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Abstract

Observation of thousands of type Ia supernovae should offer the most direct approach
to probe the dark energy content of the universe. This will be undertaken by future
large ground-based surveys followed by a space mission (SNAP/JDEM). We address the
problem of extracting the cosmological parameters from the future data in a model inde-
pendent approach, with minimal assumptions on the prior knowledge of some parameters.
We concentrate on the comparison between a fiducial model and the fitting function and
adress in particular the effect of neglecting (or not) the time evolution of the equation of
state. We present a quantitative analysis of the bias which can be introduced by the fit-
ting procedure. Such bias cannot be ignored as soon as the statistical errors from present
data are drastically improved.
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1 Introduction

The general paradigm in cosmology is that we are living in a flat universe, which is
dominated by a nearly homogeneous component with negative pressure. This compo-
nent is often called Dark Energy (DE) and causes the expansion rate of the universe to
accelerate.

The recent measurements of type Ia supernovae (thereafter denoted SN) are the most
direct evidence of the presence of this component [1, 2, 3, 4]. It is also confirmed by
the combination of results from the large-scale distribution of galaxies [6] and the most
precise data on the cosmic microwave background (CMB) from the Wilkinson Microwave
Anisotropie Probe (WMAP) [7]. A recent combined analysis is presented in [8].
Recently the detection of the late Integrated Sachs-Wolfe (ISW) effect has reinforced the
case for DE [9]. All this is most frequently interpreted in the framework of the so-called
”concordance Cosmology” [10].

A fundamental problem is the identification of the underlying nature of DE : cosmo-
logical constant, quintessence (for a review see [11]) or something else. The most common
way is to measure its equation of state (EoS) defined as w = pX/ρX where pX is the
pressure and ρX the energy density of the DE. The ratio of the DE density to the critical
density will be denoted ΩX in a general model and ΩΛ in the simplest case of a Cosmo-
logical Constant (w = −1). ΩM is the corresponding parameter for (baryonic+cold dark)
matter.

An ambitious SN program is now on the way. Important pieces of information will be
provided by large ground-based surveys such as the Supernova Legacy Survey (SNLS) [12]
and these investigations will culminate with a space mission as the Supernova Acceleration
Probe (SNAP) instrument, part of the Joint Dark Energy Mission (JDEM), which aims at
the discovery and follow-up of some 2000 SNIa per year in the redshift range z = 0.2−1.7
with very precise magnitude measurements [13]. Of course, the validity of the obtained
precision will not depend on the size of the SN sample only, but also on the ability to
control the systematic uncertainties at the same level [14]. These systematic errors are
coming on one side from the instrument itself (calibration, etc, ...) and also from the
SN astrophysical environment (evolution, lensing effects, ...). The SNAP collaboration
proposes a global strategy to control such effects at the percent level [13].

In this context, it is necessary to analyze very carefully at which precision level it will
be possible to draw any conclusions from the expected rich amount of data.

Authors have used the present SN data together with simulated sets to :

• evaluate the accuracy on the ΩΛ parameter to validate the acceleration.

• measure the DE through the equation of state with w constant in redshift.

• evidence a possible redshift dependence w(z) with various parametrizations.

• look at the model dependences and degeneracies and study the possible strategies
to break the latter.

There is a large consensus that the future SN data alone will have difficulties to
constrain an evolving equation of state and to break model degeneracies. It is mandatory
to have a prior knowledge of the values of some parameters. In particular, a precise
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knowledge of ΩM will be essential if one hopes to pick out the z dependence of w (see
e.g. [15, 16, 17, 18, 19, 20, 21]) even in the simplest flat cosmology. However, to use some
pieces of information from other sources than SN, it will be essential to combine the data
in a coherent way, that is under the same hypothesis, in particular on the DE properties.

On the other hand, some potential difficulties have been pointed out by various au-
thors. Indeed, most papers have been mainly interested in predicting, for each cosmo-
logical parameter, the errors around some fiducial value, close to the ones obtained from
the present data as ΩM = 0.3,ΩX = 0.7, w = −1, dw/dz = 0. In this procedure, the
framework is a particular fiducial model and the chosen fitting function is usually the
one used to generate the data. This strategy is valuable for a first estimate but is too
restrictive to pin down the underlying physics which is so far unknown.

For example, Maor et al. [16] and Gerke and Efstathiou [20] have stressed the prob-
lems which arise if the redshift dependence of the equation of state is neglected whereas
this dependence is present. The multiple integral relation between the luminosity distance
and w smears out information about w and its time-variation. Assuming in the fitting
function that w is a constant, whereas it is not in the fiducial model, can lead to a very
wrong estimate of the ”constant” or even ”effective” w value. At the same time, the
central value of ΩM (or ΩX) is badly reconstructed.

It is unavoidable to get some ambiguities when trying to fit a particular fiducial cos-
mology with the ”wrong” model ! In the following, we will call this problem the ”bias
problem”. For present SN data, as will be shown, this question is not a concern as the
statistical errors on model parameters stay large due to the limited statistics. In the per-
spective of much richer SN samples, this bias problem cannot be ignored. We address the
problem in a more quantitative way than the authors of [22] which have only considered
some specific classes of models. In this paper, we investigate the full parameter range,
in a model independent way, to quantify where the ’bias’ creates potential difficulties
and where it can be ignored. We also evaluate the impact of priors when only SN mea-
surements are used. We get a handle on the possible bias introduced in the analysis by
looking at the different hypothesis which are done at the fitting function level. Results
are presented in the parameter space of the fiducial models we have simulated.

This paper is organized as follows. In Section 2 we recall the theoretical description of
the magnitude-redshift diagram for supernovae and we present the experimental situation.
We identify the relevant parameters which enter as the parameters of the fiducial models
and we define the bias which could be introduced by the fitting procedure.

In section 3, we focus on the extraction of the EoS parameter w0. We illustrate
the confusion created by the bias on examples. Then we analyze the impact of bias on
simulated data : we consider future statistical samples corresponding to SNAP, SNLS and
also a sample corresponding to present data. We try to find the safest way for extracting
an effective w from the data with minimum bias and minimum priors. Our summary and
conclusions are given in Section 4.
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2 The experimental and theoretical framework

2.1 The experimental framework

The studies presented in this paper are performed with simulated supernovae samples
with statistics equivalent to what we expect to have in the future. We concentrate on
three sets of data which simulate the statistical power of the present and future data. We
want to emphasize the importance of the future sample of supernovae taken on ground
which are limited by the systematics inherent to this approach but are statistically one
order of magnitude greater than the present sample.

• We reproduce the published data of Perlmutter et al. from [4]. We take directly the
effective magnitude of the sample 3 of this paper, which corresponds to 60 SNIa,
corrected from K corrections, extinction and stretch (the values are given in Table
3 of [4]). The errors on magnitude vary in the range [0.16-0.22].

• We simulate some future data coming from ground survey as the large SNLS survey
at CFHT [5]. This survey has started in 2003 and the estimation after 5 years of
running is to register a sample of 700 identified SNIa in the redshift range 0.3 < z <
1. We simulate a sample as reported in Table 1 in agreement with the expected rate
of [5]. We assume a magnitude dispersion of 0.15 for each supernova and constant
in redshift after all corrections.

• We simulate data from a future space mission like SNAP, which plans to discover
around 2000 identified SNIa, at redshift 0.2< z <1.7 with very precise photometry
and spectroscopy. The SN distribution is given in Table 1(from[14]). The magnitude
dispersion is assumed to be constant and independent of the redshift at 0.15 for all
SN’s after correction. On some studies, we include the effect of adding a constant
and uncorrelated in redshift systematic error of 0.02 on the magnitude.

A set of 300 very well calibrated SnIa at redshift < 0.1 should be measured by the incom-
ing SN factory project [23]. This sample is needed to normalize the Hubble diagram and
will be called in the following the ”Nearby” sample.
A ”SNAP” (”SNLS”) sample means in this paper a simulation of the statistics expected
from the SNAP like mission (”SNLS” survey) combined with the 300 nearby SN’s. To
make our point clear, we do not consider in the presented studies the experimental sys-
tematic errors, unless otherwise specified.

z 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

SNLS - 44 56 80 96 100 104 108 - - - - - - - -
SNAP 35 64 95 124 150 171 183 179 170 155 142 130 119 107 94 80

Table 1: number of simulated supernovae by bin of 0.1 in redshift for SNLS and SNAP

respectively.
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2.2 The theoretical framework

In the standard Friedmann-Roberston-Walker metric, the apparent magnitude of astro-
physical objects can be expressed as a function of the luminosity distance :

m(z) = 5 log10(DL) +MB − 5 log10(H0/c) + 25 = Ms + 5 log10(DL) (1)

where MB is the absolute magnitude of SNIa, MS may be considered as a normalization
parameter and DL(z) ≡ (H0/c) dL(z) is the H0-independent luminosity distance to an
object at redshift z. It is related to the comoving distance r(z) by
DL(z) = (1 + z)r(z), where

r(z) =















1√
−Ωk

sin(
√
−Ωk J), Ωk < 0

J, Ωk = 0
1√
Ωk

sinh(
√
Ωk J), Ωk > 0

(2)

with Ωk = 1− Ωm − ΩX ≡ 1− ΩT , (3)

J =
∫ z

0

H0

H(z′)
dz′ (4)

and
(

H(z)

H0

)2

= (1 + z)3Ωm +
ρX(z)

ρX(0)
ΩX + (1 + z)2 Ωk, (5)

with
ρX(z)

ρX(0)
= exp

[

3
∫ z

0
(1 + w(z′)) d ln(1 + z′)

]

(6)

Note that we have neglected the radiation component ΩR.

2.2.1 Choice of a fitting function

A fitting function is an expression for H(z) in terms of a number of parameters. H(z)
is usually expressed in term of the cosmological parameters contained in Eq.(5)[15, 16,
17, 18, 19, 20, 21] but other possibilities relying on geometrical parametrizations or arbi-
trary ansatz have been proposed [24]. In this paper, we adopt the first approach where
the cosmological parameters have a direct physical interpretation within General Rela-
tivity. With such analysis, the constraints are aimed to be model independent and can
be used for investigation of a large variety of DE models. However, we have to choose a
parametrization for the time (or redshift) variation of the EoS.

The current parametrizations of w(z) which can be found in the literature are the linear
one [17]: w(z) = w0 + w1z; the one advocated by Linder [25] with a better asymptotic
behavior : w(z) = w0 + waz/(1 + z); and also w(z) = w0 − α ln(1 + z) from [20] which
is advocated to describe a large sample of quintessence models characterized by a weakly
varying EoS. We choose the linear one which allows to compare most easily to previous
works. In this case, Eq.(6) becomes:

ρX(z) = ρX(0) e
3w1z (1 + z)3(1+w0−w1) (7)

Nevertheless, our results are essentially independent of the choice of this parametrization
since the redshift range of the SN data is limited to z < 2 and the sensitivity of the data
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on w(z) concerns mainly the values taken by w at relatively low redshifts z ≃ 0.2 − 0.4
(the ”sweet spot” of [18, 17, 21]) where all parametrizations reduce roughly to the linear
one.

Finally, note that models with non-trivial variations of the EoS w(z), like the pseudo-
goldstone model of ref.[26], cannot be described by such parametrizations. Consequently,
our analysis does not apply to this kind of models.

Therefore, five parameters have to be fitted in the most general procedure:
Ms,ΩM ,ΩX , w0, w1.

2.2.2 Choice of a fiducial model

We define fiducial models which depend on the parameters MF
s ,Ω

F
M ,ΩF

X , w
F
0 , w

F
1 .

In order to keep this paper clear, we concentrate on the case where the paradigm
ΩT = 1 is verified by the fiducial models. This value is in agreement with the inflationary
paradigm and it is supported by the analysis of the rich amount of data from the CMB
[7]. ΩF

X is then no longer free (ΩF
X = 1−ΩF

M) and, if not stated otherwise, the parameters
MF

s and ΩF
M are fixed at: MF

s = −3.6 and ΩF
M = 0.3.

Our conclusions will not depend on variations of the MF
s parameter. The variation

due to different ΩF
M values has been investigated. If ΩT 6= 1, it appears that our results

can change significantly. Analysis of non-flat models will be presented elsewhere [27].

To focus on the dark energy measurement, we propose to scan a large variety of fidu-
cial models as a function of the couple (wF

0 , w
F
1 ). We have scanned the plane (wF

0 , w
F
1 )

(hereafter denoted by P) for the values −2 < wF
0 < 0 and −2 < wF

1 < 2. We pay
particular attention to the reduced plane PR associated to the ranges −1 < wF

0 < 0 and
−1 < wF

1 < 1, which represents a reasonable class of theoretical models. Indeed, in most
of the models available in the literature, like the quintessence models [11], the weak energy
condition wF

0 > −1 is satisfied (see e.g. [28]). They also possess in general a relatively
weak z dependence for the EoS [20, 17]. However, we consider the full plane P in order
to include in our analysis more exotic models which violate the weak energy condition or
which are described by a modified Friedmann equation or by a modified theory of gravity
(we refer to [29] for a recent list of models and references).

2.2.3 The fitting method

To analyse the (simulated) data, a minimization procedure has been used [30]. A standard
Fisher matrix approach allows a fast estimate of the parameter errors. This method is how-
ever limited as it does not yield the central values of the fitted parameters. Then we adopt,
unless specified, a minimization procedure based on a least square method. The least
square estimators are determined by the minimum of the χ2 = (m−M(z,Ω, w)TV−1(m−
M(z,Ω, w)), where m = (m1...mn) is the vector of magnitude measurements, M(z,Ω, w)
the corresponding vector of predicted values and V the covariance matrix of the measured
magnitudes. The error on cosmological parameters is estimated at the minimum by using
the first order error propagation technique: U = A.V.AT where U is the error matrix on
the cosmological parameters and A the Jacobian of the transformation.
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A full 5-parameter fit (5-fit) of the real or simulated data gives the central values
and errors for the five parameters. In the following, the normalization parameter Ms is
left free in the fit, unless specified, as its correlation with the cosmological parameters is
strong [19]. To constrain accurately this parameter, which is fixed in most of the papers,
we use the very low redshift simulated “Nearby” sample of 300 SN.

2.3 Choice of a fitting procedure

There are different ways to choose a fitting procedure. If one only wants to minimize the
errors on the fitting parameters, a simple Fisher approach should be sufficient and should
give conclusions depending on the initial fit hypothesis. Nevertheless, as we have already
emphasized, this approach is fiducial model dependent and can lead to some bias that we
want to quantify. Then, after a presentation of different Fisher results, we will expose our
strategy to understand and explore the bias introduced by some fitting approach.

2.3.1 The Fisher approach

To perform a Fisher matrix analysis, a fiducial model is chosen and fixed. We take the
”concordance model” version of the simplest flat ΛCDM model :

ΩF
M = 0.3, ΩF

X = 0.7, wF
0 = −1, wF

1 = 0 with MF
s = −3.6

We call this model ’Λ’ in the following.
Each fitting procedure is defined by a particular choice of the parameters to be fitted:

reducing the number of parameters will improve the parameter errors in the fitting func-
tion. Priors are introduced by fixing a parameter at a predefined value or inside a given
range.

Table 2 gives the errors obtained with the Fisher matrix analysis for various fitting
procedures with the SNLS and SNAP simulated data. The numbers are in agreement
with the analysis of various authors [15, 16, 17, 18, 19, 20, 21].
Figure 1 gives the contours obtained in the plane (ΩM , w0) at 68.3 % CL with the SNAP
statistics, for this fiducial model within the same fitting procedures.
As can be seen from the first line of Table 2 and from the black ellipse in Fig. 1, a com-
plete 5 parameter-fit (5-fit)(Ms,ΩM ,ΩX , w0, w1), with no assumptions on the values of the
cosmological parameters - including no constraint on the flatness of the universe- yields
too large errors on the cosmological parameters to set any definite conclusions even with
the high statistics sample expected for the SNAP+Nearby data.
Fig. 1 shows clearly that the reduction of the number of fitted parameters or/and the
strengthening of the ΩM prior, reduces the contours.

The second line of Table 2 presents errors with the paradigm of a perfectly flat universe
(ΩT = 1) and the 5-fit reduces to a 4-fit (Ms,ΩM , w0, w1). It appears that for the SNAP
statistics, one gets better estimates of w0 and ΩM but the error on w1 is always large. For
SNLS, even the error on w0 is large.

Adding some prior knowledge of ΩM improves greatly the situation: the same 4-fit
(Ms,ΩM , w0, w1) for SNAP and SNLS with a weak prior on ΩM (0.2 < ΩM < 0.4) yields
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Table 2: Statistical errors obtained with a Fisher matrix analysis on the cosmological parameters for
various fitting procedures with the SNLS and SNAP data repectively. The fiducial model is a cosmolog-
ical constant with MF

s = −3.6, ΩF

M
= 0.3, ΩF

X
= 0.7, wF

0
= −1, wF

1
= 0. The weak (strong) ΩM prior

corresponds to the constraint ΩM = 0.3 ± 0.1 (ΩM = 0.3 ± 0.01). The labels 5-fit, 4-fit and 3-fit corre-
sponds to the fitting procedures 5-fit(Ms,ΩM ,ΩX , w0, w1), 4-fit(Ms,ΩM , w0, w1) and 3-fit(Ms,ΩM , w0),
respectively. σ(ΩX) has been omitted from the table since ΩX = 1 − ΩM is no longer a free parameter
except for the 5-fit where σ(ΩX) is very large. σ(MS) has been omitted from the table since its value,
roughly 1% , changes weakly for the various fitting procedures thanks to the inclusion of the Nearby SN
sample.

Fit ΩM prior assumptions σ(ΩM ) σ(w0) σ(w1) σ(ΩM) σ(w0) σ(w1)
SNAP SNAP SNAP SNLS SNLS SNLS

5-fit no no 1.51 4.15 11.07 19.10 63.37 >100
4-fit no ΩT = 1 0.14 0.11 1.31 1.08 1.21 7.94
4-fit weak ΩT = 1 0.082 0.076 0.77 0.10 0.161 0.89
4-fit strong ΩT = 1 0.01 0.055 0.174 0.01 0.117 0.511
3-fit no ΩT = 1,w1 = 0 0.016 0.063 / 0.069 0.19 /
3-fit weak ΩT = 1,w1 = 0 0.016 0.063 / 0.057 0.158 /
3-fit strong ΩT = 1,w1 = 0 0.008 0.040 / 0.01 0.047 /

a good estimation of w0 but still a very large error for w1 (see line 3 of Table 2 ). Only a
strong prior on ΩM (ΩM = 0.3± 0.01) really improves the situation for w1 as can be seen
from line 4 of Table 2. These conclusions are in agreement with other published results
[15, 16, 17, 18, 19, 20, 21].

One can conclude that the determination of a possible redshift dependence of the EoS
remains the most difficult task. All authors agree on the following statement: to get a
good precision on the parameter governing the redshift evolution of the EoS, a fit with
a strong prior on ΩM (”strong” means at the percent level) is needed within the ΩT = 1
paradigm.

2.3.2 The bias problem

Several comments on the previous approach are in order :

- The setting of strong priors inside the fit should be taken with caution.
First of all, the cosmological parameter ΩM is far from being measured at the percent
level [31]. So, this kind of prior cannot be applied blindly, even if there is hope that
this parameter might be well measured by the time SNAP provides data.

- Even in a future context, some doubts can be raised about the relevance of very
precise priors [15, 16] and their use has to be set with some cautions : all the Ω’s
should be obtained under the same hypothesis (astrophysical, experimental, DE
properties) and correlations among fitted parameters have to be taken properly into
account for the combined statistical analysis to be relevant.
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Figure 1: Fisher contours in the plane (ΩM , w0) at 68,3 % CL for a cosmological constant as the
fiducial model. The large dashed contour corresponds to the 5-fit(Ms,ΩM ,ΩX , w0, w1). The three dotted
contours correspond to the 4-fit(Ms,ΩM , w0, w1) with no prior (largest), with a weak ΩM prior (i.e.
ΩM = 0.3± 0.1) and with a strong ΩM prior (i.e. ΩM = 0.3± 0.01, smallest ellipse). The solid contours
correspond to the 3-fit(Ms,ΩM , w0) with a weak ΩM prior (largest) and with a strong ΩM prior (smallest).
For this fitting procedure, there is almost no difference between the cases ”no” and ”weak” prior for ΩM .

In this paper, we attempt to extract the informations from SN data, therefore avoiding
the (consistency) problems encountered when constraining ΩM with external data.

The results from Table 2 and Fig. 1 lead us to leave aside the determination of the
redshift dependence of the EoS and to consider w0 as an ”effective” constant weff EoS
parameter. Then we concentrate on the best strategy to extract w0 from present or future
SN data with minimal assumptions on priors : we use the paradigm ΩT = 1 either with
no priors or with weak priors on ΩM . We focus on a 3-fit (Ms,ΩM , w0) or on a 4-fit
(Ms,ΩM , w0, w1) where we know already that the precision on w1 will be low.

A 3-fit should always provide better constraints than a 4-fit. Table 2 shows, however,
that the reduction of the errors is more important for ΩM than for w0 and since the w0

error is not strongly improved, the use of the 4-fit seems the best strategy for extracting
w0 [21, 14]. We want to point out that this conclusion is only valid for the Λ fiducial
model. In some other fiducial models, the 3-fit can increase considerably the constraints
on w0 with respect to the 4-fit: Figure 2 gives the expected contours in the plane (ΩM ,w0)
for the two fiducial models (wF

0 = −2,wF
1 = 0) and (wF

0 = −1,wF
1 = 0.2). The best

constraints on ΩM and w0 are given by the 3-fit.

On the other hand, doing a complete minimization procedure shows that the central
values given by the 3-fit can be far away from the fiducial values. This fact has been
pointed out by several authors [15, 16, 20, 22]. This happens when the fitting hypothesis
are not verified by the fiducial model, namely a constant EoS in the 3-fit and a varying one
in the fiducial model. In this case bias are introduced on the estimate of the cosmological

parameters. This bias problem is due to the degeneracy of the fitting function among
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Figure 2: Contours in the plane (ΩM , w0) at 68,3 % CL for the fiducial models (wF
0

= −2, wF
1

= 0)
and (wF

0
= −1, wF

1
= 0.2). The large dashed (small solid) contours correspond to the 4-fit (3-fit). A

weak ΩM prior has been used.

the various cosmological parameters [15, 16]. A wrong hypothesis on one parameter is
compensated in a non trivial way by the value of the others. We know also from the
various Fisher analysis presented in the litterature [18, 19, 21, 14] that the errors depend
on the central values of the cosmological parameters. Since these last ones are biased,
their errors are also biased [21, 14].
Then the question of choosing between the 3-fit and the 4-fit is not so obvious and appears
to be fiducial model dependent.

In the next section we present in detail a study of this bias by exploring the range of
fiducial models which is affected, in order to conclude on the validity of a 3-fit.
Let us point out that other bias would be introduced by a departure from the ΩT = 1
paradigm in the fiducial model or if the central value of the ΩM prior used in the fitting
procedure is not the same as the fiducial one. These bias will be studied in a future paper
[27].

3 How to extract w0 : a quantitative analysis of the

validity of a 3-fit

To be able to choose the best strategy for extracting w0, we want to test the relevance of
the fitting procedure. We have performed for that purpose a complete study of the bias
introduced by the different fitting procedures. After a description of the problem through
a short illustration, we present the results of a full scan of the (wF

0 , w
F
1 ) plane for SNAP,

SNLS and a sample corresponding to present data. The scanning is done by fixing the
fitting procedure and varying the various parameters of the fiducial model ; we perform
a 3-fit and compare it to the result of the 4-fit where w1 is left free.
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3.1 Illustration of the bias effect

Let us start with some illustrations of the bias introduced by the 3-fit procedure. We
choose three different models and look at the central values of the parameters obtained
from the fit:

• The one of Maor et al. [16] (wF
0 = −0.7, wF

1 = 0.8). The 3-fit applied to this model
clearly provides some erroneous results : ΩM = 0.62 ± 0.013 and w0 = −1.548 ± 0.194.
Note that our central values are slightly different from the ones of [16], this is due to small
differences between the chosen SN samples.

Figure 3 shows the two elliptical contours from the 3-fit and the 4-fit : the 4-fit ellipse
is centered on the fiducial values as expected whereas the 3-fit ellipse is very far away.
This is due to the large chosen wF

1 value and this behavior has been already pointed out
by Maor et al. (see Fig. 5 of ref. [16]).
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Figure 3: Contours in the plane (ΩM , w0) at 68,3 % CL for the fiducial models (wF
0

= −0.7, wF
1

=
0.8)(Maor et al. model[16]). The dashed (solid) contour corresponds to the 4-fit (3-fit) contour. A weak
ΩM prior has been used. We can observe the large differences in the central values coming from the two
3-fit and 4-fit fitting procedures.

• If we take the model (wF
0 = −1, wF

1 = 0.2), which has a “small” wF
1 value, it leads to a

smaller bias : we get ΩM = 0.324± 0.016 and w0 = −1.021± 0.067. We see that there is
a bias of the order of 1.5σ for ΩM , and a small bias within the statistical error for w0.
The central values (crosses) displayed in Figure 2 of the ellipses for the 3-fit and the 4-fit
are different but the 3-fit ellipse is included in the 4-fit one, indicating a small bias on one
parameter (w0) and a not too big bias on the second (ΩM ).

• Finally, with the model (wF
0 = −2, wF

1 = 0) which has no z dependence of the EoS,
there is no bias and both ellipses are centered on the same point (see Figure 2).
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Note that there is no significant bias for the normalization parameter MS in the three
cases.

3.2 Validity zones for the 3-fit

To quantify the bias, we scan the full plane P (wF
0 , w

F
1 ) using the procedure 3-fit, assum-

ing a flat universe. We first define different zones in this plane where the effects of the
bias can be quantitatively estimated.

The plane P is divided in three distinct zones :

• The Non Converging Zone (NCZ) where the fit has some detectable problems: the
fit is bad either because χ2 > 3n (n being the number of degrees of freedom), or
because the error on one of the fitted parameter is above 1. We also reject fits
yielding some ΩM values far away from current expectations, namely we require
0.1− σ(ΩM) < ΩM < 1.+ σ(ΩM ).
This zone is shaded in our plots. None of the fiducial models located in this NCZ
can be fitted with the procedure 3-fit. Therefore, with real data, the fit procedure
will be excluded.

• The Biased Zone (BZ) is the part of P where the fit converges perfectly, but where
we know from the simulation that we are far from the fiducial values: We quantify
this bias as the difference between the central value of a fitted parameter O and the
fiducial value OF . Namely the ”bias” is defined as

B(O) = |OF −O| (8)

In general, B 6= 0 and we define the biased zone as the part of P where B(O) > σ(O)
where σ(O) is the statistical error on O.

The important point is that this zone is undetectable with real data. It is the region
we want to identify and to minimize through an appropriate choice of the fitting
procedure.

• The Validity Zone (VZ) is the remaining part of P where the fit converges perfectly
and where B(O) < σ(O). If we require this condition for the full set of fitted
parameters together, we can define a “full” validity zone (full VZ).

Consequently, the contours separating the BZ and the VZ in the plane P correspond
to the intrinsic limitation of the fitting procedure which is considered.

We now apply this strategy of analysis to the SNAP and SNLS simulated data. The
impact of the bias on the present SN statistical sample is also presented.
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Figure 4: Validity Zones(white), Biased Zones (hatched) and Non Converging Zones (black) for a SNAP
like data set for MS only (a), ΩM (b), w0 (c) and all the parameters together (d). The procedure is a 3-fit
with a weak ΩM prior. The vertical line at wF

0
= −0.48 separates decelerating models from accelerating

ones.

3.3 Fitting procedures for SNAP

3.3.1 Determination of the 3-fit validity zones

We apply this method to determine the validity zones using the 3-fit on the SNAP simu-
lated data. A weak prior on ΩM , ΩM = 0.3± 0.1, has been used.
Figure 4a,b,c,d give the different validity zones for Ms (Figure 4a), ΩM (Figure 4b), w0

(Figure 4c) and for the three parameters taken together (Figure 4d).

In all the figures, the line wF
1 = 0 corresponds to the actual unbiased fiducial models.

One can see that the Biased Zone is always limited by the NCZ. The line wF
0 = −1/(3ΩF

X) ≃
−0.48 separates the models which correspond to an accelerating universe today (wF

0 <
−0.48) from the decelerating ones (wF

0 > −0.48).

Looking at the validity zone for each parameter individually :

• Ms (Figure 4a) is essentially unbiased for models which correspond to acceleration
(wF

0 < −0.48) except for large negative values of wF
1 . We notice that Ms is always

measured with an error better than the percent thanks to the “Nearby” sample.
Therefore it is easy to get a bias greater than this error. However this bias has no
real consequence on the determination of the other parameters.
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• ΩM (Figure 4b), conversely, is unbiased only for a small band around the line wF
1 = 0.

It means that for most of DE models with varying EoS, the fitted ΩM is strongly
biased in this fitting procedure.

• w0 (Figure 4c) is valid in a large part of the reduced plane PR, which corresponds
to the present acceleration region (wF

0 < −0.48). Otherwise we fall in the Biased
Zone which, for instance, contains the previously quoted model of Maor et al.[16].
Outside PR, for large | wF

1 | values, we are in the Biased Zone. Consequently, one
has to take some cautions when using the 3-fit for extracting w0.

The full Validity Zone is shown in Fig. 4d ans is driven mainly by the bias on the ΩM

parameter. One can conclude that the 3-fit is valid on all parameters together for fiducial
models which have a small dependence in redshift: when wF

0 > −1, the validity is for
|wF

1 | < 0.2, otherwise it increases to |wF
1 | < 0.4.

One has to emphasize that the experimental error will also contain systematic errors.
These latter have been estimated for SNAP [14]. We have simulated this case and the
result is given on Fig. 5, where we have included a constant uncorrelated systematic error
on each magnitude measurement. The consequence of increasing the error is an increase
of the Validity Zones. Compared to Fig. 4c, the VZ for w0 is substantially enlarged. Note
that the NCZ is reduced in the same time. The VZ for Ms follows the same behaviour,
the one of ΩM being much less affected.
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Figure 5: Same as Fig.4c for w0 in the case where we add an uncorrelated and constant in redshift
systematic error of 0.02 on the magnitudes.

We have also looked at the impact of the ΩM prior on our results:
• When there is no prior, the results are very comparable (but slightly worse) to the

weak prior case described above.
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• When a strong prior is used (e.g., σ(ΩM) = 0.01), the error on the parameters are
reduced but the VZ also. Fig. 6a gives the VZ for w0 with this prior. Due to the strong
prior on ΩM , all the bias effect is reported on the w0 parameter which is strongly biased
as shown on Figure 6a. Looking more closely at the reduced PR, one sees that the VZ is
limited to the line wF

1 = 0. Therefore we lose the fact that w0 is in general well fitted by
this fitting procedure.

The conclusion is that the fitting procedure 3-fit used in the case of a high SN statistics
experiment like SNAP, can be useful to constrain w0 for a large part of the plane P,
which corresponds to accelerating models, only when no prior or a weak prior on ΩM

is used. The other cosmological parameters (ΩM especially) are strongly biased, and
strengthening the ΩM prior worsens the situation. Concerning DE models which lead to a
present deceleration, it appears clearly from the preceding figures, that the cosmological
parameters are biased even if the time dependence of the EoS is weak.
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Figure 6: Same as Fig.4c for w0 in the case of a strong ΩM prior a) : SNAP, b) : SNLS.

3.3.2 Comparison between the 3-fit and the 4-fit

We have shown previously that the 3-fit procedure may be useful to extract w0 even in
the presence of the bias due to the hypothesis w1 = 0. The simplest 4-fit procedure (with
no constraint on w1) allows the extraction of w0 without any bias since w1 is included in
the fit, but with an increase of the statistical errors on each parameter. We adress now a
comparison of the errors obtained on w0 with these two different fitting procedures.

To combine the bias error and the statistical error, we choose a fit quality estimator

of the procedure as E(w0) =
√

σ2(w0) +B2(w0) which reduces to σ(w0) for the 4-fit.

Figure 7 compares the two procedures by displaying the difference of errors E(w0, 3− fit)−
σ(w0, 4− fit) with a weak prior on ΩM . The 3-fit is preferred, with this estimator, in a
large part of the plane P which corresponds to models with present acceleration.
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Figure 7: E(w0, 3− fit) − σ(w0, 4− fit) for the SNAP data and a weak ΩM prior. The white part
corresponds to a positive difference, the hatched part to a negative difference, the black region corresponds
to the Non Converging zones.

The two black areas correspond to the NCZ of both fitting procedures. Therefore,
one cannot conclude for a preference for the 4-fit in this zone. The two hatched zones,
corresponding to large values of |wF

1 |, indicate a preference for the 4-fit. This is due to
the bias on w0 inherent to the 3-fit. There is also a narrow hatched band where the 4-fit is
still preferred although the bias is small. This appears to be a zone where the correlation
between w0 and w1 is small and then, the errors from the 4-fit and the 3-fit are similar,
the 4-fit being slightly better (less than 2%).

In the white regions, the two parameters w0 and w1 are strongly correlated and then
the 3-fit has clearly a smaller error.

So, we can conclude that with a weak, thus conservative, prior on ΩM the 3-fit is in
general better than the 4-fit to extract w0 for accelerating models.

3.4 Analysis for SNLS

3.4.1 Determination of the 3-fit validity zones

A similar analysis has been performed for a simulated sample corresponding to the SNLS-
like statistics.

The various Validity Zones obtained for SNLS with a weak ΩM prior are shown in
Figures 8a,b,c,d

We deduce from this figure that :

• MS is almost unbiased for accelerating models and also for decelerating ones pro-
vided the redshift dependence is small (|wF

1 | < 0.6) (Fig. 8a).
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Figure 8: Validity Zones (white), Biased Zones (hatched) and Non Converging Zones (black) for a SNLS
like data set for MS only (a), ΩM (b) and w0 (c) and all the parameters together (d). The procedure is
a 3-fit with a weak ΩM prior.

• ΩM is not biased in most of the reduded plane PR and it is biased outside this plane
if |wF

1 | > 0.6 (Fig. 8b).

• w0 is not biased for an important part of the plane corresponding to acceleration
(w0 < −0.48) (Fig. 8c).

• The 3-fit is a good fitting procedure for reconstructing all cosmological parameters
simultaneously for accelerating models (w0 < −0.48) when the redshift dependence
is small |wF

1 | < 0.6 (see Fig. 8d). Otherwise the result is biased.

• The use of a strong prior on ΩM worsens the situation : w0 is biased for most of the
plane P as shown on Fig. 6b.

Comparing these results with the SNAP case shows that the conclusions are quite
similar but the validity zones for SNLS are much larger than for SNAP. Due to the lower
statistics our criterion B(O) < σ(O) is less constraining. Note that the NCZ zones are
strongly reduced as expected with the lower statistics.

3.4.2 Comparison between the 3-fit and the 4-fit

We perform the same comparison of the errors on w0 obtained from the two procedures
3-fit and 4-fit, still with a weak prior on ΩM .
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Figure 9: E(w0, 3− fit) − σ(w0, 4− fit) on w0 for a SNLS like data set and a weak ΩM prior. The
white part corresponds to a positive difference, the dashed part to a negative difference, the black region
corresponds to the Non Converging Zones.

Figure 9 shows the difference of errors between the 3-fit and the 4-fit. The 3-fit is
preferred when the bias is small or when the two parameters w0 and w1 are strongly
correlated. When wF

1 < 0 the hatched region in the accelerating zone has similar origin
and properties as the narrow hatched zone of Fig. 7, namely that both fitting procedures
provide in fact very comparable errors.

3.5 Analysis for a statistical sample corresponding to the SCP

data

We can define the validity zones for the statistics of the present SN sample from the SCP
collaboration [4] introduced in Section 2.1.

Figure 10a gives the full Validity Zone obtained without any prior on ΩM . The large
size of this zone shows that the results are not biased (at 1σ) for most of the plane P. In
fact only ΩM is affected by a bias.

A weak ΩM prior of σ(ΩM) = 0.1 has been used to draw Fig. 10b, giving the Validity
Zone for w0 (identical to the full VZ). The VZ is slightly reduced compared to the no
prior case but it remains quite important within the plane P. More precisely, it appears
that the upper part of the biased zones are comparable for both no and weak prior cases.
Only the lower part of the biased zone of Fig. 10b is specific to the weak prior case. Note
that changing the error value of the prior has little consequences on the shape of the VZ.
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Figure 10: Full Validity Zones and Biased Zones for a SCP like data set with a) no prior b) a weak ΩM

prior. The NCZ are not plotted due to the large errors on ΩM and w0.

This fitting procedure is widely used to extract informations from present SN data
[1, 2, 3, 4, 32]. The results published in these references are valid for models with con-
stant EoS. From our findings, one can extend the validity of these results and conclude
that models with a redshift dependent EoS which verify | wF

1 |< 0.7 may be fitted by this
3-fit procedure with a bias which stays below the statistical error.
So, we conclude that we can trust (at 1σ) the results based on present SN data obtained
with a 3-fit where we neglect the redshift dependence of the EoS, using a ΩM prior or
not. Only (fiducial) models with a strong recent variations of the EoS may lead to biased
results.

The comparison of the potentialities of the 3-fit and the 4-fit to extract w0 does not
seem very relevant. However, we have checked this point, and it appears that the 3-fit
provides some constraints on w0 which are roughly 30% better than with the 4-fit for
most of P.

Finally, we have remarked that the central values of w0 and ΩM are shifted as follows:
if wF

1 is positive we have w0 > wF
0 and ΩM > ΩF

M , and the converse if wF
1 < 0. We do not

recover this simple behaviour with the SNAP and SNLS samples.

4 Summary and conclusions

In this paper, we have studied the best strategy to extract the cosmological parameters
and in particular the dark energy component from the future supernovae data within the
ΩT = 1 paradigm. We have compared results from the present statistics with the ones we
can expect from future large ground-based surveys and from a future space experiment
like SNAP.
In order to be as model independent as possible we have looked at a large range of fiducial
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models by varying the parameters of the equation of state of the dark energy wF
0 and wF

1

where wF (z) = wF
0 + wF

1 z [17].
With present statistics or the one expected from a survey like SNLS, precision on w1 is

very weak and the physical question concerns the extraction of w0 and ΩM . For a SNAP
like experiment a good precision on w1 is only possible with a strong prior on ΩM .

To avoid the use of strong priors on ΩM , we have focused on the extraction of w0 only
and neglected the w1 contribution by fixing it in the fitting procedure. We have to face in
this case the problem of introducing a bias if the fiducial value of wF

1 is far away from the
fixed one. We compare the bias to the statistical error which is expected for each survey.

To study the validity of such a strategy, we have presented an extensive study of fiducial
models in a flat universe in which we vary wF

0 and wF
1 in a complete range −2 < wF

0 < 0
and −2 < wF

1 < 2 corresponding to a large variety of DE theoretical models. On the
other hand MF

s and ΩF
M are fixed. In the fit we have used in general a weak prior on

ΩM(σ(ΩM ) < 0.1) and we have looked at the bias introduced by fixing w1 = 0. We call
this procedure the 3-fit (Ms,ΩM , w0) procedure.

For SNAP (and SNLS) like statistics, we obtain the following conclusions :

• w0 is not biased for an important part of the scanned plane (wF
0 , w

F
1 ) which corre-

sponds to models describing a Universe which is today in acceleration.

• for MS, we get the same conclusion but we emphasize that this parameter is so
much constrained in the fitting procedure that a small bias has no visible effect.

• ΩM is strongly biased if the redshift dependence is large (|wF
1 | > 0.2(0.6)).

• If a strong prior on ΩM is used, w0 is biased for most of the plane. Namely, the 3-fit
procedure is relevant to extract w0 if only a weak ΩM prior is used.

We have compared the accuracy of the results on the w0 parameter to the ones obtained
if w1 is left free as in a 4-fit (Ms,ΩM , w0, w1) procedure.

We found that, in spite of the bias, the 3-fit procedure, where w1 is fixed, can be used
for SNAP and SNLS to test accelerating models and give better or equivalent results than
the simplest 4-fit where w1 is completely free. This is no longer true if | wF

1 | is large.
For decelerating models the 4-fit is mandatory. Note that, concerning the choice of the
number of parameters to be fitted, the bayesian method presented in [33] seems promising.

These conclusions have been set using only the value ΩF
M = 0.3 for the fiducial models.

If the true value is different the areas of the different Validity Zones increase if the con-
tribution of DE is smaller, namely if ΩF

M is larger. Conversely, if ΩF
M < 0.3, the validity

of the 3-fit is reduced.

Using the presently available statistics of the SCP collaboration [4], it appears that the
procedure where w1 is fixed can be trusted for almost all the fiducial models considered
here. Only fiducial models with strong recent variations of the EoS (| wF

1 |> 0.7) may
lead to biased results.

Let us point out that other bias would be introduced, by a departure from the ΩT = 1
paradigm in the fiducial model, or if the central value of the ΩM prior itself (used in the
fitting procedure) is not the same as the fiducial value. Indeed a small bias in the prior
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could induce some strong bias for the other cosmological parameters. These bias will be
studied in a future paper [27].

It has been advocated recently [34] that it should be easier to constrain the DE density
ρX(z) and its time derivative ρ ′

X(z), instead of constraining the equation of state w(z).
These authors have simulated a large variety of fiducial models in the range −1.2 ≤

wF
0 ≤ −0.5 and −1.5 ≤ wF

1 ≤ 0.5, which is almost completely contained in our Validity
Zone for SNAP (see Fig. 5). They interpret physically parts of this plane in term of
increasing, decreasing or non-monotonic DE densities ρX(z).

Their approach is interesting to answer if the DE energy density is a constant or not.
Nevertheless, focusing on the equation of state itself remains mandatory if, for instance,
one wants to validate precisely the acceleration since, in this case, a precise knowledge of
w0 (and also on ΩM and ΩX) is necessary. Finally, we would like to point out that trying
to answer any particular question on the nature of DE requires an investigation on the
choice of the most relevant fitting procedures.
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