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Unité associ´ee au CNRS (http://webast.ast.obs-mip.fr)

2 Astrophysics, Denis Wylkinson Building, Keble Road, Oxford OX1 3RH, UK
(http://www-astro.physics.ox.ac.uk)
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Abstract. Application of aGoodness–of–fit(GOF) statistic is an essential element in parameter estimation. We discuss the
computation of GOF when estimating parameters from anisotropy measurements of the cosmic microwave background (CMB),
and we propose two GOF statistics to be used when employing approximate band–power likelihood functions. They are based
on an approximate form for the distribution of band–power estimators that requires only minimal experimental information to
construct. Monte Carlo simulations of CMB experiments show that the proposed form describes the true distributions quite
well. We apply these GOF statistics to current CMB anisotropy data and discuss the results.
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1. Introduction

Measurement of the cosmic microwave background (CMB)
temperature anisotropies has proven to be one of the most
powerful tools for estimating important cosmological param-
eters (Netterfield et al. 2002; Pryke et al. 2002; Rubino-Martin
et al. 2002; Sievers et al. 2002; Wang et al. 2002). The
observed angular power spectrum shows the coherent peak
structure expected in inflationary models, and fitting model
curves to the data1 yields constraints on many parameters.
This leads in particular to the conclusion that the geometry of
space is flat (Lineweaver et al. 1997; de Bernardis et al. 2000;
Hanany et al. 2000; Lange et al. 2000; Balbi et al. 2000). In
terms of statistics, the procedure just described is one of pa-
rameter estimation.

Parameter estimation proceeds via the identification of a
best model (set of parameters) within a family of models, an
evaluation of the quality of the fit and the construction of pa-
rameter constraints. The method of maximum likelihood (ML),
for example, is a useful, general procedure for finding a best–fit
model. As a general rule, one must judge the quality of the fit
before any serious consideration of parameter constraints. This
requires the application of a Goodness–of–fit (GOF) statistic.
Such a statistic is, usually, some scalar function of the data
whose distribution may be calculated once given an underly-
ing physical model and a model of the statistical fluctuations in

Send offprint requests to: M. Douspis,
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1 Seehttp://webast.ast.obs-mip.fr/cosmo/CMB for an up–
to–date compilation.

the data. It is generally a functiongo f(d,T) of both the datad
and theoryT, such thatgo f attains, for example, a minimum
whend is generated by the theoryT. It is defined in a “mono-
tonic” way, in the sense thatgo f becomes larger asd gets “fur-
ther” from a realization ofT. The “significance” may then be
defined as the probability of obtaininggo f > go fobs. On this
basis, it permits a quantitative evaluation of the quality of the
best model’s fit to the data: if the probability of obtaining the
observed value of the GOF statistic (from the actual data set)
is low (low significance), then the model should be rejected.
Without such a statistic, one does not know if the best model is
a good model, or simply the “least bad” of the family.

In this paper, we examine in some detail the issue of
GOF when analysing anisotropy data on the cosmic microwave
background. The vast majority of present analyses of the power
spectrum data do not include proper GOF evaluations. The
problem is particularly complicated by the fact that approxi-
mate likelihood methods must be employed in order to process
the large volume of data and to explore a significant part of
parameter space. These methods usually rely on power spec-
trum estimates, such as flat band–powers, extracted either from
scan data, or from reconstructed sky maps. Because the power
is quadratic in the temperature fluctuations, it is clear that
these estimates are not Gaussian distributed. The traditional ap-
proach ofχ2 minimisation incorrectly assumes that power es-
timates are Gaussian distributed, something that can lead to a
bias in determining the best model (e.g., Douspis et al. 2001a).
For the same reason, the value of the reducedχ2 at the best
model does not retain its usual statistical meaning and may
therefore not be simply used as a GOF statistic.
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Approximations to the band–power likelihood function that
permit more rigorous analyses have been proposed (Bond et al.
2000; Bartlett et al. 2001). The question remains, however, of
how to correctly evaluate the GOF of the best model. Such an
evaluation requires knowledge of the distribution of the power
estimates, which is not necessarily the same as the likelihood
function. Using the same approach as Bartlett et al. (2001;
hereafter Paper I), we propose an ansatz for the distribution
of band–power estimates and test it against Monte Carlo sim-
ulations of certain MAX and Saskatoon data sets. The ansatz
requires only minimal experimental information, and it appears
to work well. We therefore use it to construct two GOF statis-
tics, which we then apply to various ensembles of the present
CMB data set.

2. Likelihood method

It is useful to begin with a discussion of GOF in the context
of a complete likelihood analysis. Although computationally
challenging (in fact, impossible for large data sets: Bond et al.
2000; Borrill 1999a,b), a likelihood approach is conceptually
straightforward and our discussion serves to highlight certain
important points. Such an analysis is in any case required for a
small subset of data in order to test approximate methods (see,
for example, Douspis et al. 2001a, hereafter Paper II).

Following the notation of Papers I and II, we write the like-
lihood function as (we consider only Gaussian perturbations)

L(
−→
Θ) ≡ Prob(

−→
d |−→Θ) =

1

(2π)Npix/2|C|1/2e−
1
2
−→d t
·C−1·−→d (1)

whereC(
−→
Θ) is the correlation matrix (a function of the model

parameters
−→
Θ and including a contribution from instrumental

noise), and
−→
d is column vector listing the pixel values2. The

elements of
−→
Θ may be either the cosmological parameters, or

a set of band–powers. Maximising the likelihood function over
the parameters defines the “best model” corresponding to the
parameters

−→
Θbest.

In the present situation, we are greatly aided by the
Gaussian form of Eq. (1) in the data vector,

−→
d . Given the best

model, the most obvious GOF statistic is then clearly

go f =
−→
d

t · C̃−1 · −→d (2)

where C̃ ≡ C(
−→
Θbest) is the correlation matrix evaluated at

the best model. For the Gaussian fluctuations we have as-
sumed, this quantity follows aχ2 distribution, with a number of
degrees–of–freedom(DOF) approximately equal to the number
of pixels minus the number of parameters3.

2 These “pixels” may either be the simple pixels of a map, or tem-
perature differences, as given by, for example, MAX.

3 This recipe does not strictly apply in the present case, because
the parameters are non–linear functions of the data; it is nevertheless
standard practice. In any case, the number of pixels is in practice much
larger than the number of parameters.

Fig. 1. Power spectrum plot of some actual CMB data.

3. χ2 method

For a variety of reasons (e.g., increased computational speed or
inaccessible pixel data) most parameter estimations use power
estimates,δT2, as their starting point, such as those shown in
Fig. 1. A classic minimisation ofχ2

χ2(
−→
Θ) =

Nexp∑
n=1

δT
obs
n − δTn(

−→
Θ)

σn


2

(3)

is commonly used to find
−→
Θbest and the best model, where

σn = σ+ (σ−) if the model passes above (below) the data point.
The obvious GOF statistic would then be the value of theχ2

evaluated at the minimum:go f = χ2(
−→
Θbest). As already noted,

this whole procedure is inappropriate because power estimates
do not follow a Gaussian distribution. It is of course true that
if the number of contributing effective degrees–of–freedom4 is
large, a power estimate will closely follow a Gaussian; this,
however, is never the case on the largest scales probed by a sur-
vey. We shall see in the following that, for actual CMB data,
the χ2 approach leads to quantitatively different results than
other, more appropriate GOF statistics. For future reference,
we show the value of this classicχ2 in Table 1.

4. Proposed approximation

To improve theχ2 analysis, several authors have proposed ap-
proximations to the band–power likelihood functionL(δT) that
may be constructed based on only minimal information about

4 Less than the number of original pixels by a factor depending on
the pixel–pixel correlations; see Paper I.
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Table 1. Values of the GOF of the “best models” for each subset of
the actual data. GC is for “generalisedχ2”, CF for the “characteristic
functions” technique andχ2 for the classicχ2.

ALL ALL-5 CMB

GC 0.02% 8.6% 60.0%

CF 0.3% 51.0% 63.0%

χ2 0.004% 1.1% 55.0%

the experimental set–up (Bond et al. 2000; Paper I). One then
arrives at the likelihood as a function of cosmological parame-
ters
−→
Θ with L[δT(

−→
Θ)]. Unfortunately, these approximate like-

lihood functions do not retain the normalisation of the full like-
lihood over pixels (Eq. (1)). This is a crucial point for GOF:
we cannot deduce the quantity in Eq. (2) from the value of the
approximate likelihood at its maximum.

An alternative way to build a GOF statistic would be from
the expected distribution of power estimates, i.e., the distribu-
tion of points in Fig. 4 around the model curve. Testing the
observed dispersion of actual power points around the best–fit
model against this expectation amounts to a GOF. The main
difficulty in this approach is that we do not have an expres-
sion for the distribution of ML power estimates. It is impor-
tant to understand that this distribution is not the same as the
band–power likelihood, whose maximum is used to find the es-
timated power. In this section, we first motivate and then test
an approximation to the distribution of ML power estimates.

4.1. Motivating an ansatz

Our approach will be the same as in Paper I, and the fol-
lowing results thus apply when using the approximate band–
power likelihood introduced therein. We motivated our likeli-
hood approximation with an unrealistically simplified situation
of Npix uncorrelated pixels and uniform noise (refered to here-
after as the simple picture). This suggested a functional form
depending on two parameters, an effective number of degrees–
of–freedomν and a noise parameterβ; in the simple picture,
ν = Npix andβ2 is the noise variance. These two parameters
could be found in realistic situations by adjusting to published
flat–band confidence intervals (“errors”). The particular advan-
tage of such a technique is that it permits an approximate like-
lihood analysis based on rather rudimentary information often
found in the literature; this is an important advantage for many
first generation experiments. In this same spirit, we now pro-
pose an ansatz for the ML band–power estimators.

For the simple picture (ν = Npix andβ2 = noise variance),
we showed in Paper I that the ML band–power estimator,δT2,
was a linear transform of aχ2

Npix
random variable:

χ2
ν = ν

([δT]2 + β2)

([δT(
−→
Θ)]2 + β2)

(4)

whereδT2(
−→
Θ) is the band–power of the underlying model. In

a realistic situation whereν andβ are found from published
power estimates, there is no a priori guarantee that this for-
mula applies with the same values ofν andβ. One is, of course,

tempted to suppose that the same values may in fact be used,
at least approximatively. This hope forms the basis of our pro-
posed ansatz for the band–power estimator distribution:

P(δT2|−→Θ) ∝ Y(ν/2−1)e−Y/2

Y[δT2] ≡ ν ([δT]2 + β2)

([δT(
−→
Θ)]2 + β2)

· (5)

The underlying model band–powerδT2(
−→
Θ) is in practice taken

to be the ML estimate. The essential spirit of our approach
is that, knowing the flat–band estimates and the 68 and 95%
confidence levels, one is able to reconstruct the entire likeli-
hood function and (now) the probability distribution of the es-
timateδTfb.

The only way to be sure that this proposed method actually
works is by testing it against Monte Carlo simulations of some
experiments before generalised it. We mention at least one rea-
son for caution: the quantityν represents an effective number
of DOF, reduced fromNpix by inter–pixel correlations, applica-
ble to the likelihood function; it is not at all clear that this same
effective DOF applies equally well to the power estimator dis-
tribution (as it does in the simple picture). In particular, note
that since the same data where used to find the best–fit model,
we might expect a reduction in DOF, something familiar from
the classic reducedχ2 test. Here, however, we have no clear
idea of the reduction. Fortunately, the proposed method never-
theless appears valid, as the following Monte Carlo simulations
demonstrate it.

4.2. Testing the ansatz

We simulated many different data realizations of the MAX ID
(Clapp et al. 1994) and Saskatoon (Netterfield et al. 1996) ex-
periments in order to reconstruct the corresponding ML power
estimator distribution. For example, we ran 30 000 realizations
of MAX ID at a frequency of 3.5 cm−1 in the following man-
ner: we first compute the flat band–power and the one dimen-
sional likelihood function for the actual observational data.
Knowledge of the latter provided the value of the pair (ν, β).
The maximum of the likelihood function gave us the “best
model”, which was used to simulate pixels on the sky. In order
to take into account all correlations, we simulated our pixels
using the full pixel–pixel correlation matrix. We first computed
the theoretical part of the correlation matrix evaluated for our
“best model”. After diagonalization, we drew 30 000 realisa-
tions of 21 pseudo–pixels from a Gaussian distribution centered
on 0 and with the variances given by the eigenvalues. We re-
constructed the “true” sky pixels using the transformation ma-
trix (eigenvector matrix) and adding realizations of Gaussian
noise (given by the known noise correlation matrix). We thus
obtained 30 000 sets of 21 pixels, correlated and drawn accord-
ing to the best model (δTfb = 57.3 µK). For each realization,
we derived the ML power estimate and build a histogram of its
distribution.

Figure 2 shows the resulting distribution for
MAX ID 3.5 cm−1. Overplotted in red as the smooth
curve is the ansatz Eq. (5) with the same values of (ν, β) as
found from the likelihood function. We see that the proposed
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Fig. 2. Distribution of the ML flat band–power estimator for
MAX ID 3.5 cm−1 found by Monte Carlo simulation. The smooth
(red) curve is the approximation Eq. (5), which fits the distribution
well.

approximate distribution is indeed a good representation of the
true power estimator distribution.

The same kind of analysis was performed for the Saskatoon
K–band 3–point data, an altogether different observing strat-
egy. Once again, the approximation fitted the distribution to
high accuracy. On the basis of these agreements, we will now
adopt the proposed form in Eq. (5) as a good representation of
the distribution of ML band–power estimators.

4.3. From probability function to GOF

On the basis of the distribution Eq. (5), we now construct two
GOF statistics. The goal is to define a scalar quantity,go f , that
measures the scatter of points around a given model and whose
distribution is known under the hypothesis that this model rep-
resents the “truth” (the null hypothesis). An improbable value
of go f would indicate that there is a problem.

Both constructions assume that the band–powers are in-
dependent. This of course is not strictly true, but generally
speaking published band–powers do not have strong statisti-
cal correlations; for example, the residual correlation between
the Saskatoon bands is at a level of∼10%. Calibrations errors,
on the other hand, do induce important band–band correlations.
As already mentioned, the present work does not include cal-
ibration errors, and any “bad fit” indicated by our GOF tests
could indicate either a false model, or that calibration errors
are important. Our aim here is to show the ability of a proper
GOF to identify problems with CMB power data fits, and to
demonstrate the advantage of the two proposed GOF statistics
on the naive and inappropriate classicχ2.

4.3.1. Generalized χ2

For each band–poweri, consider the variablesαi defined as
follows:∫ αi

−∞
1√
π

exp(−x2/2)dx = pi (6)

where pi ≡
∫ δT2

i

−β2
i
Pi(δT2|−→Θ)dδT2 is calculated using Eq. (5).

The αi are thus Gaussian random variables with zero mean
and a variance of unity. Hence, the sumgo f =

∑Nexp

1 α2
i fol-

lows aχ2 distribution with Nband DOF and provides a handy
GOF statistic.

4.3.2. Characteristic functions

Another way to define a GOF statistic for a fit toNband power
points relies on the following property of characteristic func-
tions: the characteristic function for the sum of independent
random variables is given by the product of the individual char-
acteristic functions. Given theNband random variablesYi and
their probability distributionsPi (Eq. (5)), we calculate the dis-
tribution of the random variablez≡ ∑i Yi , which will represent
the goodness of fit, as follows: for eachYi we can compute
the corresponding characteristic functionΦi(k). Then using the
property cited above, we can construct the characteristic func-
tion Φz(k) of the variablez by Φz(k) = Φ1(k)...ΦNband(k). The
probability distribution function ofz, F (z), is then given by the
inverse Fourier transform ofΦz(k). This approach is particu-
larly straightforward in our case because the probability func-
tion given in Eq. (5) is just aχ2 law with νi DOF, whose char-
acteristic functionΦi has an analytic form. Multiplication of
the individual characteristic functions thus gives an analytical
expression whose inverse Fourier transform is itself aχ2 distri-
bution inz, with ν =

∑
νi DOF:

F (z) = zν/2 e−z/2

with z=
∑

i

Yi and ν =
∑
νi

The variablego f = z is thus (another)χ2–distributed quantity
that provides a useful GOF statistic.

5. “The good, the bad and the GOF” or Are CMB
fluctuations consistent with a Gaussian
distribution?

5.1. Application

In this section we apply each of the above GOF statistics to
the CMB data set shown in Fig. 1; note that this does note
include the most recent BOOMERanG, MAXIMA and DASI
results. Adding these new data will essentially results in reduc-
ing the “χ2” distributed go f values without changing drasti-
cally the results presented in this section. Our overall approach
is as described in Le Dour et al. (2000, hereafter Paper III)
and Douspis et al. (2001a), where we used the likelihood ap-
proximation given in Paper I to find the best model. We con-
sider three combinations of data: Data set 1 contains all points
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Fig. 3. Individual νi (red squares) andχ2 (blue triangles) for a subset
of the data plotted in Fig. 1.

(ALL )5; set 2 consists of all the data minus the Python 5 results
(Coble et al. 1999) (ALL-5 ); and set 3 combines just COBE
(Tegmark & Hamilton 1997), MAXIMA (Hanany et al. 2000)
and BOOMERanG (de Bernardis et al. 2000) (CMB ). The best
model for each data set will be referred to as BMALL , BMALL−5,
BMCMB. A summary of the various GOF statistics for these
models is given in Table 1; the lines are labelled by GC for
“generalisedχ2”, CF for “characteristic functions”, and “χ2”
for the classicχ2 of Eq. (3)6.

For GC technique, thego f is directly equivalent to the ab-
solute value of aχ2. To convert this into percentage, we need to
know the DOF The latter is given in our case by the number of
experiments taken into account in each set minus the number
of free cosmological parameters.

For the CF technique, the percentage given in Table 1 is
obtained by integrating the probability distribution functionf
of ZY from infinity to Zobs =

∑Nset
i Z2

i whereNset is the number
of experiments in each set.

Figure 4 summarises the results given by our CF test on
both data sets 1 and 2. The line gives the function to integrate
and the shaded part is the integrated part corresponding to the
numbers given in Table 1. The solid (blue) line and shaded part
correspond to data set 1, and the dashed (red) line and arrow to
data set 2.

5 Actually, we noticed that our approximation fails to recover the
MC simulations for upper limits. For this reason we do not include
them in our analysis.

6 We noticed thatσi is given different definitions in the literature.
When considering the evaluation of the GOF using each definition,
we found that the value of the GOF is quite sensitive to the definition
of σi . We consider in this paper the technique giving the best value of
the GOF.

Fig. 4. Results of the GOF for each subset given by our CF test. The
values of the GOF with the characteristic function technique are given
by the blue shaded part for ALL subset and the red arrow for the
ALL-5 subset.

5.2. Discussion

The first remark to be made based in Table 1 is that the com-
plete data set (set 1) is inconsistent with a Gaussian sky fluc-
tuations, according to all three techniques; the GC method, for
example, excludes this hypothesis at more than 99.99%. This
means in particular that it is not appropriate to search cosmo-
logical constraints, because the whole class of models consid-
ered is ruled out. This could be due to several effects, in partic-
ular the fact that we do not include calibration uncertainties in
our analysis.

The situation is different if we remove Python 5 (set 2) from
the analysis. In this case, our two evaluations of the GOF (GC
and CF) both accept the hypothesis of Gaussian sky fluctu-
ations. In contrast, the classic (but inappropriate)χ2 statistic
marginally excludes such hypothesis. Figure 3 illustrates the
difference between our GC method and the classicχ2, data
point by data point (for a subset of data set 1). Triangles show
individualχ2 values, while boxes correspond to theνi defined
in Sect. 3. We see that the classicχ2 overpenalizes the fit for
outliers, a conclusion already noted in Paper II.

Finally, we can see that all three methods accept the
Gaussian hypothesis as a good representation to the COBE,
MAXIMA and BOOMERanG data (set 3).

6. Conclusion

We have discussed three different ways of estimating the GOF
to CMB band–powers. A GOF statistic is a key element of
any parameter estimation study, and a good fit must be in-
sured before considering parameter constraints. The classicχ2

GOF statistic is not rigorously applicable to power spectrum
data, because power estimates are not Gaussian distributed
quantities. We propose instead two alternative GOF statistics
based on an approximation to the distribution of power esti-
mators. This approximation was motivated by the same kind
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of arguments presented in Paper I for the likelihood function.
The distribution of a power estimator is a different quantity
than the likelihood function used to define the estimator. We
tested the approximation presented here against Monte Carlos
simulations of CMB observations and found that it reproduced
well the distribution of the maximum likelihood band–power
estimator.

We then constructed two different GOF statistics, whose
distributions were found using the approximate power estima-
tor distribution. With the same, rather minimal information re-
quired to build the likelihood approximation (Paper I), we are
now also able to develop a GOF statistic to test the quality of
the maximum likelihood model to a set of band–power data,
thereby allowing a complete statistical analysis of anisotropy
data from diverse observations. The method is limited by the
fact that we are unable to account for correlations between
band–powers; this, however, is not a serious restriction, as these
correlations are usually rather unimportant for the final results
based on current data sets.

In applying this approach to a set of band–power data of
Fig. 1 we found that the “best model” obtained is in fact a bad
fit. In other words, the data are unlikely to have been drawn
from a Gaussian distribution represented by such a model. The
fit becomes acceptable if we exclude the Python 5 points from
the analysis, according to our GOF statistics. This is most likely
due to the fact that we do not account for calibration errors, and
so the bad fit probably just indicates that the adopted calibration
is incorrect. It is interesting to note that, even with Python 5
removed, the classicχ2 still marginally rejects the best fit. We
traced this behaviour to the fact that this method over weights
the importance of “outliers”.

The important cosmological conclusion is that this
CMB data set (excluding Python 5, due to our inability to ac-
count for calibration errors) is consistent with Gaussian sky
fluctuations drawn from the best–fit inflationary model.

A final remark concerns the possibility offered by the de-
velopment of an approximated distribution function of the es-
timators. In the application of current Monte Carlo methods
for C` ’s extraction (e.g. Szapudi et al. 2000, MASTER: Hivon
et al. 2001), the estimator distribution is a natural output. The
likelihood function needed in parameter estimations is however
unknown. The present study suggests that we could reconstruct
the likelihood function directlyfrom the estimator distribution.
The two parameters (ν and β) can be fitted on the estimator
distribution and then used in the approximated likelihood func-
tion of Bartlett et al. (2001). Consequently one is then able to
reconstruct all the likelihood function and to perform a proper
parameter estimation.

Acknowledgements.M.D. would like to thank Nabila Aghanim for
useful comments and corrections.
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