1

+R2
h2

]q2⊥)
(11)

the hard contribution is

T h1h2
val–val(x

+, x−, s, q2) =
∫ x+

0
dx+v

x+

x+vl

∫ x−

0
dx−

v

x−

x−
v

∑
j,k

T jk
hard(x

+
v x

−
v s, q

2, Q2
0)

×F̄ h1,j
part (x

+
v , x

+ − x+v )F̄ h2,k
part (x

−
v , x

− − x−
v ) exp(−[R2

h1
+R2

h2
]q2l⊥)

the mixed semi-hard ‘val–sea’ contribution is given as

T h1h2
val–sea(x

+, x−, s, q2) =
∫ x+

0
dx+v

x+

x+v

∑
j

T j
val–sea(x

+
v x

−s, q2, Q2
0)

×F̄ h1,j
part (x

+
v , x

+ − x+v )F h2
part(x

−) exp(−[R2
h1

+R2
h2

]q2l⊥)

and the contribution ‘sea–val’ is finally obtained from ‘val–sea’ by exchanging variables

T h1h2
sea–val(x

+, x−, s, q2) = T h2h1
val–sea(x

−, x+, s, q2).

Here we formally allow any number of valence type interactions (based on the fact that multiple
valence type processes give negligible contributions). In the valence contributions, we have
convolutions of hard parton scattering amplitudes T jk

hard and valence quark distributions F̄ j
part

over the valence quark momentum share x±
v rather than a simple product, since only the valence

quarks are involved in the interactions, with the anti-quarks staying idle (the external legs carrying
momenta x+ and x− are always quark–anti-quark pairs).

The profile function γ is as usual defined as

γh1h2(s, b) =
1
2s

2 Im T̃h1h2(s, b)

which may be evaluated using the AGK cutting rules with the result (assuming imaginary
amplitudes)

γh1h2(s, b) =
∞∑

m=1

1
m!

∫ 1

0

m∏
µ=1

dx+µ dx−
µ

m∏
µ=1

Gh1h2
1IP (x+µ , x

−
µ , s, b)

∞∑
l=0

1
l!

∫ 1

0

l∏
λ=1

dx̃+λ dx̃−
λ

×
l∏

λ=1

−Gh1h2
1IP (x̃+λ , x̃

−
λ , s, b)Fremn

(
xproj −∑

λ

x̃+λ

)
Fremn

(
xtarg −∑

λ

x̃−
λ

)
(12)

with xproj/targ = 1 −∑
x±

µ being the momentum fraction of the projectile/target remnant, and
with a partonic profile function G given as

Gh1h2
1IP (x+λ , x

−
λ , s, b) =

1
2s

2 Im T̃ h1h2
1IP (x+λ , x

−
λ , s, b) (13)

see figure 9. This is a very important result, allowing one to express the total profile function
γh1h2 via the elementary profile functions Ghg1h2

1IP .
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...
uncut

-G

cut

G

Figure 9. The hadronic profile function γ expressed in terms of partonic profile
functions G ≡ Gh1h2

1IP .

6. Nucleus–nucleus scattering

We generalize the discussion of the last section in order to treat nucleus–nucleus scattering. In
the Glauber–Gribov approach [5, 19], the nucleus–nucleus scattering amplitude is defined by the
sum of contributions of diagrams corresponding to multiple scattering processes between parton
constituents of projectile and target nucleons. Nuclear form factors are supposed to be defined
by the nuclear ground-state wavefunctions. Assuming the nucleons to be uncorrelated, one
can make the Fourier transform to obtain the amplitude in the impact parameter representation.
Then, for given impact parameter �b0 between the nuclei, the only formal difference from the
hadron–hadron case will be the averaging over the nuclear ground states, which amounts to an
integration over the transverse nucleon coordinates�bAi and�bBj in the projectile and in the target,
respectively. We write this integration symbolically as∫

dTAB :=
∫ A∏

i=1
d2bAi TA(bAi )

B∏
j=1

d2bBj TB(bBj ) (14)

with A and B being the nuclear mass numbers and with the so-called nuclear thickness function
TA(b) being defined as the integral over the nuclear density ρA(B):

TA(b) :=
∫

dz ρA(bx, by, z). (15)

It is convenient to use the transverse distance bk between the two nucleons from the kth nucleon–
nucleon pair, i.e.

bk = |�b0 +�bAπ(k) −�bBτ(k)|
where the functions π(k) and τ(k) refer to the projectile and the target nucleons participating
in the kth interaction (pair k). In order to simplify the notation, we define a vector b whose
components are the overall impact parameter b0 as well as the transverse distances b1, . . . , bAB

of the nucleon pairs:

b = {b0, b1, . . . , bAB}.
Then the nucleus–nucleus interaction cross section can be obtained by applying the cutting
procedure to the elastic scattering diagram and written in the form

σAB
inel(s) =

∫
d2b0

∫
dTAB γAB(s, b) (16)

where the so-called nuclear profile function γAB represents an interaction for given transverse
coordinates of the nucleons.
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cut

A

B

uncut

Figure 10. Example for a cut multiple scattering diagram, with cut (broken
lines) and uncut (full lines) elementary diagrams. This diagram can be translated
directly into a formula for the inelastic cross section (see text).

The calculation of the profile function γAB as the sum over all cut diagrams of the type
shown in figure 10 does not differ from the hadron–hadron case and follows the rules formulated
in the preceding section and listed as follows.

• For a remnant carrying the light cone momentum fraction x (x+ in case of projectile, or x−

in case of target), one has a factor Fremn(x).
• For each cut elementary diagram (a real elementary interaction is represented in figure 10 as

a dashed vertical line) attached to two participants with light cone momentum fractions x+

and x−, one has a factor G(x+, x−, s, b). Apart from x+ and x−, G is also a function of the
total squared energy s and of the relative transverse distance bbetween the two corresponding
nucleons (we use G as an abbreviation for GNN

1IP for nucleon–nucleon scattering).

• For each uncut elementary diagram (a virtual emission is represented in figure 10 as a
vertical line) attached to two participants with light cone momentum fractions x+ and x−,
one has a factor −G(x+, x−, s, b), with the same G as used for the cut diagrams.

• Finally, one sums over all possible numbers of cut and uncut Pomerons and integrates over
the light cone momentum fractions.

So we find

γAB(s, b) =
∑
m1l1

. . .
∑

mAB lAB

(1 − δ0Σmk
)
∫ AB∏

k=1

{ mk∏
µ=1

dx+k,µ dx−
k,µ

lk∏
λ=1

dx̃+k,λ dx̃−
k,λ

}

×
AB∏
k=1

{ 1
mk!

1
lk!

mk∏
µ=1

G(x+k,µ, x
−
k,µ, s, bk)

lk∏
λ=1

−G(x̃+k,λ, x̃
−
k,λ, s, bk)

}

×
A∏

i=1
Fremn

(
x+i − ∑

π(k)=i

x̃+k,λ

) B∏
j=1

Fremn

(
x−

j − ∑
τ(k)=j

x̃−
k,λ

)
(17)

with

xproji = 1 − ∑
π(k)=i

x+k,µ xtargj = 1 − ∑
τ(k)=j

x−
k,µ.

The summation indices mk refer to the number of cut elementary diagrams and lk to the number
of uncut elementary diagrams, related to nucleon pair k. For each possible pair k (we have
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altogetherAB pairs), we allow any number of cut and uncut diagrams. The integration variables
x±

k,µ refer to the µth elementary interaction of the kth pair for the cut elementary diagrams,
the variables x̃±

k,λ refer to the corresponding uncut elementary diagrams. The arguments of the
remnant functions Fremn are the remnant light cone momentum fractions, i.e. unity minus the
momentum fractions of all the corresponding elementary contributions (cut and uncut). We also
introduce the variables xproji and xtargj , defined as unity minus the momentum fractions of all the
corresponding cut contributions, in order to integrate over the uncut contributions (see below).

The expression forγAB sums up all possible numbers of cut Pomeronsmk with one exception
due to the factor (1 − δ0Σmk

): we do not consider the case of all mk’s being zero, which
corresponds to ‘no interaction’ and therefore does not contribute to the inelastic cross section.
We may therefore define a quantity γ̄AB, representing ‘no interaction’, by taking the expression
for γAB with (1 − δ0Σmk

) replaced by (δ0Σmk
):

γ̄AB(s, b) =
∑
l1

. . .
∑
lAB

∫ AB∏
k=1

{ lk∏
λ=1

dx̃+k,λ dx̃−
k,λ

} AB∏
k=1

{ 1
lk!

lk∏
λ=1

−G(x̃+k,λ, x̃
−
k,λ, s, bk)

}

×
A∏

i=1
F+

(
1 − ∑

π(k)=i

x̃+k,λ

) B∏
j=1

F−
(
1 − ∑

τ(k)=j

x̃−
k,λ

)
. (18)

One may now consider the sum of ‘interaction’ and ‘no interaction’, and one easily obtains

γAB(s, b) + γ̄AB(s, b) = 1. (19)

Based on this important result, we consider γAB to be the probability of having an interaction and
correspondingly γ̄AB to be the probability of no interaction for a fixed energy, impact parameter
and nuclear configuration that is specified by the transverse distances bk between nucleons, and
we refer to equation (19) as the ‘unitarity relation’. However, we want to go even further and use
an expansion of γAB in order to obtain probability distributions for individual processes, which
then serves as a basis for the calculations of exclusive quantities.

The expansion of γAB in terms of cut and uncut Pomerons as given above represents a
sum of a large number of positive and negative terms, including all kinds of interferences,
which excludes any probabilistic interpretation. We have therefore to perform summations of
interference contributions—summed over any number of virtual elementary scatterings (uncut
Pomerons)—for given non-interfering classes of diagrams with given numbers of real scatterings
(cut Pomerons) [20]. Let us write the formulae explicitly. We have

γAB(s, b) =
∑
m1

. . .
∑
mAB

(1 − δ0
∑

mk
)
∫ AB∏

k=1

{ mk∏
µ=1

dx+k,µ dx−
k,µ

}

×
AB∏
k=1

{ 1
mk!

mk∏
µ=1

G(x+k,µ, x
−
k,µ, s, bk)

}
ΦAB(xproj, xtarg, s, b) (20)

where the function Φ representing the sum over virtual emissions (uncut Pomerons) is given by
the following expression:

ΦAB(xproj, xtarg, s, b) =
∑
l1

. . .
∑
lAB

∫ AB∏
k=1

{ lk∏
λ=1

dx̃+k,λ dx̃−
k,λ

} AB∏
k=1

{ 1
lk!

lk∏
λ=1

−G(x̃+k,λ, x̃
−
k,λ, s, bk)

}

×
A∏

i=1
Fremn

(
xproji − ∑

π(k)=i

x̃+k,λ

) B∏
j=1

Fremn

(
xtargj − ∑

τ(k)=j

x̃−
k,λ

)
. (21)
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This summation has to be carried out, before we may use the expansion of γAB to obtain
probability distributions. This is far from trivial, the necessary methods are described in [10].
To make the notation more compact, we define matrices X+ and X−, as well as a vector m, via

X+ = {x+k,µ} X− = {x−
k,µ} m = {mk}

which leads to

γAB(s, b) =
∑
m

(1 − δ0m)
∫

dX+ dX−Ω(s,b)
AB (m,X+, X−)

γ̄AB(s, b) = Ω(s,b)
AB (0, 0, 0)

with

Ω(s,b)
AB (m,X+, X−) =

AB∏
k=1

{ 1
mk!

mk∏
µ=1

G(x+k,µ, x
−
k,µ, s, bk)

}
ΦAB(xproj, xtarg, s, b).

This allows us to rewrite the unitarity relation, equation (19), in the following form:∑
m

∫
dX+ dX−Ω(s,b)

AB (m,X+, X−) = 1.

This equation is of fundamental importance, because it allows us to interpret Ω(s,b)(m,X+, X−)
as the probability density of having an interaction configuration characterized by m, with the
light cone momentum fractions of the Pomerons being given by X+ and X−.

7. Virtual emissions and Markov chain techniques

What did we achieve so far? We have formulated a well defined model, introduced using the
language of field theory, and in this way solving the severe consistency problems of the most
popular current approaches. To proceed further, one needs to solve two fundamental problems:

• the sum ΦAB over virtual emissions has to be performed,

• tools have to be developed to deal with the multidimensional probability distribution Ω(s,b)
AB .

Both tasks being very difficult. Introducing new numerical techniques, we were able to solve
both problems, as discussed in detail in [10].

Calculating the sum over virtual emissions (ΦAB) is achieved by parametrizing the functions
G as analytical functions and performing analytical calculations. By studying the properties of
ΦAB, we find that at very high energies the theory is no longer unitary without taking into account
screening corrections due to triple Pomeron interactions. In this sense, we consider our work as
a first step to constructing a consistent model for high-energy nuclear scattering, but there is still
work to be done.

Concerning the multidimensional probability distribution Ω(s,b)
AB (m,X+, X−), we employ

methods well known in statistical physics (Markov chain techniques). So finally, we are able to
calculate the probability distribution Ω(s,b)

AB (m,X+, X−), and are able to generate (in a Monte
Carlo fashion) configurations (m,X+, X−) according to this probability distribution.
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8. Summary

What are finally the principal features of our basic results, summarized in equations (16),
(20) and (21)? In contrast to the traditional treatment (Gribov–Regge approach or parton
model), all individual elementary contributions G depend explicitly on the light cone momenta
of the elementary interactions, with the total energy–momentum being precisely conserved.
Another very important feature is the explicit dependence of the screening contribution ΦAB (the
contribution of virtual emissions) on the remnant momenta. The direct consequence of properly
taking into account the energy–momentum conservation in the multiple scattering process is the
validity of the so-called AGK cancellations in hadron–hadron and nucleus–nucleus collisions in
the entire kinematical region.

The formulae (16), (20) and (21) allowed us to develop a consistent scheme to simulate
high-energy nucleus–nucleus interactions. The corresponding Monte Carlo procedure is exactly
based on the cross section formulae so that the entire model is fully self-consistent.
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