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Abstract. Application of aGoodness—of—fitGOF) statistic is an essential element in parameter estimation. We discuss the
computation of GOF when estimating parameters from anisotropy measurements of the cosmic microwave background (CMB),
and we propose two GOF statistics to be used when employing approximate band—power likelihood functions. They are based
on an approximate form for the distribution of band—power estimators that requires only minimal experimental information to
construct. Monte Carlo simulations of CMB experiments show that the proposed form describes the true distributions quite
well. We apply these GOF statistics to current CMB anisotropy data and discuss the results.
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1. Introduction the data. It is generally a functigmo f(d, T) of both the datal

) . and theoryT, such thayof attains, for example, a minimum
Measurement of the cosmic microwave background (CMWhend is generated by the theof, It is defined in a “mono-

temperature anisotropies has proven to be one of the mpgti.» way, in the sense thabf becomes larger asgets “fur-
powerful tools for estimating important cosmological parampa, trom a realization off. The “significance” may then be
eters (Netterfiel_d etal. 2002; Pryke et al. 2002; Rubino-MartjjLfnad as the probability of obtainin®f > gofps ON this

et al. 2002; Sievers et al. 2002; Wang et al. 2002). Thgjs it permits a quantitative evaluation of the quality of the
observed angular power spectrum shows the coherent pgaks model's fit to the data: if the probability of obtaining the
structure expected in inflationary models, and fitting modg},serveq value of the GOF statistic (from the actual data set)
curves to the datayields constraints on many parameterss |o,, (low significance), then the model should be rejected.

This leads in particular to the conclusion that the geometry @it ot such a statistic, one does not know if the best model is
space is flat (Lineweaver et al. 1997; de Bernardis et al. ZOQJIOgood model, or simply the “least bad” of the family.

Hanany et al. 2000; Lange et al. 2000; Balbi et al. 2000). In
terms of statistics, the procedure just described is one of pa-In this paper, we examine in some detail the issue of
rameter estimation. GOF when analysing anisotropy data on the cosmic microwave
Parameter estimation proceeds via the identification ofo@ackground. The vast majority of present analyses of the power
best model (set of parameters) within a family of models, &pectrum data do not include proper GOF evaluations. The
evaluation of the quality of the fit and the construction of paroblem is particularly complicated by the fact that approxi-
rameter constraints. The method of maximum likelihood (MLinate likelihood methods must be employed in order to process
for example, is a useful, general procedure for finding a bestifi¢ large volume of data and to explore a significant part of
model. As a general rule, one must judge the quality of the fiirameter space. These methods usually rely on power spec-
before any serious consideration of parameter constraints. THign estimates, such as flat band—powers, extracted either from
requires the application of a Goodness—of—fit (GOF) statistkcan data, or from reconstructed sky maps. Because the power
Such a statistic is, usually, some scalar function of the ddgaquadratic in the temperature fluctuations, it is clear that
whose distribution may be calculated once given an undertp.ese estimates are not Gaussian distributed. The traditional ap-

ing physical model and a model of the statistical fluctuations Ffoach ofy* minimisation incorrectly assumes that power es-
timates are Gaussian distributed, something that can lead to a

Send gprint requests toM. Douspis, bias in determining the best model (e.g., Douspis et al. 2001a).
e-mail: douspis@astro.ox.ac.uk For the same reason, the value of the redygedt the best

1 Seehttp://webast.ast.obs-mip.fr/cosmo/CMB for an up— mModel does not retain its usual statistical meaning and may
to—date compilation. therefore not be simply used as a GOF statistic.
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Approximations to the band—power likelihood function that [ o coBE  Aac 3z T o 200t
permit more rigorous analyses have been proposed (Bond etal. 140 - FIRS xBoomNe, .
2000; Bartlett et al. 2001). The question remains, however, of L o0 MAX
how to correctly evaluate the GOF of the best model. Such an I
evaluation requires knowledge of the distribution of the power 120 [ x Tenerife ]

estimates, which is not necessarily the same as the likelihood

function. Using the same approach as Bartlett et al. (200; [ % Python 3
U3 100 y

hereafter Paper 1), we propose an ansatz for the distributich

of band—power estimates and test it against Monte Carlo sim-

ulations of certain MAX and Saskatoon data sets. The ansdz 80

O Saoskatoon

requires only minimal experimental information, and it appears. [ o BAM ]
to work well. We therefore use it to construct two GOF statis2, L Ll !
tics, which we then apply to various ensembles of the presépt 60 | * o 9’ .
CMB data set. s [ o0 viper ]

40} | r

It is useful to begin with a discussion of GOF in the context 20 [ A
of a complete likelihood analysis. Although computationally
challenging (in fact, impossible for large data sets: Bond et al. ol e e
2000; Borrill 1999a,b), a likelihood approach is conceptually 1 10 100 1000
straightforward and our discussion serves to highlight certain ¢
important points. Such an analysis is in any case required for a
small subset of data in order to test approximate methods (J&i@, 1- Power spectrum plot of some actual CMB data.
for example, Douspis et al. 2001a, hereafter Paper II).

Following the notation of Papers | and Il, we write the likeg x?2 method

lihood function as (we consider only Gaussian perturbations)
For a variety of reasons (e.g., increased computational speed or

_ 1 e e inaccessible pixel data) most parameter estimations use power
£(8) = Prob{d[®) = (z,r)Npix/2|C|1/ze ’ @) estimates¢T2, as their starting point, such as those shown in
Fig. 1. A classic minimisation ogf?

whereC(@) is the correlation matrix (a function of the model Nexs ( <obs 3 2
parameter$® and including a contribution from instrumental, 2(@) = Z (‘STn_—‘ST“()]
noise), andd is column vector listing the pixel valugésThe n=1

elements 0® may be either the cosmological parameters, or i
a set of band—powers. Maximising the likelihood function ovéf commonly used to fin@pes and the best model, where

the parameters defines the “best model” corresponding to fie= 7+ (o) if the model passes above (below) the data point.
) The obvious GOF statistic would then be the value of jhe
parameterSpes:

. 5
In the present situation, we are greatly aided by ﬂ%eﬁvizl\tljvar\]tgliat the mmw_nu_rgof =X .@besa'AS already note_d,

X i 4 procedure is inappropriate because power estimates
Gaussian form of Eq. (1) in the data _ve_ct?r.,GNen the best 5 ot follow a Gaussian distribution. It is of course true that
model, the most obvious GOF statistic is then clearly if the number of contributingféective degrees—of—freeddis

N large, a power estimate will closely follow a Gaussian; this,
gof = d.¢ct.d (2) however, is never the case on the largest scales probed by a sur

vey. We shall see in the following that, for actual CMB data,

whereC = C(Byes) is the correlation matrix evaluated athe x? approach leads to quantitativelyfidirent results than
the best model. For the Gaussian fluctuations we have @gher, more appropriate GOF statistics. For future reference,
sumed, this quantity follows g distribution, with a number of We show the value of this classjé in Table 1.
degrees—of-freedom (DOF) approximately equal to the number
of pixels minus the number of parameters

2. Likelihood method

3)

n

4. Proposed approximation

2 These “pixels” may either be the simple pixels of a map, or tenfo improve they? analysis, several authors have proposed ap-
perature dferences, as given by, for example, MAX. proximations to the band—power likelihood functigfy T) that

® This recipe does not strictly apply in the present case, becaysgy be constructed based on only minimal information about
the parameters are non-linear functions of the data; it is nevertheless
standard practice. In any case, the number of pixels is in practice much Less than the number of original pixels by a factor depending on
larger than the number of parameters. the pixel—pixel correlations; see Paper .
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Table 1. Values of the GOF of the “best models” for each subset ¢émpted to suppose that the same values may in fact be used,
the actual data. GC is for “generalise®’, CF for the “characteristic at least approximatively. This hope forms the basis of our pro-

functions” technique ang? for the classig. posed ansatz for the band—power estimator distribution:
ALL ALL5 CMB POTAB) o Y012V V2
GC 002% 86% 60.0% Y[5TY = v ([6T1*+5%) 5)
CF  03% 51.0% 63.0% ([6T(@))2 + 5?)

2 0.004% 1.1% 55.0% . . .
X > > i The underlying model band—powéTz(@) is in practice taken

to be the ML estimate. The essential spirit of our approach
the experimental set—up (Bond et al. 2000; Paper I). One thisrthat, knowing the flat—band estimates and the 68 and 95%
arrives at the likelihood as a function of cosmological parameenfidence levels, one is able to reconstruct the entire likeli-

ters® with .[Z[(ST(@))]. Unfortunately, these approximate like-hood function and (now) the probability distribution of the es-
lihood functions do not retain the normalisation of the full liketimated Ty,
lihood over pixels (Eq. (1)). This is a crucial point for GOF:  The only way to be sure that this proposed method actually
we cannot deduce the quantity in Eq. (2) from the value of theorks is by testing it against Monte Carlo simulations of some
approximate likelihood at its maximum. experiments before generalised it. We mention at least one rea-
An alternative way to build a GOF statistic would be frongon for caution: the quantity represents anfiective number
the expected distribution of power estimates, i.e., the distribe:DOF, reduced fronN,ix by inter—pixel correlations, applica-
tion of points in Fig. 4 around the model curve. Testing thele to the likelihood function; it is not at all clear that this same
observed dispersion of actual power points around the bestefiective DOF applies equally well to the power estimator dis-
model against this expectation amounts to a GOF. The méikution (as it does in the simple picture). In particular, note
difficulty in this approach is that we do not have an exprehat since the same data where used to find the best-fit model,
sion for the distribution of ML power estimates. It is imporwe might expect a reduction in DOF, something familiar from
tant to understand that this distribution is not the same as the classic reduceg? test. Here, however, we have no clear
band—power likelihood, whose maximum is used to find the dgea of the reduction. Fortunately, the proposed method never-
timated power. In this section, we first motivate and then td$eless appears valid, as the following Monte Carlo simulations
an approximation to the distribution of ML power estimates. demonstrate it.

4.1. Motivating an ansatz 4.2. Testing the ansatz

Our approach will be the same as in Paper |, and the fdMe simulated many éierent data realizations of the MAX ID
lowing results thus apply when using the approximate ban=lapp et al. 1994) and Saskatoon (Netterfield et al. 1996) ex-
power likelihood introduced therein. We motivated our likeliPeriments in order to reconstruct the corresponding ML power
hood approximation with an unrealistically simplified situatiogstimator distribution. For example, we ran 30 000 realizations
of Ny uncorrelated pixels and uniform noise (refered to heref MAX ID at a frequency of & cnr* in the following man-
after as the simple picture). This suggested a functional fofifir: we first compute the flat band—power and the one dimen-
depending on two parameters, dfeetive number of degrees—sional likelihood function for the actual observational data.
of—freedomy and a noise parametgr in the simple picture, Knowledge of the latter provided the value of the pairg).
v = Npix andﬁ2 is the noise variance. These two paramete-f@e maximum of the likelihood function gave us the “best
could be found in realistic situations by adjusting to publishégodel”, which was used to simulate pixels on the sky. In order
flat—band confidence intervals (“errors”). The particular advai®- take into account all correlations, we simulated our pixels
tage of such a technique is that it permits an approximate likésing the full pixel—pixel correlation matrix. We first computed
lihood analysis based on rather rudimentary information oftdhe theoretical part of the correlation matrix evaluated for our
found in the literature; this is an important advantage for mariyest model”. After diagonalization, we drew 30000 realisa-
first generation experiments. In this same spirit, we now pr@OﬂS of 21 pseudo—pixels from a Gaussian distribution centered
pose an ansatz for the ML band—power estimators. on 0 and with the variances given by the eigenvalues. We re-
For the simple picturev(= Npix andp? = noise variance), constructed the “true” sky pixels using the transformation ma-
we showed in Paper | that the ML band—power estimafbf, trix (eigenvector matrix) and adding realizations of Gaussian

was a linear transform ofﬁ - random variable: noise (given by the known noise correlation matrix). We thus
o obtained 30 000 sets of 21 pixels, correlated and drawn accord-
o (TP +p)

_ @ ing to the best modeb{Ts, = 57.3 uK). For each realization,
Xv ([6T(@)]2 +?) we derived the ML power estimate and build a histogram of its
distribution.
wheredTZ(Ta)) is the band—power of the underlying model. In  Figure 2 shows the resulting distribution for
a realistic situation where andg are found from published MAX 1D 3.5 cntl. Overplotted in red as the smooth
power estimates, there is no a priori guarantee that this fourve is the ansatz Eq. (5) with the same valuesvpB) as
mula applies with the same valuesiadindg. One is, of course, found from the likelihood function. We see that the proposed
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4.3.1. Generalized y?

0.0050 For each band—powey consider the variables; defined as

follows:

ii 2 o
f = P 2)d= p (6)

0.0040

00

’ ,W"

2
wherep; = fﬁT P,(5T2/8)dsT2 is calculated using Eq. (5).
The a; are thus Gaussian random variables with zero mean
and a variance of unity. Hence, the symf = Z'l\'ex” aiz fol-
lows ay? distribution with Npang DOF and provides a handy
GOF statistic.

0.0030 J'

0.0020

4.3.2. Characteristic functions

=
——l
=_
e
T NS FTE TR N R ST

0.0010
Another way to define a GOF statistic for a fit Mpang power
| points relies on the following property of characteristic func-
L R LT tions: the characteristic function for the sum of independent
6000 8000 10000 random variables is given by the product of the individual char-
OT" (kK acteristic functionsGiven theNyanq random variabled; and
Fig.2. Distribution of the ML flat band—power estimator fortheir probability distribution$’ (Eq. (5)), we calculate the dis-
MAX 1D 35 cnt? found by Monte Carlo simulation. The smoothtribution of the random variable= 3’ Y;, which will represent
(red) curve is the approximation Eq. (5), which fits the distributiothe goodness of fit, as follows: for eatfh we can compute
well. the corresponding characteristic functibyk). Then using the
property cited above, we can construct the characteristic func-
tion @,(k) of the variablez by ®,(k) = ®1(K)...Dn,,.(K). The
probability distribution function of, (2, is then given by the
approximate distribution is indeed a good representation of th@erse Fourier transform ob,(K). This approach is particu-
true power estimator distribution. larly straightforward in our case because the probability func-
The same kind of analysis was performed for the Saskatatwn given in Eq. (5) is just a2 law with v; DOF, whose char-
K—-band 3—point data, an altogetheffeient observing strat- acteristic functiond; has an analytic form. Multiplication of
egy. Once again, the approximation fitted the distribution the individual characteristic functions thus gives an analytical
high accuracy. On the basis of these agreements, we will nexpression whose inverse Fourier transform is itsgff distri-
adopt the proposed form in Eq. (5) as a good representatiorbafion inz, with v = 3 v; DOF:
the distribution of ML band—power estimators.

P
4000

0.0000 P
2000

7_-(2 — Zv/2 e—Z/2
4.3. From probability function to GOF with 2 Z i and v Z v

On the basis of the distribution Eqg. (5), we now construct tWhe variablejof = zis thus (anothery?~distributed quantity
GOF statistics. The goal is to define a scalar quantdy, that that provides a useful GOF statistic.

measures the scatter of points around a given model and whose

distribution is known under the hypothesis that this model rep-

resents the “truth” (the null hypothesis). An improbable value- “The good, the bad and the GOF” or Are CMB
of gof would indicate that there is a problem. fluctuations consistent with a Gaussian

Both constructions assume that the band—powers are indistribution?
dependent. This of course is not strictly true, but general L
speaking published band—powers do not have strong stati:zl’!' Application
cal correlations; for example, the residual correlation betwebnthis section we apply each of the above GOF statistics to
the Saskatoon bands is at a levekdf0%. Calibrations errors, the CMB data set shown in Fig. 1; note that this does note
on the other hand, do induce important band—band correlatioimelude the most recent BOOMERanG, MAXIMA and DASI
As already mentioned, the present work does not include cadsults. Adding these new data will essentially results in reduc-
ibration errors, and any “bad fit” indicated by our GOF tesisg the “?” distributed gof values without changing drasti-
could indicate either a false model, or that calibration errocally the results presented in this section. Our overall approach
are important. Our aim here is to show the ability of a propé as described in Le Dour et al. (2000, hereafter Paper III)
GOF to identify problems with CMB power data fits, and t@and Douspis et al. (2001a), where we used the likelihood ap-
demonstrate the advantage of the two proposed GOF statisfiopsximation given in Paper | to find the best model. We con-
on the naive and inappropriate clasgfc sider three combinations of data: Data set 1 contains all points
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0 1o 20. 30 40 Fig. 4. Results of the GOF for each subset given by our CF test. The
Dota points values of the GOF with the characteristic function technique are given
Fig. 3. Individual v; (red squares) ang? (blue triangles) for a subset by the blue shaded part for ALL subset and the red arrow for the
of the data plotted in Fig. 1. ALL-5 subset.

5.2. Discussion

5. . . he first remark to be made based in Table 1 is that the com-

(ALL )°; set 2 consists of all the data minus th_e Pyt_hon S resu te data set (set 1) is inconsistent with a Gaussian sky fluc-
(Coble et al. 199.9)/“‘"'5 ), and set 3 combines just COBEtuations, according to all three techniques; the GC method, for
(Tegmark & Hamilton 1997), MAXIMA (Hanany et al. 2000)example, excludes this hypothesis at more than 99.99%. This
and BOOMERanG (de Be_rnard|s etal. 2000MB). The best means in particular that it is not appropriate to search cosmo-
mode for each data set will be rgferred t0 as BM BMav. s, logical constraints, because the whole class of models consid-
BMcyie. A summary of the various GOF statistics for thesgeo g ryjed out. This could be due to sevefiets, in partic-
models IS given in Table 1; the '”_‘e? are Ia_belled by GC f?ﬂar the fact that we do not include calibration uncertainties in
“generalisedy?”, CF for “characteristic functions”, andy®” our analysis,
for the classige® of Eq. (3f. The situation is dterent if we remove Python 5 (set 2) from

For GC technique, thgof is directly equivalent to the ab- the analysis. In this case, our two evaluations of the GOF (GC
solute value of &2. To convert this into percentage, we need tgng CF) both accept the hypothesis of Gaussian sky fluctu-
know the DOF The latter is given in our case by the number gfions. In contrast, the classic (but inappropriaté)statistic
experiments taken into account in each set minus the numRg{rginally excludes such hypothesis. Figure 3 illustrates the
of free cosmological parameters. difference between our GC method and the clag$jcdata

For the CF technique, the percentage given in Table 1fsint by data point (for a subset of data set 1). Triangles show
obtained by integrating the probability distribution functibn individual y? values, while boxes correspond to thedefined
of Zy from infinity to Zyps = Zi’\'*‘ Zi2 whereNseis the number in Sect. 3. We see that the clasgic overpenalizes the fit for
of experiments in each set. outliers, a conclusion already noted in Paper Il.

Figure 4 summarises the results given by our CF test on Finally, we can see that all three methods accept the
both data sets 1 and 2. The line gives the function to integr&@ussian hypothesis as a good representation to the COBE,

and the shaded part is the integrated part corresponding tofHXIMA and BOOMERanG data (set 3).

numbers given in Table 1. The solid (blue) line and shaded part
correspond to data set 1, and the dashed (red) line and arro§ t@¢onclusion

data set 2. ) ) o
We have discussed thredigrent ways of estimating the GOF

5 Actuall ticed that imation fails t thto CMB band—-powers. A GOF statistic is a key element of
ctually, we noficed that our approximation Ias to recover g3 ameter estimation study, and a good fit must be in-
MC simulations for upper limits. For this reason we do not include S . .
Sured before considering parameter constraints. The clg&sic

them in our analysis. L . .
6 We noticed thatr; is given diferent definitions in the literature. GOF statistic is not rigorously applicable to power spectrum

When considering the evaluation of the GOF using each definitid#@ta, because power estimates are not Gaussian distributed
we found that the value of the GOF is quite sensitive to the definiti§tantities. We propose instead two alternative GOF statistics
of ori. We consider in this paper the technique giving the best valueld@sed on an approximation to the distribution of power esti-
the GOF. mators. This approximation was motivated by the same kind
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of arguments presented in Paper | for the likelihood functioBartlett, J. G., Blanchard, A., Douspis, M. & Le Dour, M. 1998b,
The distribution of a power estimator is afférent quantity to be published in Evolution of Large-scale Structure:
than the likelihood function used to define the estimator. We from Recombination to Garching (Munich, Germany)
tested the approximation presented here against Monte Carloglastro-ph/9810318] _

simulations of CMB observations and found that it reproduc&fiétt: J. G., Blanchard, A., Douspis, M., & Le Dour, M. 2000,

well the distribution of the maximum likelihood band—poweéart'lo‘;ttrofhés‘ ﬁétusi)?smmM 3;|'a‘°;]2$ar d A & Le Dour. M. 2000

estimator. _ o A&AS, 146, 507 (BDBL)
We then constructed two flierent GOF statistics, whoseggng. J. R., Jéie, A. H., & Knox, L. 2000, ApJ, 533, 19

distributions were found using the approximate power estimgond, J. R., & Je, A. H. 1998, in Philosophical Transactions of the

tor distribution. With the same, rather minimal information re- Royal Society of London A, Discussion Meeting on Large Scale

quired to build the likelihood approximation (Paper I), we are Structure in the Universe, Royal Society, London, March 1998,

now also able to develop a GOF statistic to test the quality of [astro-ph/9809043]

the maximum likelihood model to a set of band—power daﬁgrnll, J. 19994, in 3K Cosmology, AIP Conf. Proc., 476, 277, ed. L.

: ot ; ; Maiani, et al., hstro-ph/9903204]

thereby allowing a complete statistical analysis of anisotropy ,

data from diverse observations. The method is limited by t 8rr\|/&)rf<.3h109p9§:£rf_;r/cg:§1c1>;8t;1]e Sth European 3Gy MPP

fact that we are unable to a_lccount fo_r correlat!ons betwegf&pp, A. C., Devlin, M. J., Gundersen, J. O., et al. 1994, ApJ, 433,

band—powers; this, however, is not a serious restriction, as thesq 57

correlations are usually rather unimportant for the final resulteble, K., Dragovan, M., Kovac, J., et al. 1999, ApJ, 519, L5

based on current data sets. de Bernardis, P., Ade, P. A. R., Bock, J., et al. 2000, Nature, 404, 955
In applying this approach to a set of band—power data @pdelson, S., & Knox, L. 2000, Phys. Rev. Lett., 84, 3523

Fig. 1 we found that the “best model” obtained is in fact a bdePuspis, M., Bartlett, J. G., Blanchard, A. & Le Dour, M. 2001a,

fit. In other words, the data are unlikely to have been drawn A&A, 368, 1

. s ouspis, M., Blanchard, A., Sadat, R., Bartlett, J. G., & Le Dour, M.
from a Gaussian distribution represented by such a model. 'I%ezomb, AGA., 379, 1

fit become.S accepta.ble if we exclude the. Pytho.n 5 points .fr%tathiou, G., Bridle, S. L., Lasenby, A. N., Hobson, M. P., & Ellis,
the analysis, according to our GOF statistics. Thisis mostlikely g s 1999, MNRAS, 303, L47

due to the fact that we do not account for calibration errors, angnany, S., Ade, P., Balbi, A., et al. 2000, ApJ, 545, L5

so the bad fit probably just indicates that the adopted calibratieancock S., Rocha G., Lasenby, A. N., & Gutierrez, C. M. 1998,
is incorrect. It is interesting to note that, even with Python 5 MNRAS, 294, L1

removed, the classjg? still marginally rejects the best fit. We Hivon, E., Gorski, K. M., Netterfield, C. B., etal. 2002, ApJ, 567, 2

traced this behaviour to the fact that this method overweigﬁégﬁx' L('D’&'&nggl' L'SzofoigghgyséRﬁv't.Lett'}?_5' 13636 e Structure:
the importance of “outliers”. ahav, O., & Bridle, S. L. , Evolution of Large Scale Structure:

. . . . . From Recombination to Garching, 190
The important cosmological conclusion is that th'Eange A. E., Ade, P. A., Bock, J. J., et al. 2001, Phys. Rev. D, 63

CMB data set (excluding Python 5, due to our inability to ac- 45001

count for calibration errors) is consistent with Gaussian skwsenby, A. N., Bridle, S. L., & Hobson, M. P. 1999, to be pub-

fluctuations drawn from the best—fit inflationary model. lished in The CMB and the Planck Mission (Spain: Santander)
A final remark concerns the possibilityffered by the de- [astro-ph/9901303]

velopment of an approximated distribution function of the ete Dour, M., Douspis, M., Bartlett, J. G., & Blanchard, A. 2000,

timators. In the application of current Monte Carlo methods A&A, 364, 369

for C,’'s extraction (e.g. Szapudi et al. 2000, MASTER: Hivor'T'”e'xv;:"ggzcéeiarbosa' D., Blanchard, A., & Bartlett, J. G. 1997,
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ikelihood function needed in parameter estimations is howey&heyeaver. C. H., & Barbosa, D. 1998b, ApJ, 496, 624

unknown. The present study suggests that we could reconstiygéweaver, C. H. 1998, ApJ, 505, 69

the likelihood function directlyrom the estimator distribution. Netterfield, C. B., Devlin, M. J., Jarolik, N., Page, L., & Wollack, E. J.

The two parameters/(andB) can be fitted on the estimator 1997, ApJ, 474, 47

distribution and then used in the approximated likelihood fundetterfield, C. B., Ade, P. A. R., Bock, J. J., etal., 2002, ApJ, 571, 604

tion of Bartlett et al. (2001). Consequently one is then able 'tgyke, C., Halverson, N. W., Leitch, E. M., etal. 2002, ApJ, 568, 46

reconstruct all the likelihood function and to perform a prop&ubino-Martin, J. A., Rebolo, R., & Carreira, P. 2003, MNRAS, 341,
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parameter estimation. Szapudi, I., Prunet, S., Pogosyan, D., Szalay, A. S., & Bond, J. R.
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