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Abstract. We discuss the angular correlation function of Sunyaev–Zel’dovich (SZ)–detected galaxy clusters as a cosmological
probe. As a projection of the real–space cluster correlation function, the angular function samples the underlying SZ catalog
redshift distribution. It offers a way to study cosmology and cluster evolution directly with the two–dimensional catalog, even
before extensive follow–up observations, thereby facilitating the immediate scientific return from SZ surveys. As a simple
illustration of the information content of the angular function, we examine its dependence on the parameter pair (ΩM , σ8) in flat
cosmologies. We discuss sources of modeling uncertainty and consider application to the future Planck SZ catalog, showing
how these two parameters and the normalization of the SZ flux–mass relation can be simultaneously found when the local
X–ray cluster abundance constraint is included.
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1. Introduction

The Sunyaev–Zel’dovich (SZ) effect (Sunyaev & Zel’dovich
1970, 1972) has become a practical observational tool for
studying galaxy clusters and cosmology (for recent reviews
see Birkinshaw 1999; Carlstrom et al. 2002). Current obser-
vations of individual clusters, when combined with X–ray ob-
servations, constrain cosmological parameters via gas mass
fractions (Grego et al. 2002) and angular–diameter distance
determinations (Mason et al. 2001; Jones et al. 2001; Reese
et al. 2002). Multi–band millimeter observations of a handful
of clusters have already been used to set limits on peculiar ve-
locities (Holzapfel et al. 1997; Benson et al. 2003), and theo-
retical studies of this technique show its promise for the future
(Aghanim et al. 2002a, 2002b; Holder 2002). A new gener-
ation of optimized, dedicated instruments, both large–format
bolometer arrays and interferometers with high sensitivity re-
ceivers, will qualitatively improve these studies. And the ar-
rival of these instruments within the next few years, in addition
to the Planck mission1, will move the field forward to its next
important step: surveying. This will open a new observational
window onto large–scale structure and its evolution out to large
redshifts.

The ultimate goal of these SZ surveys is the construction
of large cluster catalogs with multi–wavelength follow–up

Send offprint requests to: S. Mei,
e-mail:simona.mei@ias.u-psud.fr

1 http://astro.estec.esa.nl/SA-general/Projects/

Planck/

observations in order to perform cosmological studies; for ex-
ample, constraining cosmological parameters with the counts
and redshift distribution (e.g., Barbosa et al. 1996; Eke et al.
1996; Colafrancesco et al. 1997; Haiman et al. 2001; Holder
et al. 2001; Kneissl et al. 2001; Weller et al. 2002; Benson
et al. 2002). Driving this effort are the particular advantages of
SZ–based cluster catalogs (Bartlett 2000; Bartlett 2001): firstly,
SZ surveys are intrinsically efficient at finding clusters at large
redshift, due to the surface brightness constancy of the SZ ef-
fect2. The thermal SZ spectrum is furthermore universal, the
same for all clusters at any redshift3. Other emission mecha-
nisms, in contrast, suffer from cosmological dimming and the
need for accurate k–corrections. Secondly, SZ surveys select
clusters based on their thermal energy. Since the spectrum is
the same for all clusters, the total observable SZ flux from a
cluster can be expressed in a frequency independent manner as
the integrated Comptony–parameter,Y =

∫
dΩ y(n̂), where

the integral is over the cluster profile (see Eq. (4) below). The
y parameter being the pressure integrated along the line–of–
sight (y ∝ ∫

dl nT), this then impliesY ∝ MT, i.e., the thermal
energy of the intracluster medium (ICM). This is important, be-
cause the total thermal energy of the ICM is given by energy
re-partition during cluster collapse and is independent of any
thermal or spatial structure in the gas. It is hence a more ro-
bust quantity than, for example, the X–ray emission measure
that depends in a more complicated fashion on both the ICM

2 For a cluster of fixed properties.
3 In the non–relativistic limit.
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density and temperature. Hydrodynamical simulations confirm
this expectation by showing a tight SZ flux–mass relationship
with little scatter (da Silva et al. 2003). Object selection in a
flux–limited SZ catalog is therefore relatively easy to interpret
in terms of cluster mass and redshift. For instance, it is easy to
show that the minimum detectable cluster mass is almost inde-
pendent of redshift. This is particularly advantageous for evo-
lutionary studies, because one is able to follow the evolution
of the same kind of object over redshift, instead of comparing
massive objects at high redshift to less massive ones at low red-
shift, as is the case with X–ray samples.

Detailed follow–up of SZ surveys will, however, be time–
consuming, and an enormous effort for the more than 104 clus-
ters expected from Planck. Large–area photometric surveys in
the optical and infrared (e.g., SDSS) will help (Bartelmann &
White 2002), but it is important to identify the kind of science
that may be done directly with the two dimensional catalog of
cluster positions and SZ fluxes, what we will refer to in the fol-
lowing as the SZ photometric catalog. This will certainly be the
first science to be performed. Source counts represent the pri-
mary avenue of 2D study that has been discussed extensively in
the literature. In this paper, we examine the next higher order
catalog statistic, namely, theangularcorrelation functionw(θ)
of SZ–detected clusters (Diaferio et al. 2003). We quantify its
information content and study its potential use as a cosmolog-
ical probe. The angular function samples the catalog redshift
distribution, because it is a projection of the real–space cor-
relation function along the line–of–sight. With an appropriate
model for the real–space correlation function of the catalog,
we may gain some insight on this distribution, and hence on
the underlying cosmological model.

Moscardini et al. (2002) studied the 3D clustering prop-
erties of SZ detected clusters, taking the Planck survey as an
example and accounting for evolutionary effects along the past
light–cone. Diaferio et al. (2003) examined the angular func-
tion of SZ clusters as a means of identifying probable physical
cluster pairs (in 3D) and superclusters. Our modeling is simi-
lar to theirs, although we focus instead on the angular function
as a cosmological probe permitting the extraction of cosmo-
logical information from a photometric SZ catalog. The idea
is of course not new, and has been applied in the past to, for
example, optical and X–ray cluster catalogs; but we reiterate
the advantages of an SZ catalog in this context: the cluster se-
lection function is relatively easy to model (compared to other
observing bands), and it extends out to large redshift, giving a
longer base–line for viewing evolutionary effects.

We should distinguish at the outset the difference between
the angular power spectrum,Csz

l , of SZ–induced temperature
fluctuations (secondary anisotropies in the cosmic microwave
background [CMB]) and the angular correlation function of
detected clustersin a SZ survey,w(θ). The angular power spec-
trum Csz

l is a two–point statistic quantifying the integrated
contribution of the entire cluster population to the CMB sky
brightness fluctuations. It is dominated by the Poisson term
and its overall shape is determined by the mean SZ profile
of clusters. Cluster–cluster correlations add additional power
on the order of 20–30% of the pure Poisson term (Komatsu &
Kitayama 1999). Since it is defined relative to the mean cosmic

microwave background temperature, we expect the SZ fluctu-
ation power to increase with the surface density of clusters on
the sky. This is quantitatively confirmed by both numerical sim-
ulations and analytical calculations that indicateCsz

l ∝ σ7
8 (all

other factors held constant), whereσ8 is the amplitude the den-
sity perturbations, the quantity most directly influencing clus-
ter abundance. The fluctuation power spectrum is an analysis
method appropriate in a low signal–to–noise context (the cur-
rent situation) where individual source identification is not pos-
sible4. Fluctuations induced by the SZ effect have been invoked
as a possible explanation for the excess power at high mul-
tipole l reported by the CBI collaboration (Bond et al. 2002)
and consistent with new VSA data (Grainge et al. 2002). If this
were entirely due to the cluster population, it would imply a
surprisingly large value forσ8 (>1; Bond et al. 2002; Komatsu
& Seljak 2002; Holder 2002), although an important contribu-
tion from heated gas at reionization may also be expected (Oh
et al. 2003).

The angular functionw(θ) quantifies the projected cluster-
ing of a 2D catalog of individually detected clusters. It refers to
the object positions and makes no reference to the mean back-
ground sky brightness. There are several ways to imagine using
the information contained in the SZ cluster angular function
(e.g., Diaferio et al. 2003). In the following we choose to illus-
trate its use by examining constraints on the matter densityΩM

andσ8 in the context of flat CDM–like models. The SZ counts
provide one constraint on a combination of these parameters.
To extract additional information from the 2D catalog using the
angular function, we are forced to model the real–space clus-
ter correlation function. In CDM scenarios, clusters form from
peaks in the density field whose clustering may be analytically
calculated. We adopt the approach proposed by Mo & White
(1996, 2002). Any conclusions that we draw are, therefore,
unavoidably dependent on this clustering model (Moscardini
et al. 2002; Diaferio et al. 2003); however, it is well founded
in the context of CDM cosmogonies and compares well with
the results of numerical simulations, at least at redshifts lower
than∼10 (Reed et al. 2003; Jenkins et al. 2001). Another im-
portant issue concerns the modeling of the intracluster medium.
Moscardini et al. (2002), for example, find non–negligible de-
pendence of the 3D correlation function on ICM properties. We
discuss the issue below for the angular function, but we note
here that it tends to be dominated by massive clusters (depend-
ing of course on the exact flux limit; see below) that follow
relatively well observed scaling laws. As we show, adding con-
straints from the local X–ray cluster abundance permits us to
simultaneously constrain the cosmological parameters and the
cluster baryon content.

In the following section, we give our master equation for
calculatingw(θ) and identify the necessary modeling ingredi-
ents. We outline our cluster model in Sect. 3. Results for the
angular function are presented in Sect. 4, where we apply the
results to constraining the cosmological parametersσ8 andΩM.

4 Either for low signal–to–noise observations or when pushing con-
straints on source counts below the detection threshold. It is the
SZ equivalent of the “background fluctuation analysis” of radio and
X–ray Astronomy.
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We discuss the influence of ICM physics on the results and how
to use additional information from the local cluster abundance
to simultaneously constrain this physics and the cosmology.
Our fiducial example is the Planck mission. Section 5 closes
with a final discussion and summary.

2. The angular correlation function

In this section we relate the angular correlation function to the
real–space correlation function in the context of SZ observa-
tions. The 3–dimensional (auto)correlation functionξ quan-
tifies the 2–point clustering of a population in terms of the
probability in excess of Poisson of finding two objects at a sep-
arationr. The angular correlationw(θ) of the same population
is the projection ofξ onto the sky:

dΩ1dΩ2Σ
2[1 + w(θ)] = dΩ1dΩ2

∫
dz1dz2

dV1

dΩ1dz1

dV2

dΩ2dz2
(1)

×
∫

dM1dM2
dn1

dM1

dn2

dM2
(1+ ξ)

where the integrals concern two lines–of–sight (los) of solid
angles dΩ1 and dΩ2 separated on the sky by angleθ. In this
expression, dn/dM represents the cluster mass function, and
we assume the small angle approximation here and through-
out. The surface density of sources (the counts) with integrated
Compton parameter larger thanYlim (the SZ “flux” limit; see
the following section, Eq. (4)) is given by

Σ(Ylim) =
∫ ∞

0
dz

dV
dΩdz

∫ ∞

Mlim(Ylim ,z)
dM

dn
dM

(M, z). (2)

The correlation functionξ depends on cluster mass, red-
shift and, according to statistical isotropy, on physical separa-
tion r(θ) = r2

1(z1) + r2
2(z2) − 2r1r2 cos(θ), wherer1 andr2 are

angular–diameter distances. Assuming that correlations fall off

sufficiently rapidly with distance, as is observed, we may take
the two clusters to be at approximately the same redshift and
write ξ[M1,M2, z, r(θ)]. We furthermore adopt a linear biasing
scheme in whichξ(M1,M2, z, r) = b(M1, z)b(M2, z)ξdm(z, r),
where ξdm(z, r) is the correlation function of the underly-
ing cold dark matter andb(M, z) is the bias factor for
clusters (see below). Then, using the short–hand notation
φ(M, z,Ylim) = (1/Σ)b(M, z)(dV/dzdΩ)dn/dM for the joint dis-
tribution of clusters in mass and redshift, weighted by the bias
factor, we arrive at the expression

w(θ,Ylim) =
∫ ∞

0
dz

∫ ∫ ∞

Mlim(Ylim ,z)
dM1dM2 φ(M1, z)φ(M2, z)

×
∫

dr
dz
dr

(z)ξdm[z, r(θ)]

≡
∫ ∞

0
dzΦ2(z,Ylim)

∫
dr

dz
dr

(z)ξdm[z, r(θ)]

a sort of Limber’s equation appropriate for SZ sources (Limber
1953; Peebles 1993; Diaferio et al. 2003) in which we explicitly
show the dependence on limiting fluxYlim . From this equation
we clearly see that the three key ingredients are the the mass–
limit function Mlim(z,Ylim), the distribution functionφ and the
correlation functionξdm. We now discuss our modeling of each.

3. The SZ population

The SZ cluster population inherits its properties from
two sources: its constituent dark matter halos, whose prop-
erties are the sole result of gravitational evolution, and the
relationship between observable SZ flux and these halos,
governed by more difficult to model baryonic physics. It is rea-
sonable to characterize dark halos by their mass and redshift,
and we will apply the results ofN–body simulations that give
both their abundance (i.e., the mass function) and spatial cor-
relations (i.e., clustering biasb(M, z) and the correlation func-
tion ξdm) as a function of these two fundamental descriptors.
More difficult to model, the baryonic physics of the cluster gas
requires particular attention to various (and at times contradic-
tory) observational constraints and theoretical scaling laws.

3.1. Halo properties

The abundance of galaxy clusters is given by the mass function
of collapsed objects, which is completely specified once the
linear power spectrum of dark matter perturbations is specified.
For the latter we adopt the BBKS (Bardeen et al. 1986) transfer
function (see also below), while for the mass function we em-
ploy the fitting formula (improved Press–Schechter) given by
Sheth & Tormen (1999):

dn
dM

(M, z)dM = A

(
1+

1
ν′2q

) √
2
π

ρ

M
dν′

dM
exp

(−ν′2
2

)
dM (3)

where ρ is the universal mean mass density and the con-
stantsA ≈ 0.322 andq = 0.3; the parameterν′ =

√
aν, where

ν ≡ δc
D(z)σ(M) is the usual critical peak height (δc ≈ 1.69) normal-

ized to the mass–density perturbation varianceσ(M) in spheres
containing massM, and the constanta = 0.707. The expression
for the growth factor for flat models withΛ > 0 is taken from
Carroll et al. (1992):

D(z,ΩM ,ΩΛ) =
g(z)

g(0)(1+ z)

g(z,ΩM ,ΩΛ) ≈ 5
2
ΩM(z)

[
ΩM(z)4/7 −ΩΛ(z)

+(1+ ΩM(z)/2)(1+ ΩΛ(z)/70)
]−1

with the definitionsΩM(z) ≡ ΩM(1 + z)3/E2(z), ΩΛ(z) ≡
ΩΛ/E2(z), andE2(z) = [ΩΛ+(1−ΩM−ΩΛ)(1+z)2+ΩM(1+z)3];
ΩM andΩΛ written without an explicit redshift dependence will
indicate present–day values (z= 0).

As mentioned above, we use a linear bias scheme to relate
the cluster–cluster correlation function to that of the dark mat-
ter and employ the analytic fitting formula forb(M, z) given by
Sheth et al. (2001); the formula includes corrections for ellip-
soidal perturbation collapse:

b(M, z) = 1+
1√

aδc(z)

[√
a(aν2) +

√
ab(aν2)1−c

]

− (aν2)c

(aν2)c + b(1− c)(1− c/2)

whereδc, ν anda are given above, andb = 0.5 andc = 0.6. We
model the linear dark matter perturbation spectrum with the
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BBKS transfer function with shape parameterfixed atΓ = 0.25
and scale–invariant primordial density fluctuations (n = 1).
This seems to provide a good fit to galaxy clustering data
(Percival et al. 2001) and is consistent with constraints onn
from CMB anisotropies (Spergel et al. 2003, and references
therein). The resulting linear theoryξdm is adequate on most
scales (θ > 10′), although we also include non–linear correc-
tions according to the fitting formula developed by Peacock &
Dodds (1996).

3.2. Intracluster medium

With the abundance and clustering of halos now specified, we
next relate the observable SZ flux to cluster mass and redshift.
This relation is particularly robust from a theoretical viewpoint,
contrary to, for example, the situation for X–ray luminosity. In
the non–relativistic regime, the surface brightness of the ther-
mal SZ effect – measured relative to the mean sky intensity –
at positionΩ̂ on a cluster image is

∆iν(Ω̂) = y(Ω̂) jν

where the Comptony parameter is an integral of the pressure
along the line–of–sight

y(Ω̂) =
∫

los Ω̂
dl

kT
mc2

nσT

with T the gas temperature (strictly speaking, that of the elec-
trons),σT the Thompson cross section,k andm the Boltzmann
constant and the electron mass, respectively, and wherejν is
a universal spectral function that is the same for all clusters,
independent of their properties (Birkinshaw 1999). Since the
thermal SZ spectrum is the same for all clusters, we may ex-
press the total flux in a frequency independent manner using
the integrated Compton parameterY =

∫
dΩ y(Ω̂), where the

integral is over the cluster profile. The total flux density (e.g.,
in Jy) is thenSν = Y jν. This is the total flux (density) measured
by an experiment with low angular resolution in which clusters
are simply point sources. From these definitions, we find that
the observable flux is directly proportional to the total thermal
energy of the ICM (e.g., Barbosa et al. 1996):

Y(M, z) =
kσT

mc2

NeT

D2
ang(z)

∝ fgas(M, z)T(M, z)M

D2
ang(z)

(4)

whereNe is the total number of electrons,fgas is the ICM mass
fraction, Dang(z) = H−1

0 dang(z) is the angular diameter dis-
tance, andT is to be understood as the mean (particle, and not
emission–weighted) electron temperature; note that with this
understanding, the relation does not depend on any assumption
of isothermality. It is this direct relation between observable
SZ flux and thermal gas energy that lies at the heart of some of
the advantages of SZ over X–ray surveys (Bartlett 2001).

We have taken care to write the quantitiesfgas and T as
general functions of mass and redshift. In the absence of ef-
ficient heating/cooling and gas reprocessing, the cluster popu-
lation will be fully self–similar. Simple theoretical arguments

based on energetics during collapse suggest in this case the ex-
istence of a scaling law between cluster temperature and mass:

T(M, z) = T∗ (M15h)2/3
(
∆(z)E(z)2

)1/3
[
1− 2

ΩΛ(z)
∆(z)

]
(5)

adopting the notation of Pierpaoli et al. (2002). In this expres-
sion, the massM15 is measured in units of 1015 M�, ∆(z) is the
full non–linear overdensity inside the virial radius relative to
the critical density (∼178). In the self–similar model, the gas
mass fractionfgas is constant, essentially proportional to the
universal ratioΩB/ΩM.

These scaling expectations are indeed manifest in hydrody-
namical simulations that neglect cooling, and supported by ob-
servations of the more massive clusters with cooling timescales
longer than the Hubble time (Mohr et al. 1999; Allen et al.
2001; Finoguenov et al. 2001; Xu et al. 2001; Arnaud et al.
2002). Although there is good indication that clusters are a
population with rather regular properties, as suggested by these
scaling laws, there is also direct evidence that it is not exactly
self–similar. Deviations are most pronounced for the lower
mass objects (T < 2 keV), as perhaps expected since they have
shorter cooling times and plausible energy injection mecha-
nisms more readily compete with their gravitational energy
(Ponman et al. 1999; Lloyd–Davies et al. 2000). More gener-
ally, one may write

Y(M, z) = Y15(z)M
5/3+α
15 (1+ z)γ. (6)

The factor Y15(z) incorporates all thez dependence of
Eqs. (4), (5) and is defined such that the self–similar model
corresponds toα = γ = 0.

Although we have discussed Eq. (6) via scaling relations
for T and fgas, it is more pertinent to consider it as a single
relation between observable SZ flux and cluster mass and red-
shift, one that expresses the proportionality between the ob-
servable flux and the gas thermal energy. Hydrodynamical sim-
ulations incorporating cooling and pre–heating (da Silva et al.
2003) indicateα between 0.1 and 0.2 andγ ≈ 0, with a very
tight scatter about the relation, much tighter than correspond-
ing relations for X–ray quantities. This confirms our expecta-
tions that the SZ flux is a more robust quantity than its X–ray
counterparts. Even though very low mass clusters are included
in the fit, only mild deviations from self–similarity in this re-
lation are seen in the simulations. These deviations are most
pronounced in the low mass systems, while the higher mass
systems appear compatible with the self–similar scaling laws
for T–M and fgas. Caution is still warranted, however, due to
the unstable nature of cooling, issues of numerical resolution,
and the fact that these codes model the gas as a single phase
medium; the simulation volume also contains mostly low mass
systems, with only a few clusters withM15 > 0.2. Simulation
results are nonetheless roughly consistent with X–ray observa-
tions (Borgani et al. 2002; Muanwong et al. 2002).

At our fiducial Planck flux limit ofY = 10−4 arcmin2, we
have checked that the counts and value of the angular function
at 30 arcmins are little affected by clusters belowT = 2 keV,
at least atΩM < 0.6. We therefore concentrate on the self–
similar case withα = γ = 0. On the other hand, we consider
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Fig. 1.Angular correlation function of SZ detected clusters calculated
in two different flat models (ΩM = 0.3 andσ8 = 0.9 as the dashed
lines, andΩM = 1 andσ8 = 0.7 as the solid lines) for three flux limits
(Ylim = 10−3, 10−4, 10−6 arcmin2, decreasing from top to bottom). The
models adopt the same linear matter power spectrum (shape parameter
Γ = 0.25) andY∗ = 7.6× 10−5 h7/6 arcmin2 (see text).

the normalization of Eq. (6) as a parameter free to vary within
certain limits suggested by X–ray observations offgas andT.
Moscardini et al. (2002) have argued that this freedom makes
it difficult to use only SZ observations to constrainσ8 andΩM.
To overcome this modeling uncertainty, we combine SZ obser-
vations of both the number counts and the angular correlation
function with constraints arising from the local abundance of
X–ray clusters. We shall find that the three kinds of observa-
tions are complementary and lead to constraints on the cosmo-
logical parameters.

To give a feel for the order of magnitude, we note that

Y15(z) =
(
7.4× 10−5 h7/6 arcmin2

) ( T∗
keV

) ( fgas

0.07h−3/2

)

×
(
∆(z)E(z)2

178

)1/3 [
1− 2

ΩΛ(z)
∆(z)

]
1

d2
ang(z)

≡ Y∗
(
∆(z)E(z)2

178

)1/3 [
1− 2

ΩΛ(z)
∆(z)

]
1

d2
ang(z)

· (7)

For reference,T∗ = 1.2 according to the simulations of Evrard
et al. (1996) andfgas= 0.07h−1.5 from Mohr et al. (1999). At an
observation frequency of 2.1 mm, the maximum decrement of
the thermal spectrum, aY = 7.4× 10−5 arcmin2 corresponds to
a flux density of∼7 mJy. In all the analysis a minimum cluster
mass of 1014 h−1 M� is imposed.

4. Results

4.1. The angular correlation function

Calculated angular correlation functions are shown in Fig. 1
for three different limiting flux values (Ylim) in two different
flat cosmologies (ΩM = 0.3 andΩΛ = 0.7, with σ8 = 0.9,

andΩM = 1 with σ8 = 0.7; e.g., Blanchard et al. 2000); the
Y–M normalization isY∗ = 7.6× 10−5 h7/6 arcmin2. Our angu-
lar correlation function is consistent with the results of Diaferio
et al. (2003) at a separation of 30 arcmins. As shown by the lat-
ter authors, small scales are affected by the specific choice of
clustering bias functionb(M, z), but the model differences drop
to ∼10% at 30 arcmins. This is comparable to the statistical
measurement errors expected in the case of the Planck survey,
as discussed below. We therefore use the angular function at
30 arcmin separation in our analysis of cosmological parame-
ters.

Figure 2 shows the cluster selection functionΦ(z), defined
in Eq. (3), atYlim = 10−4 arcmin2 in the two cosmologies
and for various normalizationsσ8. The broad break in the an-
gular function in Fig. 1 corresponds to the break inξdm just
beyond∼10h−1 Mpc. For example, the break occurs∼1 deg
for Ylim = 10−4 arcmin2 in the critical model. According to
Fig. 2, the selection function peaks aroundz ∼ 0.2 (for the
chosen value ofσ8 = 0.7), projecting the break to an angular
separation ofθ ∼ 10h−1/(3000h−1 × 0.2) ∼ 1 deg. Figures 1
and 2 visually illustrate how the angular function encodes in-
formation on the catalog radial distribution.

Although the two models have comparable angular corre-
lations at the bright end (the upper curves in Fig. 1 correspond-
ing toYlim = 10−3 arcmin2), their dependence on catalog depth
clearly differs. At the bright end, we are mainly observing the
local cluster population, which is essentially the same in both
models since the present–day abundance is the same and the
density perturbation power spectrum is fixed (Γ = 0.25). Note
that the low–density model has a slightly steeper slope at small
separation, due to its greater non–linear evolution. The angular
function of the low–density model decreases and shifts to the
left more rapidly with survey depth than in the critical model.
The overall trend is easily understandable and due to the fact
that the selection function broadens and peaks at higher
redshift with survey depth, moving correlations to smaller
angular scales and generally washing out the signal as more
clusters are projected along the line–of–sight. In bright galaxy
surveys, which sample the local universe where space is ap-
proximately Euclidean and galaxy evolution may be ignored,
the dependence of the angular function on survey depth fol-
lows an importantscaling lawthat is independent of the un-
derlying cosmological model. No such universal scaling law
obtains in the SZ case, because the radial distribution extends
out to large redshifts. For the relevant flux limits, a SZ catalog
therefore samples evolution in the cluster population. Since the
cluster population evolves less rapidly with redshift in the low–
density model, the angular correlation function therefore shifts
down more rapidly with survey depth than in the case of the
critical model. The angular correlation function of SZ clusters
is therefore a cosmological probe.

4.2. Combining the SZ angular function and counts

As an illustration of this probe, we next consider the depen-
dence of the angular function and of the SZ counts on the cos-
mological parameters (ΩM , σ8). In Fig. 3 we show the predicted
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Fig. 2. The selection functionΦ of SZ–detected clusters withY ≥ Ylim = 10−4 arcmin2 (see Eq. (3)) as a function of redshiftz and for different
values ofσ8 in the low–density model (ΩM = 0.3, on the left) and in the critical model (ΩM = 1, on the right). From top to bottom, the curves
are for increasingσ8 = 0.5, 0.6,0.7, 0.8,0.9, 1.1, 1.4. The models adopt the same linear matter power spectrum (shape parameterΓ = 0.25)
andY∗ = 7.6× 10−5 h7/6 arcmin2.

counts and angular correlation function for a set of flat models
over a grid in the (σ8,ΩM)–plane and for different limiting flux
values,Ylim = 10−3 arcmin2 (top left),Ylim = 10−4 arcmin2 (top
right), andYlim = 10−5 arcmin2 (bottom left). Contours of the
angular correlation function are shown as continuous lines and
refer to its value at a separation ofθ = 30 arcmins. The counts
contours at the corresponding flux limits are given as dotted
lines and labeled in units of 1/sq deg. This figure is constructed
for a self–similar cluster population with aY–M normalization,
Y∗ = 7.6×10−5 h7/6 arcmin2 (see Eq. (7)); the effects of varying
ICM properties will be discussed below.

We see from the figure that the counts and angular func-
tion carry more complementary information as the catalog in-
creases in depth. At the high flux limit ofYlim = 10−3 arcmin2,
the catalog primarily probes the local universe; the two sets
of contours are parallel and there is no information permit-
ting us to constrain the two cosmological parameters. As we
move deeper, the two sets of contours begin to cross, indi-
cating the we are obtaining useful cosmological information
capable of constraining the two parameters. The limitYlim =

10−4 arcmin2 is representative of the Planck mission (Aghanim
et al. 1997; Bartelmann 2001; and references therein), while
Ylim = 10−5 arcmin2 would correspond to deeper ground–based
surveys (probably attaining the confusion limit).

4.3. Influence of the ICM

The single relation Eq. (6) incorporates all of the ICM physics,
and from the nature of the SZ flux, we expect it to be rather
tight with little scatter. There is virtually no direct observa-
tional information on this relation, while numerical simulations
(da Silva et al. 2003) do indeed confirm a small scatter. They
also indicate that there is only a slight deviation from the self–
similarity with α = 0.1 − 0.2 andγ = 0 down to masses
well below 1014 M�. X–ray observations, on the other hand,
demonstrate deviations from self–similarity. This is most clear
for low–mass systems with temperatures belowT ∼ 2 keV, but
even in the richer systems the observedL–T deviates from the
self–similar expectation. These results are beginning to be re-
produced by numerical simulations including cooling/heating
(e.g., Borgani et al. 2002), including those that indicate only
slight deviation from self–similarity for the SZ relation Eq. (6)
(Muanwong et al. 2002). That X–ray observables show greater
deviation from self–similarity than the SZ flux is not surprising,
given that the former are more sensitive to spatial/temperature
structure in the gas than the latter, as emphasized previously.
This is precisely the advantage of SZ surveys.

As mentioned, low mass systems with the greatest devia-
tion from self–similarity in X–rays contribute little to counts
and the angular function at a flux limit ofYlim = 10−4 arcmin2.
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Fig. 3.Contours of the SZ angular correlation function are shown as solid lines in the (σ8,ΩM)–plane for different limiting flux values: top left,
Ylim = 10−3 arcmin2; top right,Ylim = 10−4 arcmin2; and bottom left,Ylim = 10−5 arcmin2. The Hubble constant is fixed ath = 0.7. Each contour
is labeled with the value of the correlation function at a separation ofθ = 30 arcmins. Contours of the SZ cluster counts at the same flux limits
are shown as the dotted lines, and labeled in units of 1/sq deg. The SZ flux normalizationY∗ = 7.6× 10−5 h7/6 arcmin2.

For example, forΩM < 0.6 and values ofσ8 in the range 0.6–1,
the uncertainty onσ8 due to the presence of low mass systems
with T < 2 keV is around 5%, well within our estimated er-
rors on the angular correlation function (Eq. (8) below). We
therefore focus on the effects of changing the normalization,
Eq. (7), of the self–similar SZ flux–Mass relation (α = γ = 0).
Physically, this represents an uncertainty in the average ther-
mal gas energy of galaxy clusters. Figure 4 shows the effect
of changingY∗ at a flux limit of Ylim = 10−4 arcmin2. From
the figure, we see that changing this normalization stretches
the counts and angular function contours vertically by roughly
the same amount, their point of intersection (if any) remain-
ing at roughly the same value ofΩM. For example, a factor 2

change in normalization moves the intersection by∼10–20%
in σ8 (e.g., atΩM ∼ 0.3). This represents an inherent system-
atic caused by modeling uncertainty associated with the ICM.
Uncertainties related to ICM modeling have been extensively
discussed by Moscardini et al. (2002) for the full 3D spatial
correlation function of SZ clusters.

Including the uncertain SZ flux normalization,Y∗, we now
have three parameters to determine, and so additional informa-
tion is needed; for example, an observational program to de-
termine theY–M relation on a representative sample of clus-
ters. Another tactic is to use the constraint arising from the
local cluster abundance as measured by the X–ray temperature
function.
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Fig. 4. Effect of varyingY∗. The contours have the same meaning as in the previous figure, andh = 0.7 as before. All three panels correspond
to a flux limit of Ylim = 10−4 arcmin2, butY∗ changes from 3.8× 10−5 h7/6 arcmin2 (upper left) to 7.6× 10−5 h7/6 arcmin2 (upper right; same as
upper right panel of previous figure) and finally 1.5× 10−4 h7/6 arcmin2 (lower left). The contours and their spacing are stretched upward asY∗
decreases. The intersection points of the two sets of contours essentially move vertically, changing inσ8 and remaining roughly fixed inΩM.

4.3.1. Adding the local cluster abundance constraint

For a fixed value ofT∗, the local X–ray temperature function
constrains the cosmological parametersσ8 andΩM to a well–
defined curve in the plane:σ8Ω

0.6
M ≈ 0.6T−0.8∗ (Pierpaoli et al.

2002). The exact relation depends somewhat on the chosen
mass function. Consider such a constraint, shown as the middle
dashed line in Fig. 5. Supposing that we measure now both the
SZ counts and angular function, finding 7.7 sq deg andw(θ =
30 arcmin)= 0.024, respectively, atY = 10−4 arcmin2 and
given as the solid contours in the figure. Apart from the cosmo-
logical parametersσ8 andΩM, the SZ contours depend only
on Y∗, whose value is uncertain; by changingY∗, we move

the SZ contours around the plane, as previously described.
However, there is a unique value forY∗ that reduces the in-
tersection of the three lines to a single point in the plane. By
adjustingY∗ to this value, wesimultaneously constrain the cos-
mological parameters and the normalization Y∗. In the fig-
ure, this intersection lies on top of the true underlying model.
The determined value ofY∗ together with the knownT∗ im-
ply a constraint onfgas

5. By adding the information on the
local cluster abundance, we have pinned down the relevant

5 We are implicitly assuming that mean electron temperature,
relevant to the SZ effect, and the observable X–ray temperature,
parametrized byT∗, are the same; this need not be the case.
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Fig. 5. Example of constraints in flat models. The true underlying
model corresponds toΩM = 0.3, σ8 = 0.9, fgas = 0.07/ h1.5 and
T∗ = 1.5 keV, corresponding toY∗ = 1.1 × 10−4 h7/6 arcmin2. For
this model, one would observe 7.7 clusters/sq deg. for the counts and
w = 0.024 for the angular function at 30 arcmin, respectively, both at
a flux limit of Y = 10−4 arcmin2. The bold (heavy blue) line shows the
constant counts contour in the plane, while the thin (lighter blue) line
indicates the angular function contour at the observed value. The mid-
dle dashed line represents the constraint from the local X–ray cluster
temperature function, for the true value ofT∗; the other two dashed
lines correspond to the constraints forT∗ = 2 keV (bottom dashed
curve) andT∗ = 1 keV (upper dashed curve). The three sets of con-
tours cross at a unique point. The gray shaded band indicates the es-
timated statistical uncertainty onw attainable with the Planck survey
(the error on the counts is roughly the thickness of the contour).

ICM physics and constrained the cosmological parameters,
eliminating the primary uncertainty in using SZ clustering ob-
servations (Moscardini et al. 2002). Unfortunately,T∗ is at
present only poorly known, with simulations and observations
indicating values generally in the range 1.2–2 (Pierpaoli et al.
2002; Muanwong et al. 2002; Huterer & White 2002). We ex-
pect that it will be much better determined by the time large
SZ catalogs become available, making this kind of analysis
possible.

This example illustrates the utility of the angular function:
with only the local cluster abundance and the SZ counts, we
cannot determine the cosmological parametersσ8 andΩM, due
to the uncertainty onY∗. Adding the angular function breaks the
degeneracy. We are thus able to constrain the cosmology with
the 2D SZ catalog,without recourse to redshift determinations.
Constraints obtained in this way are particularly useful for their
complementarity to constraints from CMB anisotropy and dis-
tance measurements with SNIa. For example, with SZ clus-
ters we measureσ8 directly on the relevant scales and con-
strainΩM, as opposed to the physical densityΩM h2 in the case
of the CMB.

As mentioned above, clusters below∼2 keV contribute lit-
tle to the contours at our fiducial flux limit ofY = 10−4 arcmin2.
At lower flux limits, more representative of future ground–
based surveys, we could expect that the possible effects of de-
viations from self–similar scaling become more important, al-
though simulations at present indicate only mild effects on the
SZ flux.

4.4. Discussion of statistical errors

Before concluding, we briefly examine the statistical errors ex-
pected on a measurement of the SZ angular correlation func-
tion. Although a thorough analysis of this issue requires de-
tailed simulations of a given survey, we may nonetheless make
some general arguments to gain insight into what may eventu-
ally be achieved. We take the Planck survey as our example.
The resolution of the Planck SZ catalog will be on the order of
5 arcmins (at best), so we can only expect to measure the corre-
lations on larger scales (as the 30′ we have chosen in our anal-
ysis), and the fiducial sensitivity expected isY ∼ 10−4 arcmin2

(Aghanim et al. 1997; Bartelmann 2001). Since the angular
correlations are small in this context (≤0.1), we may esti-
mate the (statistical) error on a measurement ofw(θ) as the
Poissonvariance in the number of pairs,npair, at this separa-
tion (e.g., Peebles 1980; Landy & Szalay 1993). This quan-
tity is determined by the counts as follows: suppose that we
measurew in a annular bin of width∆θ at angular distanceθ
from a cluster. The mean number of clusters in this ring is
〈n〉 = 2πθ∆θΣ(Ylim), from which we deduce that the total num-
ber of pairs at this separation in a catalog ofN clusters is about
npair ≈ (1/2)N × 〈n〉 = Nπθ∆θΣ. In other words, we estimate
the error to be

∆w(θ,Ylim) ≈ 1
2π

[Σ(Ylim)]−1 1
θ

(
∆θ

θ

)−1/2

≈ 2.78× 10−3

(
deg
θ

) (
∆θ

θ

)−1/2 (
Σ

deg2

)−1

· (8)

Notice that this statistical error depends essentially on the num-
ber countsΣ. This leads to the gray shaded area in Fig. 5.

5. Discussion and conclusion

We have calculated the angular correlation function of
SZ–detected clusters in order to evaluate its usefulness for ex-
tracting cosmological information directly from a 2D SZ clus-
ter survey, before 3D follow–up. The angular correlation func-
tion of SZ detected clusters differs from the angular power
spectrum of SZ induced CMB anisotropies, which is dominated
by the Poisson term. The different scaling of angular correla-
tions with survey depth visually demonstrates the cosmologi-
cal sensitivity of the angular function (see Figs. 1 and 2). As
illustration, we considered the parameter pair (ΩM , σ8) in the
context of flatΛ–CDM models. We found that at sufficient
depth (e.g.,Ylim ∼ 10−4 arcmin2, comparable to the Planck
mission), the counts and angular function combined can con-
strain these parameters. Modeling uncertainty associated with
the ICM may be reduced by measuring theT–M relation and
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adding the corresponding constraint from the local abundance
of X–ray clusters; in this way, the two cosmological parame-
ters and the SZ flux normalizationY∗ may be found. Deeper
ground–based surveys (e.g.,Ylim ∼ 10−5 arcmin2), will pick up
a larger number of low–mass objects whose ICM properties re-
quire more careful modeling of deviations from self–similarity.

The accuracy and precision with which one will be able to
measure the angular function (and the counts) is clearly an im-
portant issue. We only briefly touched on this point with a sim-
ple estimate of the expected statistical errors expected onw(θ)
in the case of the Planck mission. A more detailed examina-
tion incorporating simulations of the SZ survey characteristics,
including instrument noise and foreground contamination, as
well as of the catalog extraction algorithms, is needed. The sur-
vey selection function will in reality depend on these details
(Bartlett 2001; Melin et al. 2003; White 2003), and so will the
errors on the counts and measured angular function.

It is clear that the most powerful constraints from an SZ sur-
vey will come from its measured redshift distribution. The in-
teresting point is, however, that the method proposed here in-
creases the immediate scientific return from an SZ survey by
offering a way to obtain pertinent cosmological constraints
using only a 2D SZ catalog, without recourse to follow–up
observations.
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