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lsoscalar giant resonances in fast rotating nuclei are investigated within the framework of nu

clear elasticity by solving the equation of motion of elastic nuclear medium in a rotating frame of 

reference. Both Coriolis and centrifugal forces are taken into account. The nuclear rotation re

moves completely the azimuthal degeneracy of the giant resonance energies. Realistic large values 

of the angular velocity, which are still small as compared to the giant resonance frequencies, are 

briefly reviewed in relation to allowed high angular momenta. It is shown that for the A = 150 re

gion, the Coriolis force is dominating for small values ( $ 0. 05) of the ratio of angular velocity to 

resonance frequency, whereas the centrifugal force plays a prominent part in the shift of the split 

resonance energies for larger values of the ratio. Typical examples of the resonance energies and 

their fragmentation due to both rotation and deformation are given. 

I. INTRODUCTION 
In a previous paper1 (hereafter referred to as I), we in

vestigated the isoscalar giant resonances of deformed nu
clei within the framework of the nuclear elasticity. In 
particular, we turned our attention to the fragmentation 
of the giant monopole and quadrupole resonances. It 
was thus shown how the nuclear surface deformation 
contributes to the fragmentation through the coupling 
between the monopole and quadrupole modes of oscilla
tion. 

In the present paper we extend the concept of nuclear 
elasticity to rotating nuclei and deal with the isoscalar 
giant resonances of rotating elastic nuclear matter. The 
origin of the nuclear elasticity can be found in the fact 
that the equations of motion formulated in the dynam
ics2· 3 of nuclear fluid in the framework of the time
dependent Hartree-Fock theory can be approximated for 
some collective motions, such as the giant resonances, by 
the Lame equation which governs the classical theory of 
elasticity. Thus the isoscalar giant resonances of spheri
cal nuclei2•3 and those of deformed nuclei1 have been ful
ly studied recently in the spirit of the nuclear elastic vi
bration. 

In a recent experiment, Newton et al.4 analyzed the 
high energy tail of y rays emitted following 40 Ar
induced reactions and suggested that the nuclear giant 
dipole resonance may be excited in a nucleus which ro
tates with very high angular momentum. Regarding the 
isovector giant dipole resonance of rotating nuclei, there 
have been several theoretical investigations in the past 
few years. For example, calculations of the position and 
splitting of the isovector giant dipole resonance were 
first performed on the basis of a simple schematic model 
of a rotating harmonic oscillator. 5• 6 More elaborate 
models7•8 were then applied to the same problem. In a 
recent paper,9 we also studied the isovector giant reso-

nances of arbitrary multipolarity in fast rotating nuclei 
by solving the invicid two-fluid equation of relative 
motion written in a rotating frame of reference. Though 
the description we used in Ref. 9 is a rather semiclassical 
one, the resulting expressions display in a quite simple 
way general features of isovector giant resonances of fast 
rotating nuclei. In particular, we have shown how the 
splitting of the giant resonances arises from rotating de
formed nuclei. 

For the rotating elastic nuclear matter, we have to 
transform first the equation of motion in I into one in a 
rotating frame of reference. Generally, the effective 
force in the new equation of motion in the rotating coor
dinates contains the terms corresponding to Coriolis and 
centrifugal forces. The equation of motion of the rotat
ing nuclear matter is, on the whole, more complicated 
than the corresponding equation of motion obtained in 
the two-fluid hydrodynamical model. 9 The reason is 
that the elastic medium under the influence of external 
potentials is not free from stress, even in the initial equi
librium state, and thus the usual expression for the elas
tic stress in the equation of motion in I has to be slightly 
modified by adding pressure-dependent terms. Never
theless, if the density of the elastic nuclear matter is as
sumed to be constant, the equation of motion can then 
preserve the same form of the rotational forces as in the 
case of the two-fluid model, except that the displacement 
vector now takes part in the force in place of the ordi
nary radial vector. However, the presence of the rota
tional forces in the equation of motion prevents us from 
obtaining an analytical solution of the equation, whatev
er forms these forces may take. 

The derivation of the equation of motion in a rotating 
frame of reference is described in Sec. II. This is fol
lowed by a method of solution of the equation. The per
turbation method is shown to be of great utility for the 
treatment of the equation of motion that contains rota-
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tional forces. Section IV is devoted to discussions of 
particular examples of the resonance energies in terms of 
the angular velocity of rotating deformed nuclei. The 
meaning of nuclear fast rotations is briefly discussed in 
relation to high angular momenta which can be accomo
dated in nuclei. A summary and final conclusions are 
presented in Sec. V. 

II. EQUATION OF MOTION 

OF ROTATING ELASTIC NUCLEI 

As shown in I, the equation of motion of a uniform 
perfectly elastic nuclear medium in inertial system is 
given by 

a2u (A. +2µ)V(V·u)-µVXVXu+F=p ot 2 , (2. 1) 
where u is the displacement vector, F the external body 
force, and p the nuclear density. For the nuclear elasti
city the Lame coefficients A and µ take the forms 1[K 2 '12 l A= ----k} p 

9 15 m • ' ( 2. 2) 

1 ,,2 2 µ=sm•k1P· (2.3) 
where K is the nuclear compressibility, m • the effective 
nucleon mass, and k 1 the Fermi momentum. It is also 
noticed that the quantity A. +  fµ is the compression 
modulus of the elastic medium; that is, the ratio of iso
tropic pressure to fractional rate of decrease of volume. 
The Lame coefficient A is also related to the Landau pa
rameter F 0 by 

A=l_ __K_k}pO +fF0) . (2. 4) 5 m* 
Generally, a dynamical equation of motion expressed 

in the system of rotating coordinates has the same form 
as the original equation of motion written in the inertial 
system, except for the body force term, which now be
comes the effective body force. This was the case in the 
two-fluid model we formulated in a previous paper.9 

Therefore, to an observer, in the rotating system it ap
pears as if the body is moving under the influence of this 
effective force, which is represented by 

F.tr=F-2p [nx �; j-pnxmxrl , (2.5) 
where !l is the angular velocity. The velocity in the 
inertial system vi is related to the velocity in the rotating 
system v by vi = v + !l X r. The second term in the 
effective force (2.5) represents the Coriolis force and 
third term denotes the centrifugal force. If the angular 
velocity is time dependent, an extra term, -prXd!l/dt , 
is to be added to the effective force. 

The fact that the displacement vector u plays the role 
of the usual radial vector r in the classical dynamics 
necessitates a careful formulation of the effective force in 

the approach of nuclear elasticity. Furthermore, the 
elastic medium under the influence of external potentials 
is not free from stress, even in the initial equilibrium 
state, and thus the actual form of the term correspond
ing to the centrifugal force is slightly more complicated 
than the term shown in Eq. (2.5). For constant density, 
however, the effective force. can take the same form as 
before, except that the radial vector is now replaced by 
the displacement vector. Let the position vector of a 
typical point P 0 of the elastic body referred to the origin 
of a fixed rectangular cartesian system be s. At time t ,  
the representative point P 0  has moved t o  a point P with 
position vector r, and the position vector of the point P 
relative to P0 is given by the displacement vector u with u=r-s .  In terms of general orthogonal curvilinear 
coordinates (q1 ,q2 ,q3) ,  the position vectors s and r can 
be written in the forms s=s(q1 ,q2 ,q3) ,  r=r(q1 ,q2 ,q3 ,t ) , 
and it follows that u=u(q1,q2 ,q3 ,t ) . Therefore, for con
stant density and in the absence of other potentials such 
as the Coulomb potential, the linearized equation of 
motion now takes the form 

au (A + 2µ )V( V ·u)-µ V XV X u-2p!l X at 

a2u -p!lX(!lXu)=p-2 (2.6) at 
Equations (2.5) and (2.6) show that the centrifugal 

force is or order 02, whereas the Coriolis force is of 
order n. We now assume that the displacement vector 
can be separated into spatial and time parts as u(r,t )=u(r)exp(iwt ). Applying the variational principle 
to Eq. (2.6) , as was done in I, we get, after rather tedious 
transformations, 

w2 I p I u I 2d7"=A I I V ·u I 2dT +2µ I l: I eij I 2d7"i,j 
+ J pu*(2iw!lXu)dT
+ J pu*!lX(!lXu)dT. ( 2.7) 

This is the variational form of the equation of motion 
which consists of the main equation in the present inves
tigation. Because of the presence of the additional force 
terms which represent nuclear rotation, we cannot ex
pect to express the frequency w in the variational form 
as in Eq. (3.4) of I. We shall show, however, how the 
perturbation method enables us to acquire a quite simple 
expression for the frequency of vibration of rotating nu
clei. 

Before going closely into the method of solution of Eq. 
( 2.7), we shall now consider briefly the case of an elastic 
body whose density is a function of r and which, accord
ingly, is assumed to be in a state of hydrostatic stress be
fore being disturbed by external forces. In a slightly de
formed elastic state, the stress is then the sum of the 
usual stress due to the small displacement u and the ini
tial hydrostatic stress. The former is given by Eq. (2.2) 
of I and the latter is expressed as the negative of the 
original hydrostatic pressure at the initial representative 
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points P0• Thus the initial stress is shown to be 

-p(r +(-u))= -[p(r )-u·Vp] , 
where p is the hydrostatic pressure. Moreover, owing to 
disturbance due to the small displacement, the density in 
the disturbed state may be written as p'=p+Bp, where Bp is the change in density, which is calculated from the 
principle of mass conservation. 

Assuming further that the body force can be associat
ed with a potential \II, we can equate the body force F to 
the gradient of the potential, multiplied by the disturbed 
density. Since the nucleus under consideration is rotat
ing, the potential \II may comprise the centrifugal term 
l/J, 

(2.8) 
as well as the Coulomb potential. It is to be remarked 
that the use of the potential \II instead of the explicit 
form of the centrifugal force modifies the expression (2.5) 
so that the centrifugal term is now included in F. 

When we introduce the initial stress as well as the 
body-force term into the equation of motion written in 
terms of the stress-strain tensors, such as Eq. (3.1) of I, 
we see that the equation of motion now contains the 
terms 

-V( p-u·Vp ) +p V'l'+Bp V'I'. (2.9) 
When we neglect the contribution ansmg from the 
change in density and omit the initial stress, the expres
sion (2.9) reduces then to the term which represents the 
usual centrifugal force. The pressure in (2.9) may also 
be associated with the potential \II by assuming that the 
pressure force in the hydrostatic equilibrium state, which 
is the negative of the pressure gradient, counterbalances 
the body force. Thus, for the rotating body with angular 
velocity 0, we have10 

Vp =p V\11. (2.10) 
The pressure force will, in general, be very small, unless 
there is a very large pressure gradient. When we keep 
only the centrifugal term l/J in \II, we see, in view of the 
relation (2.10), that all terms of (2.9) are of order 02• If 

(A.+2µ)V(V·u0)-µVXVXu0= -(l)fpU0 , 
2 

there is no rotation, the potential \II reduces practically 
to the Coulomb term and the contribution from the ini
tial stress to the usual nuclear elastic vibration will be 
inconsiderable, unless the relation (2.10) is reviewed so 
as to be still significant with regard to other specific 
external potentials. The form (2.9) of the centrifugal 
effect for the rotating elastic body contrasts with the 
corresponding term in the equation of motion (2.6) for 
constant density. We shall come back to the expression (2.9) on the occasion of practical evaluation of various 
rotational effects. 

III. PERTURBATION TREATMENT 

OF ROTATIONAL EFFECTS 

Though an analytical solution of Eq. (2.6) cannot be 
expected, the equation of motion of this type can well be 
treated using the perturbation method, provided the 
magnitude of angular velocity is much smaller than the 
unperturbed initial frequency of oscillation without rota
tion. From the quantum mechanical point of view the 
nuclear rotation makes sense only for deformed nuclei, 
whereas the rotation of a spherical body has meanings in 
the classical picture. In the following we first concen
trate on the rotational effects by solving Eq. (2.6) 
without including the degree of freedom of deformation 
in the formulation and we subsequently take into ac
count the nuclear surface deformation. 

The displacement vector u as well as the frequency Ci) 
are now expanded in powers of 0 I (j)o as 

u=uo+ [ � ]u1+ [ � ru2+ . . .
, 

(3.1) 

(j)= (j)o+ [ �o ](j.)1+ [ �o r(j.)2+ . . . ' (3.2) 
where (j)o is the unperturbed initial frequency of oscilla
tion without rotation. Upon introducing the expansion (3.1) and (3.2) into Eq. ( 2. 6) and collecting the terms of 
the same power of 0/(1)0 up to second order, we get 

(3.3) 
(j)o 2 (A.+2µ)V(V·u1 )-µVXVXu1-2inp0XUo= -p((l)oU1 +2{t)QW1Uo) ' (3.4) 
(j)fi (j)o(j) 1 [ {t)o ] 2 (A.+2µ )V(V ·u2 )-µV XV X U2 -2i0p0 X Ut -2i0-p0 X Uo- O 0 X ( {). X Uo) 

Multiplying Eq. (3.3) by u6 and integrating the result by 
parts, we obtain 

wfi JP I Uo J 2dr=A. J J V·u0 j 2dr
3 +2µ J � J e;j0> I 2dr , (3.6) i,j 

= -p(wfiu2 + 2(j)0w1u1 +wru0+2wQW2u0) • (3.5)
where eij are the strain tensors which were defined in I. 
In obtaining Eq. (3.6), we have taken into account the 
boundary condition which states that the strain-stress 
tensor components vanish at the nuclear surface. Equa
tion (3.6 ) is nothing but the variational expression we 
have already derived for the original Lame equation 
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which governs the motion of a perfect elastic medium. 
The explicit form of the function u0 has been shown 1 to 
be 

u0=u0,n,+u08n8+u0tf>nt/>, 

where 

Uor = U1(r)Y1m (e,tf>) , 

aY1m 
Uoe= Vi(r)-ae-

1 ay,m
u Otf> = Vi ( r) 

sine -a;;;-

(3.7) 

(3.8a) 

(3.8b) 

(3.8c) 

and n,, n8, and 11.,, denote, respectively, unit vectors in 
the directions of r, e, and </J. In Eq. (3.8), Yim {e,</J) are 
the spherical harmonics and the radial functions U1(r) 
and Vi(r) for constant density are expressed in terms of 
spherical Bessel functions ji(x) as 

(3.9) 

(3.10) 

where 

h2=p(J)'f,/(A.+2µ) and k2=p(J)'f,/µ. 

The constant multipliers A 1 and C1 are determined from 
the boundary conditions. To be more precise, the 
boundary condition we have previously stated leads to 
two expressions for the ratio C1/ A1• For example, 

L [ h(s) )2 d5 5
d2 "( ) /(/+ll-2 "( ) -d zlt 'YI + 

2 lt 'YI 
,.,, ,.,, 

(3.11) 

where s=hR0 and 'fl=kR0, R0 being the radius of a 
spherical nucleus. The other expression for the same ra
tio was shown in I. Having obtained the eigenvalues 5 
and 'fl, we can proceed to the evaluation of various in
tegrals in which the radial functions U1 and Vi take part. 

Equations (3.4) and (3.5) can now be solved with the 
help of the standard stationary perturbation technique. 
To this end, we multiply Eq. (3.4) by u6 and Eq. (3.3) by
ur and then integrate the difference between two result
ing equations. We then get 

. (J)o J pu6(0Xu0)dr
(J)I =z- (3.12) n JP I uo I zdr

The expression (3.12) represents the rotational effect aris
ing from the Coriolis force alone. We now assume, 
without losing generality, that the angular velocity n is 
directed to the polar axis Oz of rectangular Cartesian 
axes Oxyz with the center of nucleus as the origin. In 
spherical polar coordinates, n then takes the form 

!l=(!l cos8)n, +( -!l sin8)n8+on.,, . (3.13) 

Upon introducing the expression (3.13) into Eq. (3.1 2), 
we get, after performing angular integrations, 

In 
(J)t =m(J)o Id ' 

where 

In= J p[2U1(r)Vi(r)+ Vl(r)]r2dr , 

Id= J p[Ul(r)+IU+llVl(r)]r2dr

(3.14) 

(3.1 5a) 

(3. 1 5b) 

We see that, apart from two radial integrals, the effect of 
rotation due to the Coriolis force is simply proportional 
to the azimuthal component m multiplied by the initial 
unperturbed frequency. The present result is to be com
pared with the corresponding formula obtained in the 
two-fluid model. 9 Since the eigenvalue equation obtained 
in the framework of the nuclear elasticity is much more 
complicated than the similar equation used in the hydro
dynamical model,9 further simplication of the expression 
(3.14) as a function of eigenvalues cannot be expected 
even for constant density. The formula (3.14) is unfami
liar to nuclear physicists but not to geophysicists. It is 
worth mentioning that the classical theory of elasticity 
has already been applied to the rotational problem of the 
Earth. 10 

The assumption of constant density allows us 
to integrate analytically two radial integrals (3.15a) and 
(3.15b) (see the Appendix). As we shall see, these are the 
only integrals to be computed through the present work. 
The result (3.14) shows that there is no rotational effect 
for m = 0 as far as the first order calculation is con
cerned. The second order formulation removes, howev
er, this restriction. 

In a way analogous to the derivation of the first order 
effect, we can derive the second order frequency of oscil
lation, (J)z. Thus, we get, from Eq. (3.5), 

+E, (3.1 6) 

where 

(3.1 7a) 

with 

(3.17b) 

The first and last terms on the right-hand side of Eq. 
(3.1 6) clearly represent the second order contribution 
from the Coriolis force, while the second term shows the 
centrifugal part. The expression for (J) j is formally the 
same as for (J)t> except that u1 is used in place of u0• 
Since E describes the difference between (J) i and (J)i. we 
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can expect its contribution to ill2 to be small. Actually, 
this is verified by computing explicitly the first order dis
placement vector u1 by means of the usual perturbation 
method; that is, by expanding u1 in terms of u0 as 

Ut = l:va<">u&v>. 
The angular integrals in Eq. (3.16) can easily be evalu

ated and, finally, ill2 can be expressed in terms of known 
radial integrals In and Id of Eqs. (3.15). We have 

1 [2(/2+l+m2- l )-(/2+/-3m 2) IInd ] }+E.( 2/ -1 )( 21 + 3 ) (3.18) 
The result (3.18) is quite simple and its numerical computation is elementary, as in the case of the first order fre

quency. We see immediately that the second order frequency does not vanish even for m =0 and the second order ro
tational correction does also act to shift the eigenfrequency of m = 0 mode. 

When the density is a function of r and when we keep only the term t/J in the potential \fl, the centrifugal contribu
tion can be evaluated with the help of the expressions of (2.9) and (2.10). When we apply the principle of mass conser
vation to the total density, the small deviation of density Bp may be equated to -V·(pu). Neglecting small quantities 
of the higher order, the second order frequency is now shown to be 

ill2= 2!0 
{ill1+ �� [ J u6·V·(puol·Vt/Jdr- J u6·V(pu0·Vt/J)dr ] /Id }+E. (3.19) 

The angular integrals involved in this representation are rather cumbersome, but they are still analytically integrable. 
Thus, the second and third terms in the square brackets on the right-hand side become 

- ( 21 _1�
2
21 +3) { 2[/(/ +O+m2- l ] J il1(r)U1(r)r2dr+[3m2-l(l +O] J il1(r)Vi(r)r2dr }/Id, (3.20)

where 

il1(r)=2p(r) [1u +0Vi(r)-2U1(r)-r ;r U1(r) ]-U1(r)r ;7p(r). (3.21) 

The expression (3.20) contrasts with the corresponding 
form (3.18), obtained from the density-independent cen
trifugal potential. In fact, the eigenvalues hR 0 and kR 0 
that are involved in the integrals of (3.20) are not those 
evaluated from the eigenvalue equation formulated in I. 
Since both displacement vector and density in the origi
nal Lame equation are now variables, the zero-order 
equation (3.6) can be solved only numerically and thus 
the radial functions U1 ( r) and Vi ( r) are no longer given 
by the relations (3.9) and (3.10). Furthermore, according
to the formulas (2.2) and (2.3), the Lame coefficients ').., 
and µ also change their values when the density varies 
(see Ref. 11). Though the study of the density-

Upon introducing explicit results of the radial integrals 
In and Id, the ratio ill/illo for a given value of multipo
larity l and its projection m can be expressed as a func
tion of !l/ill0, which is a measure of the angular velocity 
of the rotation. 

Generally, rotational states with angular momentum I
in nuclei can be characterized by their excitation ener
gies EI> which usually lie low compared to the single
particle excitations and which obey the I ([ + 1 ) rule. 

dependent nuclear elasticity constitutes an interesting 
new subject, the complexity of numerical calculations in 
the present problem may prevent one from gaining phys
ical insight into the problem of rotating nuclear vibra
tion. In the following we therefore turn our attention to 
the expression (3.16) together with (3.1 2).

IV. TYPICAL NUMERICAL RESULTS 

When we substitute the results (3.14) and (3.18) into 
the formula (3.2) for the total frequency of vibration, we
get the desired expression to second order for rotating 
nuclei. Thus, 

However, the well-known expression for rotational exci
tation energies, 

Er=AIU+O+BUU+1))2+ · · · , 
converges poorly for I� 10 (Refs. 1 2  and 13). A much 
wider region of convergence can be realized if the angu
lar velocity of nuclear rotation, !l, is used as an expan
sion parameter. With the assumption of a rigid rotor, 
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the nuclear angular velocity can be expressed 13• 14 asfi=fiVJ(I +1)/.7, which relates the angular velocity 0., 
the angular momentum I, and the nuclear moment of in
ertia .7. It is thus seen that the angular velocity could 
attain, in principle very large values for higher angular 
momenta, provided the nuclear moment of inertia 
remains constant. However, the assumption of constant 
moment of inertia is not always reliable, as discussed in 
Ref. 13. The typical values of angular moment which 
can be accommodated in nuclei have already been estab
lished in Ref. 14. In a previous paper9, we have also 
given some examples of angular velocity characterizing 
various nuclei at different angular momenta. According 
to these results, reasonable values of angular velocity of 
rotation are rather small as compared to the giant reso
nance frequencies. For sufficiently high spin states, e.g., I = 78 for the 154Sm nucleus and I = 20 for the 24Mg nu
cleus, the angular velocity 0. takes the value of 1.07 
MeV for 154Sm and and 6.59 MeV for 24Mg. These 
values imply that the ratio of the angular velocity to the 
isoscalar giant quadrupole resonance, O./w0, amounts to 0.09 and 0.3, respectively. The large value of the ratio
for the 24Mg nucleus is, of course, due to the rather high 
angular velocities of nuclear rotation which may occur 
in light nuclei.15 

Although the ratio 0./w0 in the present values covers 
a very wide region, it is to be understood that the most 
realistic large value of the ratio for the A= 150 region 
lies somewhere near 0.08. However, when we deal with 
light nuclei, such as 24Mg, a wider region of the ratio, up 
to 0.3 or more, should be taken into consideration. The 
ratio 0./wh, wh being the harmonic oscillator frequency,
has also been used elsewhere,6•7•16•17 instead of the 
present ratio 0. I w0, and some speculative values of the 
ratio have been tentatively interpolated. 

Figure l displays the ratio w/w0 for the multipolari
ties l = 1 and 2 for nuclei of A = 150 without deforma
tion (l>=O). Obviously, the nuclear rotation does not 
make much sense for spherical nuclei, and thus Fig. 1 is 
drawn with the intention of showing how the rotation 
splits the resonance frequencies following values of the 
azimuthal component and the angular velocity. In this 
figure, a (a'), b (b'), and c ( c') for l = l stand for 
m =0, l, and -1, respectively, and a (a'), b (b'), c (c'), d
(d'), and e (e' )  for l =2 denote the components of m =0, 1, -1, 2, and -2, respectively. The thin curves
represent the effects of the Coriolis force alone, whereas 
the broad curves show the effects of both the Coriolis 
and centrifugal forces. It is seen that for small values of 
the ratio of angular velocity to resonance frequency
that is, 0. I w0 S 0. 05-the effect of the Coriolis force 
dominates, but the centrifugal force becomes prominent 
for larger values of the ratio. However, as was already 
discussed, the range of values of the ratio which is larger 
than 0.1 is a pure theoretical postulate, at least for nuclei 
of A= 150. In Fig. 1 the ordinate value of w I w0 = 1 cor
responds to the unperturbed resonance energies 
74.l A -113 MeV for l = 1 and 66.1 A -113 MeV for l = 2. 

For deformed nuclei, w0 is not a single-valued quanti
ty, but is already split into fragments due to the defor
mation, as seen in I. A straightforward but hardly feasi-

o/Wa 
FIG. 1. Rotational multiplets of the isoscalar giant quadru

pole and dipole resonances for nuclei of A= 150 with B=O. 
Both angular velocity n and resonance frequency w are given 
in units of w0, unperturbed frequency without rotation. See the 
text for further details. 

ble method for dealing with the vibration of rotating de
formed nuclei is to solve Eq. (2. 7) directly in spheroidal 
coordinates, but the task is laborious and time consum
ing. Instead, we employ the variational procedure we al
ready used in Ref. 9 in relation with the two-fluid model. 
The essential point of this method consists of using the 
deformed radius R =R0(1 + l:a2vY2v(8,¢i)) as the 
upper limit of all integrals involved in the variational 
equation. The splitting of the giant resonance energies 
due to the nuclear surface deformation was thus shown 1 
to be 

w6m �wfi [ 1- [ ;� - �: ] �1.±m ] • (4.2) 

where 

(4.3) 
with EK=V5/41T/3cos(y-fi1T), /3 and r being the defor
mation parameters. The quantities bl> CJ> and d1 are 
defined in I. When we use the same procedure as used 
for deriving the expression (4.2) in the evaluation of w

1
, 

we now obtain 
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rofef=mro;Mn+I�)/(Jd+Id), 
where I� and Id are the quantities arising from the nu
clear surface deformation. Furthermore, the frequency 
ro0 on the right-hand side of rof•f should represent the 
frequency of deformed nuclei without rotation; that is, 
room of the expression (4.2). In this case, however, the 
terms like �tid II d and �1I� II n are of the order E; and 
thus we can neglect them as far as the first order of the 
deformation parameter EK is concerned. The expression 
rof•f we have thus derived now embodies the nuclear sur
face deformation up to the first order of EK. Similarly, 
we can reformulate the expression (3.18) so as to become 
a function of deformation parameter EK. It follows from 
this argument that a simple way of incorporating the nu
clear deformation in the vibration of rotating nuclei is to 
replace ro0 in Eqs. ( 3.14) and (3.18) by room·

As for typical numerical results, we have chosen nu
clei of A = 150 which are known to be well deformed. 
Moreover, the structural properties of fast rotating nu
clei in this region have recently been the subject of many 
experimental and theoretical studies.13 We take a value 
of 0.2 for the deformation parameter B = f V 5 /41T/3. Fig
ure 2 displays how the isoscalar giant dipole resonance 
of rotating deformed nuclei split into different fragments. 
The energies 70.2A - 1 13 and 82.0 A -113 MeV show the 
splitting of the resonance energy of prolate nuclei 
without rotation, whereas 66.3 A - 1 13 and 78.0A - 113 
MeV correspond to that of oblate nuclei without rota
tion. The ordinate value 1 corresponds to the resonance 
energy of spherical nuclei, which is 74.1 A - 1 13 MeV. 
The indices l ,  2, and 3 attached to p (prolate) or o (ob
late) stand for the fragments with m = 1, - I, and 0, re
spectively. Figure 2 contrasts much with the corre
sponding figure for the isovector giant dipole resonance, 
shown in Ref. 9. Figure 2 shows that the shift of reso-

L: I, 6:0.2 

FIG. 2. Fragmentation of the isoscalar giant dipole reso
nance of rotating prolate and oblate nuclei of A = 150 with 
1>=0.2. The resonance frequency w is plotted as a function of 

angular velocity !l. The unit for both w and !l is as for Fig. 1. 
See the text for further details. 

nance energies by rotation is very acute only for the 
fragments corresponding to p 1 and o 1 , while the other 
components change little and remain almost the same 
even for very large values of the ratio !l I ro0. 

Figure 3 shows the result of the same calculation for 
the isoscalar giant quadrupole resonance. The ordinate 
value 1 in this figure represents the giant quadrupole res
onance of spherical nuclei, which is 66.1 A - 1 13 MeV in
the model of nuclear elasticity. The energies 60.6 A -113 ,63.3 A - 1 13, 68.8 A - 1 13, and 71.5 A - 1 13 MeV signify the
components of the resonance energies without rotation 
for either prolate or oblate deformations. The bold 
curves are for prolate and dashed curves are for oblate. 
The letters a, b, c, d and e represent the different frag
ments corresponding to m = 2, -2, 1, -1, and 0. The 
shift of the initial resonance energies by rotation is quite 
pronounced for the curves a and c, but not for the other 
fragments. It is interesting to note that there is essen
tially no difference between the fragments b and d in ob
late nuclei and that for very fast rotation-that is, !l/ro""'0.4, which is fairly far from realistic values-the 
number of fragments is again reduced to 3, which is the 
initial multiplet of the resonance energy without rota
tion. The giant quadrupole resonance in rotating nuclei 
has also been discussed 1 7  by separating the quadrupole 
oscillation into toroidal, pulsation, and transversely 
skewed modes in the framework of distorted Fermi
surface model. As we observe in the schematic represen
tation of splitting of Fig. 1, the split energies of the iso
scalar giant resonances in rotating nuclei are not gen
erally symmetric with respect to the middle line corre
sponding to the resonance energy of spherical nuclei 
without rotation, contrary to the case of isovector giant 
resonance splittings (Refs. 5, 8, and 9). It is interesting 
to ascertain that a recent calculation 18 based on the 
linear response theory reveals the same features. 

... - ...... WA.uo 
1.0 (66.1) 

63.3 

0.1 

- - - .. 

-- -

---

0.3 0.4 

FIG. 3. Fragmentation of the isoscalar giant quadrupole 
resonance of rotating prolate and oblate nuclei of A = 150 with 
1>=0.2. The unit for both wand !l is as for Fig. 1. 
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V. SUMMARY AND CONCLUSION 

The main purpose of the present work was to study 
the giant resonances of rotating nuclei, especially the iso
scalar type of giant dipole and quadrupole resonances, 
by extending the concept of nuclear elasticity to the ro
tating nuclei. 

The following is a brief summary of the present work. 
The equation of motion of a perfectly elastic nuclear 
medium in the rotating frame of reference is derived. 
The effective forces, generated by the transformation of 
the equation of motion in the inertial system into that in 
the system of rotating coordinates, consists mainly of 
Coriolis and centrifugal forces. The case where the in
tial pressure is related to the external potential is also 
discussed. We have shown how the equation of motion 
of rotating nuclei was solved with the help of the pertur
bation method. The final result for the frequency of vi-

bration of rotating nuclei is quite simple and its numeri
cal evaluation becomes elementary. The angular velocity 
of nuclear rotation is briefly analyzed in relation to high 
angular momenta, which can be accomodated in nuclei. 
It is illustrated that for the A = 150 region the Coriolis 
force dominates for small values ( :5' 0. 05) of the ratio of
angular velocity to resonance frequency, but the centri
fugal force plays a prominent part in the shift of the 
split resonance energies for larger values of the ratio. It 
is seen that the rotational effect removes completely the 
azimuthal degeneracy of the giant resonance energies. 
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APPENDIX 

The radial integrals In and Id of Eqs. (3.15) for constant density can be evaluated analytically using the explicit 
forms of the functions U1 and Vi of Eqs. (3.9) and (3.10). Thus, 

1n s =Al �h2(s)+2A, c,� { [ s d
d
�h(sl+h(sl ] h(11l+ �[sh+1(slh(,,.,l-11h(s)j1+1(11ll } pR o s s 1J � s -11 

+cl �4 { [ 11 d
d
11Ji(11l+Ji(11 l ) Ji(rJ l+W + 1 )jl(,,., l+f112[jl(11 l-Ji _,(1J lii+1( 11 ) ] } ,

;;6 =Al � {sJi(s) :s h(sl+H2Ul(s)-j,_,(s)j1+1(sll }+2A1 c, g2� 21u + t)j,(s)h(11l

+cl �41U +ll {h(11l [ h(11l+11 d�j1(11l l +fT12Ul(11)-h-1(11)j1+1(11ll } ,
where s=hR0 and 1J=kR0, R0 being the radius of a spherical nucleus. h and k are defined in relation with Eqs. (3.9)
and (3.10). 
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